
© 1998 by IOtech, Inc. February 1998 Printed in the United States of America.

Personal488 User's Manual

PC/IEEE 488 Controller For DOS & Windows 3.Xi

the smart approach to instrumentation ™

IOtech, Inc.
25971 Cannon Road

Cleveland, OH 44146-1833
Phone: (440) 439-4091

Fax: (440) 439-4093
E-mail: sales@iotech.com
Internet: www.iotech.com

Personal488 User's Manual
PC/IEEE 488 Controller

For DOS & Windows 3.X

p/n Personal488-902 Rev. 3.0

mailto:sales@iotech.com
www.iotech.com

Warranty Information
Your IOtech warranty is as stated on the product warranty card. You may contact IOtech by phone,
fax machine, or e-mail in regard to warranty-related issues.
Phone: (440) 439-4091, fax: (440) 439-4093, e-mail: sales@iotech.com

Limitation of Liability
IOtech, Inc. cannot be held liable for any damages resulting from the use or misuse of this product.

Copyright, Trademark, and Licensing Notice
All IOtech documentation, software, and hardware are copyright with all rights reserved. No part of this product may be
copied, reproduced or transmitted by any mechanical, photographic, electronic, or other method without IOtech’s prior
written consent. IOtech product names are trademarked; other product names, as applicable, are trademarks of their
respective holders. All supplied IOtech software (including miscellaneous support files, drivers, and sample programs)
may only be used on one installation. You may make archival backup copies.

FCC Statement
IOtech devices emit radio frequency energy in levels compliant with Federal Communications Commission rules (Part 15)
for Class A devices. If necessary, refer to the FCC booklet How To Identify and Resolve Radio-TV Interference Problems
(stock # 004-000-00345-4) which is available from the U.S. Government Printing Office, Washington, D.C. 20402.

CE Notice
Many IOtech products carry the CE marker indicating they comply with the safety and emissions standards of the
European Community. As applicable, we ship these products with a Declaration of Conformity stating which
specifications and operating conditions apply.

Warnings, Cautions, Notes, and Tips
Refer all service to qualified personnel. This caution symbol warns of possible personal injury or equipment damage
under noted conditions. Follow all safety standards of professional practice and the recommendations in this manual.
Using this equipment in ways other than described in this manual can present serious safety hazards or cause equipment
damage.

This warning symbol is used in this manual or on the equipment to warn of possible injury or death from electrical
shock under noted conditions.

This ESD caution symbol urges proper handling of equipment or components sensitive to damage from electrostatic
discharge. Proper handling guidelines include the use of grounded anti-static mats and wrist straps, ESD-protective
bags and cartons, and related procedures.

This symbol indicates the message is important, but is not of a Warning or Caution category. These notes can be of
great benefit to the user, and should be read.

In this manual, the book symbol always precedes the words “Reference Note.” This type of note identifies the location
of additional information that may prove helpful. References may be made to other chapters or other documentation.

Tips provide advice that may save time during a procedure, or help to clarify an issue. Tips may include additional
reference.

Specifications and Calibration
Specifications are subject to change without notice. Significant changes will be addressed in an addendum or revision to
the manual. As applicable, IOtech calibrates its hardware to published specifications. Periodic hardware calibration is
not covered under the warranty and must be performed by qualified personnel as specified in this manual. Improper
calibration procedures may void the warranty.

Quality Notice
IOtech has maintained ISO 9001 certification since 1996. Prior to shipment, we thoroughly test our products and
review our documentation to assure the highest quality in all aspects. In a spirit of continuous improvement, IOtech
welcomes your suggestions.

mailto:sales@iotech.com

Personal488 User’s Manual, Rev. 3.0 iii

Personal488 PC/IEEE 488 Controller

 General Table of Contents

General Table of Contents ...iii
Detailed Table of Contents ..v
Introduction to this Manual ... xv

SECTION I: HARDWARE GUIDES.. I-1
1. Overview... I-3
2. Personal488 (with GP488B): 8-bit DMA Interface Board I-8
3. Personal488/AT: 16-bit DMA Interface Board ... I-13
4. Personal488/NB: 170 kByte Interface Module for Notebook, Laptop, & Desktop PCs... I-17
5. Personal488/MM: 330 kByte Interface Board.. I-18
6. Personal488/CARD: Type II PCMCIA Interface Card for Notebook & Desktop PCs ... I-22

SECTION II: SOFTWARE GUIDES.. II-31
7. Overview... II-33
8. Driver488/DRV: All Languages Compatible .. II-34
9. Driver488/SUB: C Language, Pascal & QuickBasic Compatible............................ II-133
10. Driver488/W31: C Language & Visual Basic Compatible II-191
11. Driver488/W95: (Software Revisions Pending) ... II-257
12. Driver488/WNT: (Software Revisions Pending).. II-258

SECTION III: COMMAND REFERENCES ..III-259
13. Overview..III-261
14. Command Summaries...III-262
15. Command References ...III-282

SECTION IV: TROUBLESHOOTING.. IV-353
16. Overview.. IV-355
17. Radio Interference Problems.. IV-356
18. Troubleshooting Checklists .. IV-357
19. Error Messages... IV-361

SECTION V: APPENDIX ...V-367

SECTION VI: INDEX.. VI-375

iv Personal488 User’s Manual, Rev. 3.0

Personal488 User’s Manual, Rev. 3.0 v

Personal488 PC/IEEE 488 Controller

 Detailed Table of Contents

FCC Radio Frequency Interference Statement..Error!
Warranty ...iii
Limitation of Liability ..iii
Copyright Notice ..iii
Trademark Notice..iii
Quality Notice ..iii

General Table of Contents ...v
Detailed Table of Contents ...vii
Introduction to this Manual ...xvii

About this Manual.. xvii
How to Use this Manual... xvii
Header Files & Command References.. xvii

SECTION I: HARDWARE GUIDES ... I-1
1. Overview... I-3

Introduction .. I-3
IEEE 488.2 Interface Boards ... I-4
Driver488 Software Interface.. I-4
Interface & Interface Board Specifications ... I-6

IEEE 488.1-1987 Interface ... I-6
IEEE 488.2-1987 Interface ... I-6
GP488B Interface Board ... I-6
AT488 Interface Board.. I-6
MP488 Interface Board ... I-6
MP488CT Interface Board .. I-7
GP488/2 Interface Board... I-7
GP488/MM Interface Board.. I-7
NB488 Interface Module ... I-7
PCMCIA Interface Card.. I-7

2. Personal488 (with GP488B) .. I-8
The Package .. I-8
Hardware Installation (for PC/XT/AT) ... I-8

Installation & Configuration of the Interface Card .. I-8
Default Settings... I-9
I/O Base Address Selection ... I-9
Interrupt Selection .. I-10
DMA Channel Selection.. I-10
Wait State Configuration.. I-11
Internal Clock Selection.. I-11
Board Installation ... I-11

3. Personal488/AT.. I-13
The Package .. I-13
Hardware Installation (for PC/XT/AT) ... I-13

vi Personal488 User’s Manual, Rev. 3.0

Installation & Configuration of the Interface Card...I-13
Default Settings ...I-13
I/O Base Address Selection..I-13
Interrupt Selection...I-14
DMA Channel Selection ..I-15
Board Installation ..I-15

4. Personal488/NB..I-17
The Package...I-17
Hardware Installation (for Notebook, Laptop, & Desktop PCs)......................................I-17

5. Personal488/MM...I-18
The Package...I-18
Hardware Installation (for PC/XT/AT)..I-18

Installation & Configuration of the Interface Card...I-18
Default Settings ...I-18
I/O Base Address Selection..I-19
Interrupt Selection...I-20
DMA Channel Selection ..I-20
Internal Clock Selection ..I-21
Board Installation ..I-21

6. Personal488/CARD ..I-22
The Package...I-22
Introduction...I-22
Hardware Installation (for Notebook & Desktop PCs) ...I-23

Interfaces & Connectors ..I-23
Interface Cable Connection ...I-23
Installation into a PC...I-24
Interface Cable & IEEE 488 Accessories..I-24

Software Installation ...I-24
Initialization Software...I-24
Configuration Software ...I-27

Functionality ...I-29

SECTION II: SOFTWARE GUIDES .. II-31
7. Overview ... II-33
8. Driver488/DRV ... II-34

8A. Introduction ... II-34
8B. Installation & Configuration .. II-35

Before You Get Started... II-35
Making Backup Disk Copies ... II-36
Driver Installation.. II-36

Selective Installation of Support files... II-36
Driver Installation to Disk .. II-37

Configuration Utility.. II-38
Interfaces.. II-38
External Devices .. II-38
Opening the Configuration Utility.. II-38

Configuration of IEEE 488 Interfaces.. II-39
Configuration of Serial Interfaces... II-41
Configuration of IEEE 488 External Devices.. II-42
Multiple Interface Management ... II-43

8C. External Device Interfacing.. II-45
Introduction... II-45
Character Command Language (CCL).. II-45
DOS Devices ... II-46

Personal488 User’s Manual, Rev. 3.0 vii

Configuration of Named Devices...II-46
Use of External Devices...II-47
Direct I/O with DOS Devices ..II-47
Extensions For Multiple Interfaces...II-48

Duplicate Device Names ..II-48
Access of Multiple Interfaces ...II-48
Example ..II-49

8D. Getting Started.. II-49
Introduction ...II-49
Keyboard Controller Program ...II-50
Direct Control from DOS Using CCL..II-51

8E. Microsoft C.. II-53
Use of the Character Command Language..II-53
Initialization of the System..II-53
Configuration of the 195 DMM ..II-56
Taking Readings..II-56
Buffer Transfers...II-56
Interrupt Handling ...II-57
IEEEIO.C...II-59
CRITERR.ASM (Microsoft C & Turbo C)..II-61
Sample Program..II-62

8F. Microsoft Fortran.. II-63
Sample Program..II-63

8G. QuickBASIC ... II-64
Use of the Character Command Language..II-64
Initialization of the System..II-64
Configuration of the 195 DMM ..II-66
Taking Readings..II-66
Buffer Transfers...II-67
BASIC VARPTR & SADDR ...II-68
Interrupt Handling ...II-68
Sample Program..II-70

8H. Turbo C ... II-71
Use of the Character Command Language..II-71
Initialization of the System..II-72
Configuration of the 195 DMM ..II-74
Taking Readings..II-74
Buffer Transfers...II-75
Interrupt Handling ...II-76
IEEEIO.C...II-78
CRITERR.ASM (Microsoft C & Turbo C)..II-80
Sample Program..II-80

8I. Turbo Pascal.. II-82
Use of Character Command Language ..II-82
Initialization of the System..II-83
Configuration of the 195 DMM ..II-84
Taking Readings..II-85
Buffer Transfers...II-85
Interrupt Handling ...II-86
Sample Program..II-88

8J. Spreadsheets... II-90
Use of Direct DOS I/O Devices..II-90
Initialization of the System..II-90
Configuration of the 195 DMM ..II-91

viii Personal488 User’s Manual, Rev. 3.0

Taking Readings... II-92
Interrupt Handling... II-92

8K. Other Languages ... II-96
Introduction... II-96
Finding Addresses... II-97

Garbage Collection... II-97
Memory Models.. II-97
Calling Protocols .. II-99

Opening & Closing the Driver... II-100
I/O Control (IOCTL) Communication .. II-100

IOCTL Get & Set Device Data .. II-100
IOCTL Read & Write ... II-101

Data & Command Communication.. II-102
ARM Condition Detection .. II-102
Sample Program ... II-102

8L. Language-Specific Information.. II-104
Aztec C .. II-104

Use of Character Command Language... II-104
CRITERR.C (for Aztec C) .. II-105

GW-BASIC (for GW-BASIC or Interpreted BASIC).. II-105
Use of Direct DOS I/O Devices.. II-105
BASIC VARPTR & SADDR... II-105
GET & PUT (for GW-BASIC only).. II-106

JPI TopSpeed Modula-2 ... II-106
Use of Direct DOS I/O Devices.. II-106

Logitech Modula-2 .. II-106
Use of Direct DOS I/O Devices.. II-106

True Basic .. II-107
Use of Character Command Language... II-107
IEEEIO.TRU .. II-107
TOOLKIT.LIB .. II-107

Turbo Basic.. II-108
Use of Character Command Language... II-108

8M. Data Transfers... II-108
Terminators ... II-108

End-Of-Line (EOL) Terminators... II-108
TERM Terminators.. II-112

Direct I/O & Buffered I/O ... II-113
Direct Bus OUTPUT.. II-113
Direct Bus ENTER... II-113
Buffered I/O.. II-114

Asynchronous Transfers .. II-115
8N. Operating Modes ... II-115

Introduction... II-116
Operating Mode Transitions ... II-116
System Controller Mode ... II-117
System Controller, Not Active Controller Mode.. II-117
Not System Controller Mode.. II-119
Active Controller, Not System Controller Mode.. II-119

8O. Utility Programs.. II-120
Printer & Serial Redirection... II-120
Removal & Reinstallation ... II-122

MARKDRVR & REMDRVR .. II-122
Moving Files from an IEEE 488 (HP-IB) Controller to a PC .. II-123

PRNTEMUL Files.. II-123

Personal488 User’s Manual, Rev. 3.0 ix

Configuration of the IEEE Interface for PRNTEMUL ..II-123
Running PRNTEMUL..II-124
Data Transfer ...II-124

8P. Command Descriptions.. II-124
Introduction ...II-124
Format ...II-125

Syntax ...II-125
Response ...II-127
Mode ..II-127
Bus States ...II-127
Examples...II-131

Data Types ..II-131
CCL Reserved Words..II-132

List of Reserved Words ...II-132
8Q. Command Reference .. II-132

9. Driver488/SUB ... II-133
9A. Introduction ... II-133
9B. Installation & Configuration.. II-134

Before You Get Started..II-134
Making Backup Disk Copies ..II-135
Driver Installation ..II-135
Configuration Utility ..II-135

Interfaces ..II-136
External Devices...II-136
Opening the Configuration Utility ..II-136

Configuration of IEEE 488 Interfaces ..II-136
Configuration of Serial Interfaces..II-139
Configuration of IEEE 488 External Devices ..II-140

9C. External Device Interfacing ... II-141
Introduction ...II-141

Subroutine Calls...II-142
Configuration of Named Devices...II-142
Use of External Devices...II-143
Extensions for Multiple Interfaces..II-144

Duplicate Device Names ..II-144
Access of Multiple Interfaces ...II-144
Example ..II-145

9D. Getting Started.. II-145
Introduction ...II-145
C Language...II-145

Required Headers...II-146
Required Libraries ...II-146

QuickBASIC..II-148
Required Definition File ..II-149
Required Libraries ...II-149

Pascal ..II-149
Required Libraries ...II-149

9E. C Languages .. II-150
Accessing from a C Program..II-150
Establishing Communications ..II-151
Confirming Communication ..II-152
Setting Up Event Handling ..II-152
Reading Driver Status ..II-152
External Device Initialization...II-153

x Personal488 User’s Manual, Rev. 3.0

Interrupt Handling... II-153
Basic Data Acquisition .. II-154
Block Data Acquisition .. II-154
Sample Program ... II-155
Command Summary ... II-158

9F. QuickBASIC .. II-159
Accessing from a QuickBASIC Program ... II-159
Establishing Communications.. II-159
Confirming Communications.. II-160
Setting Up Event Handling ... II-160
Reading Driver Status ... II-161
External Device Initialization .. II-161
Interrupt Handling... II-162
Basic Data Acquisition .. II-162
Block Data Acquisition .. II-162
Sample Program ... II-163
Command Summary ... II-166

9G. Pascal ... II-166
Accessing from a Pascal Program.. II-166
Establishing Communications.. II-167
Confirming Communication ... II-168
Setting Up Event Handling ... II-168
Reading Driver Status ... II-168
External Device Initialization .. II-169
Interrupt Handling... II-169
Basic Data Acquisition .. II-170
Block Data Acquisition .. II-170
Sample Program ... II-171
Command Summary ... II-174

9H. Data Transfers ... II-175
Terminators ... II-175

TERM Terminators.. II-175
Data Input and Output.. II-176
Asynchronous Transfers .. II-177

9I. Operating Modes... II-177
Introduction... II-177
Operating Mode Transitions ... II-178
System Controller Mode ... II-179
System Controller, Not Active Controller Mode.. II-179
Not System Controller Mode.. II-181
Active Controller, Not System Controller Mode.. II-181

9J. Utility Programs... II-182
Printer & Serial Redirection... II-182
Removal & Reinstallation ... II-184

MARKDRVR & REMDRVR .. II-184
Moving Files from an IEEE 488 (HP-IB) Controller to a PC .. II-185

PRNTEMUL Files.. II-185
Configuration of the IEEE Interface for PRNTEMUL.. II-185
Running PRNTEMUL ... II-185
Data Transfer ... II-186

9K. Command Descriptions.. II-186
Introduction... II-186
Format .. II-187

Syntax... II-187
Returns ... II-187

Personal488 User’s Manual, Rev. 3.0 xi

Mode ..II-187
Bus States ...II-187
Examples...II-189

Data Types ..II-189
Arm Condition Bit Masks ..II-189
Control Line Bit Masks ..II-189
Terminator Structures ...II-189
Status Structure ...II-190
Completion Code Bit Masks...II-190
Miscellaneous Constants..II-190

9L. Command Reference... II-190
10. Driver488/W31.. II-191

10A. Introduction ... II-191
10B. Installation & Configuration.. II-192

Before You Get Started..II-192
Making Backup Disk Copies ..II-193
Driver Installation ..II-193

Enhanced Mode DMA Transfers ...II-194
Configuration Utility ..II-195

Interfaces ..II-195
External Devices...II-195
Opening the Configuration Utility ..II-195

Configuration of IEEE 488 Interfaces ..II-196
Configuration of IEEE 488 External Devices ..II-198
Modification of the Initialization File ...II-199

Driver Core Sections ..II-200
10C. External Device Interfacing ... II-202

Introduction ...II-202
Subroutine Calls...II-202

Configuration of Named Devices...II-202
Use of External Devices...II-204
Extensions For Multiple Interfaces...II-204

Duplicate Device Names ..II-205
Access of Multiple Interfaces ...II-205
Example ..II-205

10D. Getting Started.. II-205
Introduction ...II-206

C Languages ...II-206
Visual Basic ..II-206

C Languages ...II-206
Required Headers...II-206
Required Libraries ...II-207

Visual Basic..II-207
Required Files...II-207

10E. C Languages .. II-208
Accessing from a Windows Program...II-208

Opening & Closing the Driver ...II-208
Establishing Communications ..II-209
Confirming Communications ..II-211
IEEE 488 Event Message ...II-211
Reading Driver Status ..II-213
External Device Initialization...II-214
Basic Data Acquisition ...II-214
Block Data Acquisition...II-215

xii Personal488 User’s Manual, Rev. 3.0

Sample Programs.. II-216
Data Acquisition Sample Programs.. II-216
IEEE 488 Event Message Sample Programs ... II-224

Command Summary ... II-231
10F. Visual Basic... II-232

Accessing from a Windows Program.. II-232
Opening & Closing the Driver... II-233

Establishing Communications.. II-234
Confirming Communications.. II-235
IEEE 488 Event Custom Control ... II-235
Reading Driver Status ... II-238
External Device Initialization .. II-238
Basic Data Acquisition .. II-239
Block Data Acquisition .. II-239
Dynamic Data Exchange (DDE) ... II-241

Application ... II-241
Server Links ... II-241
Acquisition Engine... II-243

Sample Programs.. II-246
Data Acquisition Sample Program ... II-246
IEEE 488 Event Custom Control Sample Program... II-249
Acquisition Engine Sample Program.. II-250

Command Summary ... II-251
10G. Utility Programs.. II-251

Introduction... II-251
WINTEST.. II-251

Opening a Device Handle for Communication... II-252
Handle Lists ... II-252
WINTEST Session ... II-253

QUIKTEST ... II-254
Application Files .. II-254
Installation ... II-254
Operation of the Application ... II-255
Cutting & Pasting to Other Applications ... II-255
Dynamic Data Exchange (DDE) ... II-255
Loading the Project into Visual Basic... II-256

Licensing .. II-256
10H. Command Reference .. II-256

11. Driver488/W95 .. II-257
12. Driver488/WNT... II-258

SECTION III: COMMAND REFERENCES.. III-259
13. Overview ... III-261
14. Command Summaries .. III-262

14A. Driver488/SUB, C Languages ... III-262
Function Descriptions...III-262
The Commands ...III-264
Syntax Parameters ..III-264
Defined Constants..III-265
Structure Definitions ..III-265

14B. Driver488/SUB, QuickBASIC .. III-266
Function Descriptions...III-266
The Commands ...III-268
Syntax Parameters ..III-268

Personal488 User’s Manual, Rev. 3.0 xiii

Defined Constants.. III-269
Structure Definitions .. III-269

14C. Driver488/SUB, Pascal ..III-270
Function Descriptions... III-270
The Commands... III-272
Syntax Parameters .. III-272
Defined Constants.. III-272
Structure Definitions .. III-273

14D. Driver488/W31, C Languages ...III-274
Function Descriptions... III-274
The Commands... III-276
Syntax Parameters .. III-276
Defined Constants.. III-276
Structure Definitions .. III-277

14E. Driver488/W31, Visual Basic ..III-278
Function Descriptions... III-278
The Commands... III-280
Syntax Parameters .. III-280
Defined Constants.. III-281
Structure Definitions .. III-281

15. Command References ...III-282
15A. Driver488/DRV Commands ..III-282
15B. Driver488/SUB, W31, W95, & WNT CommandsIII-312

SECTION IV: TROUBLESHOOTING.. IV-353
16. Overview.. IV-355
17. Radio Interference Problems.. IV-356
18. Troubleshooting Checklists... IV-357

18A. Introduction .. IV-357
18B. Driver488/DRV .. IV-357
18C. Driver488/SUB... IV-358
18D. Driver488/W31... IV-359
18E. Driver488/W95 & Driver488/WNT.. IV-360

19. Error Messages... IV-361

SECTION V: APPENDIX ...V-367

SECTION VI: INDEX.. VI-375

xiv Personal488 User’s Manual, Rev. 3.0

Personal488 User’s Manual, Rev. 3.0 xv

Personal488 PC/IEEE 488 Controller

 Introduction to this Manual
About this Manual

This edition of the Personal488 User’s Manual supersedes all previous editions.

The material in this manual reflects the particular combinations of IEEE 488 I/O adapter and driver
software, and is comprised of four primary Sections: Hardware Guides, Software Guides, Command
References, and Troubleshooting, followed by two more Sections: Appendix and Index. The last two
pages contain a List of IEEE 488 Acronyms & Abbreviations and a List of ASCII Acronyms &
Abbreviations as additional references for this manual and for other related literature.

Before calling for technical assistance, check the Troubleshooting section for a possible solution to the
problem.

Since much of the hardware and software material in this manual is similar to material elsewhere in the
manual, make sure you view the material which corresponds to your specific hardware and software.
For example, do not read about Driver488/DRV when your application pertains to Driver488/W31

Information which may have changed since the time of printing will be found in a README.TXT file on
disk, or in an addendum to the manual.

How to Use this Manual
Because this manual contains a large volume of information, a four-level table of contents system is
used in addition to a complete Detailed Table of Contents. In this four-level system, the General Table
of Contents at the front of this manual should be used primarily to locate the main Sections of the
manual, i.e., specific hardware guides and software guides. The first page of each Section contains a
second-level table, listing the Chapters with their page locations. Next, many of these Chapters
contain a third-level table, listing the Sub-Chapters or specific Topics with their page locations.
Finally, many of these Sub-Chapters contain a fourth-level table, listing the specific Topics with their
page locations. While this multi-level method is easy to use, experienced users may prefer the
traditional table of contents.

As mentioned above, this manual also includes an Index, so you can quickly find the page(s) pertaining
to a specific topic.

Header Files & Command References
Since changes are taking place in Driver488/W95 and Driver488/WNT software as this publication
goes to press, please refer to your operating system header file for the latest available information
specific to your application.

xvi Personal488 User’s Manual, Rev. 3.0

Personal488 User’s Manual, Rev. 3.0 I-1

Section I:

 HARDWARE GUIDES

I-2 Personal488 User’s Manual, Rev. 3.0

I. HARDWARE GUIDES 1. Overview

Personal488 User’s Manual, Rev. 3.0 I-3

 I. HARDWARE GUIDES

Chapters

1. Overview.. I-3
2. Personal488 (with GP488B)... I-8
3. Personal488/AT .. I-13
4. Personal488/NB.. I-17
5. Personal488/MM... I-18
6. Personal488/CARD .. I-22

 1. Overview

Topics

• Introduction .. I-4
• IEEE 488.2 Interface Boards.. I-4
• Driver488 Software Interface.. I-4
• Interface & Interface Board Specifications I-6

IEEE 488.1-1987 Interface.. I-6
IEEE 488.2-1987 Interface.. I-6
GP488B Interface Board .. I-6
AT488 Interface Board ... I-6
MP488 Interface Board .. I-6
MP488CT Interface Board ... I-7
GP488/2 Interface Board.. I-7
GP488/MM Interface Board ... I-7
NB488 Interface Module... I-7
PCMCIA Interface Card ... I-7

Introduction
The Hardware Guides section contains chapters pertaining to different Personal488 Drivers, as
indicated in the previous Section I Table of Contents. Each Driver488 section contains information
regarding specific PC/IEEE 488 controllers. The hardware guide describes the I/O adapter and
includes instructions for inspecting, configuring, and installing the adapter.

In addition to this manual, Power488 and Power488CT users receive a manual supplement describing
the Standard Commands for Programmable Instruments (SCPI) command set and the IOTTIMER.DLL,
a Microsoft Windows Dynamic Link Library of functions. This overview introduces the hardware and
software sections of this manual.

The Personal488 converts your PC or PC/AT into an IEEE 488.2-compliant controller. Each controller
package includes an interface board or module, driver software and complete documentation. The
following information provides a brief overview of a specific PC/IEEE 488 interfaces and software
drivers, and of the Driver488 components.

1. Overview I. HARDWARE GUIDES

I-4 Personal488 User’s Manual, Rev. 3.0

IEEE 488.2 Interface Boards
The family of PC/IEEE 488 controllers includes the GP488B, the GP488/2, the AT488, the MP488,
the MP488CT, the GP488/MM and the NB488. All are IEEE 488.2 compatible and supported by
Driver488 software. The MP488 and MP488CT also provide digital I/O, and the MP488CT provides a
set of programmable counter/timers, all of which are fully supported by Driver488. Some features of
the interfaces are listed below:

• GP488B interface board (for PC/XT/AT): Features five jumper-selectable interrupt lines. Three
8-bit jumper-selectable DMA channels are also available. The 8-bit DMA mode provides full
compatibility with programs written for GP488 series boards.

• AT488 interface board (for PC/XT/AT and PS/2 with the ISA bus): Features eleven jumper-
selectable interrupt lines. Three 16-bit and four 8-bit jumper-selectable DMA channels are also
available. The 8-bit DMA mode provides full compatibility with programs written for the GP488
series boards.

• MP488 interface board (for PC/XT/AT and PS/2 with the ISA bus): Features eleven jumper-
selectable interrupt lines. Three 16-bit and four 8-bit jumper-selectable DMA channels are also
available. The 8-bit DMA mode provides full compatibility with programs written for the GP488
series boards. The digital I/O section of this board provides 40 digital I/O lines which can be
programmed for a mix of input and output.

• MP488CT interface board (for PC/XT/AT and PS/2 with the ISA bus): Features eleven jumper-
selectable interrupt lines. Three 16-bit and four 8-bit jumper-selectable DMA channels are also
available. The 8-bit DMA mode provides full compatibility with programs written for the GP488
series boards. The digital I/O section of this board provides 40 input or output lines which can be
programmed for a mix of input and output. The counter/timer section features a programmable
clock generator plus 5 fully independent versatile counter/timer channels.

• GP488/2 interface board (for Personal Systems/2 with MicroChannel architecture): Features seven
software selectable interrupt lines and fourteen 8-bit software selectable DMA arbitration levels.

• GP488B/MM interface board: Converts your Ampro PC/104 Single Board PC into an IEEE 488.2
compliant controller or peripheral.

• NB488 external interface module (for notebook, laptop and desktop PCs): Connects to a PC’s
parallel port eliminating the need for an internal expansion slot.

Driver488 Software Interface
Driver488 is the software interface between DOS or Windows and the IEEE 488 controller board.
Driver488 software includes the driver itself, an installation program, other utility programs, and
programming examples. Driver488 provides a full implementation of the IEEE 488.2 standard, plus
advanced capabilities such as high-speed DMA data transfers, interrupt vectoring on specified events,
automatic error detection, callable subroutines, and serial (COM) port support.

Driver488 monitors all IEEE 488 bus monitoring and control lines and generates an interrupt based on
SRQ status and various other bus conditions. Driver488 software supports automatic program vectoring
to service routines for C, Pascal, and BASIC. On a specified event (Error, SRQ, Peripheral,
Controller, Trigger, Clear, Talk, Listen, Idle, ByteIn, ByteOut, Change),
Driver488 can either call a specified application routine or simulate a light pen interrupt to signal that
the event has occurred.

Versions with HP-style character commands can be accessed by virtually any language that can
communicate with DOS files, and additionally provide standard DOS device driver interfaces which
permit communications with the IEEE 488 bus and/or connected devices in the same manner as LPT1,
COM1, etc. Versions with the Subroutine API offer higher performance and can be used with most
popular C, Pascal, and Basic languages. The Driver488 commands and bus protocol are very similar to
those used by the Hewlett-Packard HP-85 controller.

I. HARDWARE GUIDES 1. Overview

Personal488 User’s Manual, Rev. 3.0 I-5

Versions of Driver488 are described in the following text and table.

• Driver488/DRV: The industry’s easiest-to-use IEEE 488.2 driver, offering HP-style commands,
support for all programming languages and spread sheets, and features such as automatic program
vectoring on SRQ.

• Driver488/SUB : A subroutine-style IEEE 488.2 driver that provides all the function of
Driver488/DRV, as well as high performance for fast, interrupt-driven programmed I/O
operations.

• Driver488/W31: A Dynamic Link Library (DLL) that brings IEEE 488.2 control to Microsoft
Windows 16-bit applications. Includes support for Visual Basic, C, Quick C, Turbo C and
Borland C++.

• Driver488/W95: A Dynamic Link Library (DLL) that brings IEEE 488.2 control to Microsoft
Windows 95 for 32-bit applications. Pending software revisions, it includes support for Microsoft
C, Visual Basic, and Borland C++.

• Driver488/WNT: A Dynamic Link Library (DLL) that brings IEEE 488.2 control to Windows NT
version 3.1 or 3.5 applications. Pending software revisions, it includes support for Windows NT
SDK, or C language compiler Visual Basic 4.

• Driver488/LIB: An IEEE 488.2 library of C function calls that link directly to your application for
maximum speed with minimal memory requirements, adding as few as as 25 Kbytes to a compiled
program. Available with an optional license that allows unlimited copies of compiled applications.

• Driver488/OEM: A compact IEEE 488.2 function-call library that enables quick and easy
integration of IEEE 488.2 capability into PC-based instruments.

• Driver488/IUX: A high performance IEEE 488.2 driver for running Interactive Systems UNIX
System V and AT&T UNIX STREAMS.

• Driver488/SCX: A high performance driver for SCO UNIX System V and AT&T UNIX
STREAMS.

Driver488 Family Overview
Driver488

Driver Type
Description Compatible

Operating
System

Compatible
Languages

Driver Architecture COM
Support

Power488 Digital
I/O & Counter-
Timer Support

W951 High performance driver for
Windows 95

Microsoft
Windows 95

C, C++ for
Windows &
Visual Basic

Dynamic Link Library
(DLL)

No No

WNT1 High performance driver for
Windows NT

Microsoft
Windows NT

C Dynamic Link Library
(DLL)

No No

W31 High performance driver for
Windows

Microsoft
Windows 3.x

C & Visual Basic Dynamic Link Library
(DLL)

No Yes

SUB Higher performance driver
for subroutine-style

programming.

DOS C, Pascal, &
QuickBASIC

Memory resident Yes Yes

DRV Device driver, compatible
with all languages

DOS All, including
spreadsheets

Memory resident Yes Yes

LIB2 Fast, compact, no resident
driver.

DOS C Linkable function
calls

No No

OEM2 Specially designed to operate
as an IEEE 488.2 peripheral.

DOS3 C Linkable function
calls

Optional No

IUX2

SCX2
For Interactive Systems &

SCO UNIX.
UNIX C Memory resident. No No

1 Note: Driver488/W95 and Driver488/WNT are minimally discussed in this manual, pending current software revisions. Refer to your operating
system header file for the latest available information specific to your application.

2 Note: Driver488/LIB, OEM, IUX, and SCX are not discussed in this manual. These drivers are shipped with their respective manuals.

3 Note: Call the factory regarding Driver488/OEM compatibility with other operating systems.

1. Overview I. HARDWARE GUIDES

I-6 Personal488 User’s Manual, Rev. 3.0

Interface & Interface Board Specifications
Note 1: The IOT7210 IEEE 488 Controller Chip is 100% compatible with the NEC µPD7210 chip

and exhibits better performance, as well as lower power consumption.

Note 2: Specifications subject to change without notice.

IEEE 488.1-1987 Interface
SH1, AH1, T6, TE0, L4, LE0, SR1, PP0, RL0, DC1, DT1, E1/2
Controller Subsets: C1, C2, C3, C4 and C9
Terminator: Software selectable characters and/or EOI
Connector: Standard Amphenol 57-20240 with metric studs

IEEE 488.2-1987 Interface
IEEE 488 Bus Readback Registers: NDAC, NRFD, DAV, EOI, SRQ
Bus Error Handling

GP488B Interface Board
IEEE 488 Controller Device: IOT7210 (See Note)
Power Consumption: 750mA max @ 5V from PC supply
Dimensions: Occupies one short PC slot size (5.25" long, plus IEEE 488 connector)
Speed: 8-bit DMA: 330K byte/s (reads); 220K byte/s (writes)
Environment: 0 to 50° C, 0 to 95% RH, non-condensing
DMA Capability: 8-bit on channels 0 - 3
Interrupt Capability: IRQ 2 - 7
I/O Base Address: &H02E1, &H22E1, &H42E1, or &H62E1

AT488 Interface Board
IEEE 488 Controller Device: IOT7210 (See Note)
Power Consumption: 750mA max @ 5V from PC supply
Dimensions: Occupies one short PC slot size (5.25" long, plus IEEE 488 connector)
Speed: 16-bit DMA: 1M byte/s (reads); 800K byte/s (writes).8-bit DMA: 330K byte/s (reads); 220K
byte/s (writes)
Environment: 0 to 50° C, 0 to 95% RH, non-condensing
DMA Capability: Channels 1 - 3 (8 - bit) are selectable in a PC/XT or PC/AT.Channels 0 - 3 (8 - bit)
and 5 - 7 (16 - bit) are selectable in a PC/AT. Multiple AT488 boards may share the same DMA
channel.
Interrupt Capability: IRQ 2 - 7 for PC/XT, IRQ 2 - 7, 9, 10 - 12, 14, or 15 for PC/AT 16-bit slot
I/O Base Address: &H02E1, &H22E1, &H42E1, or &H62E1

MP488 Interface Board
IEEE 488 Controller Device: IOT7210 (See Note)
Power Consumption: 2A max @ 5V from PC supply
Dimensions: Occupies one 16-bit PC/AT full slot or 8-bit PC/XT full slot. Fits in PC/ATwith low
PC/XT form-factor. 13.13" long x 3.9" high (333mm x 99mm).
Speed: 16-bit DMA: 1M byte/s (reads); 800K byte/s (writes).8-bit DMA: 330K byte/s (reads); 220K
byte/s (writes)
Environment: 0 to 50° C, 0 to 95% RH, non-condensing
DMA Capability: Channels 1-3 (8-bit) are selectable in a PC/XT or PC/AT.Channels 0-3 (8-bit) and
5-7 (16-bit) are selectable in a PC/AT. Multiple MP488 boards may share the same DMA channel.
Interrupt Capability: IRQ 2-7 for PC/XT, IRQ 2 - 7, 9, 10 - 12, 14, or 15 for PC/AT 16-bit slot
I/O Base Address: &H02E1, &H22E1, &H42E1, or &H62E1
Digital I/O: 40 digital I/O lines; 24 configurable as input or output, 8 fixed input,and 8 fixed output
lines.

I. HARDWARE GUIDES 1. Overview

Personal488 User’s Manual, Rev. 3.0 I-7

MP488CT Interface Board
IEEE 488 Controller Device: IOT7210 (See Note)
Power Consumption: 2A max @ 5V from PC supply
Dimensions: Occupies one 16-bit PC/AT full slot or 8-bit PC/XT full slot. Fits inPC/AT with low
PC/XT form-factor. 13.13" long x 3.9" high (333mm x 99mm).
Speed: 16-bit DMA: 1M byte/s (reads); 800K byte/s (writes).8-bit DMA: 330K byte/s (reads); 220K
byte/s (writes)
Environment: 0 to 50° C, 0 to 95% RH, non-condensing
DMA Capability: Channels 1-3 (8-bit) are selectable in a PC/XT or PC/AT. Channels 0-3 (8-bit) and
5-7 (16-bit) are selectable in a PC/AT.Multiple MP488 boards may share the same DMA channel.
Interrupt Capability: IRQ 2 - 7 for PC/XT, IRQ 2 - 7, 9, 10 - 12, 14, or 15 for PC/AT 16-bit slot
I/O Base Address: &H02E1, &H22E1, &H42E1, or &H62E1
Digital I/O: 40 digital I/O lines; 24 configurable as input or output, 8 fixed input, 8 fixed output lines.
Counter/Timer: AMD Am9513A, 1 frequency output, 5 counter/timers.
Counter/Timer Frequency: DC - 7 MHz.
Internal Timebase: Up to 1 MHz, accuracy of 0.01%.

GP488/2 Interface Board
IEEE 488 Controller Device: IOT7210 (See Note)
Power Consumption: 1A max @ 5V from PC supply.
Dimensions: Occupies one full length slot in a MicroChannel bus.
Speed: 8-bit DMA: 330K byte/s (reads); 220K byte/s (writes).
Environment: 0 to 50° C, 0 to 95% RH, non-condensing
DMA Capability: 8-bit on channels 0 through 14
Interrupt Capability: IRQ 4, 5, 6, 7, 10, 11, or 15.

GP488/MM Interface Board
IEEE 488 Controller Device: IOT7210 (See Note)
Maximum Transfer Rate: 330K byte/s (reads and writes)
Connector: 26-pin header ribbon cable to standard IEEE 488 connectors
Environment: 0 to 70° C; 0 to 95% RH (non-condensing)
DMA Capability: Channels 0, 1, 2., or 3 (jumper selectable)
Interrupts: IRQ 2, 3, 4, 5, 6, or 7
IEEE Base I/O Addresses: &H02E1, &H22E1, &H42E1, or &H62E1

NB488 Interface Module
Speed: 170 Kbyte/s (reads and writes)
Dimensions: 5.5" x 4" x 1.5"
IEEE 488 Connector: Accepts standard IEEE 488 connector with metric studs
Parallel Port Input Connector: Male DB25
Parallel Port Output Connector to Printer IEEE: Female DB25
Instrument Fan-out: Can control up to 14 IEEE instruments
Power: 400-500 mA at 5 VDC from PC keyboard port or 7-15 VDC at 400-500 mA from external
power source
Environment: 0 to 70° C; 0 to 95% RH (non-condensing)

PCMCIA Interface Card
Speed: 1.0M byte/s
Dimensions: Type II (5 mm) PCMCIA Card
Power: 100 mA
I/O: 16-byte, relocatable

2. Personal488 (with GP488B) I. HARDWARE GUIDES

I-8 Personal488 User’s Manual, Rev. 3.0

 2. Personal488 (with GP488B)

Topics

• The Package...I-8
• Hardware Installation (for PC/XT/AT)...I-8

Installation & Configuration of the Interface Card....................................I-8
Default Settings...I-9
I/O Base Address Selection...I-9
Interrupt Selection..I-9
DMA Channel Selection..I-10
Wait State Configuration...I-11
Internal Clock Selection ..I-11
Board Installation ..I-11

The Package
Personal488, including the IEEE 488 interface board and the Driver488 software, is carefully
inspected, both mechanically and electrically, before shipment. When you receive the product, unpack
all items carefully from the shipping carton and check for any obvious signs of physical damage that
may have occurred during shipment. Report any such damage to the shipping agent immediately.
Remember to retain all shipping materials in the event shipment back to the factory becomes necessary.

For the following software versions, the Personal488 package varies:

• Driver488/DRV, SUB, or W31: This package includes: The GP488B IEEE 488 Bus Interface
Board, Driver488 Software Disks (Driver488/DRV, Driver488/SUB, Driver488/W31), and the
Personal488 User’s Manual.

• Driver488/W95: This package includes: The GP488B IEEE 488 Bus Interface Board, Driver488
Software Disks (Driver488/W95), and the Personal488 User’s Manual.

• Driver488/WNT: This package includes: The GP488B IEEE 488 Bus Interface Board, Driver488
Software Disks (Driver488/WNT), and the Personal488 User’s Manual.

Hardware Installation (for PC/XT/AT)

Installation & Configuration of the Interface Card
The following paragraphs explain configuration and physical installation of the interface card.
Software installation and setup are covered in a separate section. After configuring your board, please
make note of the following. This information is needed for Driver488 software installation.

• I/O Base Address

• Interrupt Channel

• DMA channel, if applicable

• Whether or not the board is the System Controller

I. HARDWARE GUIDES 2. Personal488 (with GP488B)

Personal488 User’s Manual, Rev. 3.0 I-9

Note: The GP488B, as illustrated, has one DIP switch, two 12-pin headers and one 3-pin header,
labeled SW1, J3, J4, and J5, respectively. The DIP switch setting, along with the arrangement
of the jumpers on the headers, set the hardware configuration.

Default Settings
The figure indicates the GP488B default configuration. Notice that SW1 controls the wait state
generation, the I/O base address and interrupt response level, J4 sets the interrupt request level, J3
selects the DMA channel, and J5 selects the clock source.

I/O Base Address Selection
The I/O base address sets the addresses used by the computer to communicate with the IEEE 488
interface hardware on the board. The address is normally specified in hexadecimal and can be 02E1,
22E1, 42E1, or 62E1. The registers of the IOT7210 IEEE 488 controller chip and other auxiliary
registers are then located at fixed offsets from the base address.

Most versions of Driver488 are capable of managing as many as four IEEE 488 interface boards. To
do so, the board configurations must be arranged to avoid conflict among themselves. No two boards
may have the same I/O address, but they may, and usually should, have the same DMA channel and
interrupt level.

The factory default I/O base address is 02E1. To use another, set SW1 switches 4 and 5 according to
the following table and figure.

I/O Base Address Register
02E1 22E1 42E1 62E1 Read Register Write Register
02E1 22E1 42E1 62E1 Data In Data Out
06E1 26E1 46E1 66E1 Interrupt Status 1 Interrupt Mask 1
0AE1 2AE1 4AE1 6AE1 Interrupt Status 2 Interrupt Mask 2
0EE1 2EE1 4EE1 6EE1 Serial Poll Status Serial Poll Mode
12E1 32E1 52E1 72E1 Address Status Address Mode
16E1 36E1 56E1 76E1 CMD Pass Through Auxiliary Mode
1AE1 3AE1 5AE1 7AE1 Address 0 Address 0/1
1EE1 3EE1 5EE1 7EE1 Address 1 End of String

2. Personal488 (with GP488B) I. HARDWARE GUIDES

I-10 Personal488 User’s Manual, Rev. 3.0

Interrupt Selection
The GP488B interface board may be set to interrupt the PC on the occurrence of certain hardware
conditions. The level of the interrupt generated is set by J4. The GP488B adheres to the “AT-style”
interrupt sharing conventions. When an interrupt occurs, the interrupting device must be reset by
writing to I/O address 02FX, where X is the interrupt level (from 0-7). This interrupt response level is
set by switches 1, 2, and 3 of SW1 which must be set to correspond to the J4 interrupt level setting.
Interrupt selection is illustrated in the following figure.

DMA Channel Selection
Direct Memory Access (DMA) is a high-speed method of transferring data from or to a peripheral, such
as a digitizing oscilloscope, to or from the PC’s memory. The PC has four DMA channels, but channel
0 is used for memory refresh and is not available for peripheral data transfer. Channel 2 is usually used
by the floppy disk controller, and is also unavailable. Channel 3 is often used by the hard disk
controller in PCs, XTs, and the PS/2 with the ISA bus, but is usually not used in ATs. So, depending
on your hardware, DMA channels 1 and possibly 3 are available. Under some rare conditions, it is
possible for high-speed transfers on DMA channel 1 to demand so much of the available bus bandwidth
that simultaneous access of a floppy controller will be starved for data due to the relative priorities of
the two channels. Configure the board according to which DMA channel, if any, is available.

I. HARDWARE GUIDES 2. Personal488 (with GP488B)

Personal488 User’s Manual, Rev. 3.0 I-11

Wait State Configuration
The GP488B is fast enough to be
compatible with virtually every
PC/XT/AT-compatible computer on the
market. Even if the computer is very fast,
the processor is normally slowed to 8MHz
or below when accessing the I/O channel.
If the I/O channel runs faster than 8 MHz,
it may be faster than the GP488B card. If
you suspect this is a problem, the computer
can be made to wait for the GP488B by
enabling wait states. Increasing the number
of wait states slows down access to the
GP488B card, but the overall performance
degradation is usually only a few percent.

Internal Clock Selection
The IEEE 488 bus interface circuitry requires a
master clock. This clock is normally connected to an
on-board 8 MHz clock oscillator. However, some
compatible IEEE 488 interface boards connect this
clock to the PC’s own clock signal. Using the PC
clock to drive the IEEE 488 bus clock is not
recommended because the PC clock frequency
depends on the model of computer. A standard PC
has a 4.77 MHz clock, while an AT might have a 6
MHz or 8 MHz clock. Other manufacturers’
computers may have almost any frequency clock. If
you are using a software package designed for an interface board (that derived its clock from the PC
clock) and you need to do the same to use GP488B with that particular software, the clock source can
be changed. However, the clock frequency must never be greater than 8 MHz, and clock frequency
must be correctly entered in the Driver488 software.

Board Installation
The IEEE 488 interface board(s) are installed into expansion slots inside the PC’s system unit. PC/AT-
compatible computers have two types of expansion slots: 8-bit (with one card-edge receptacle), and 16-
bit (with two card-edge receptacles). Eight-bit boards, such as the IEEE 488 interface boards, may be
used in either type of slot, 8- or 16-bit. Some machines may have special 32-bit memory expansion
slots which should not be used for IEEE 488 interface boards.

Install each IEEE 488 interface board into the expansion slots as follows: Ensure the PC is turned off
and unplug the power cord. Remove the cover mounting screws from the rear of the PC system unit.
Remove the system unit cover by sliding it forward and tilting it upward.

2. Personal488 (with GP488B) I. HARDWARE GUIDES

I-12 Personal488 User’s Manual, Rev. 3.0

A rear panel opening is provided at the end of each expansion slot for mounting I/O connectors. If a
slot is unused, this opening is covered by a metal plate held in place with a screw. Remove this screw
and the cover plate from the desired expansion slot, saving the screw.

Insert the IEEE 488 interface board carefully into the expansion slot, fitting the IEEE 488 connector
through the rear panel opening, and inserting its card edge into the motherboard card edge receptacle.
With the board firmly in place, fix its mounting bracket to the rear panel, using the screw removed from
the cover plate.

Slide the system unit cover back on, re-attaching it with the screws. Plug the power cord in and turn on
the PC. If all is well, the system should boot normally. If not, carefully check that none of the I/O
addresses conflict with any other devices or boards. If you are not sure, contact your PC’s dealer or
manufacturer.

I. HARDWARE GUIDES 3. Personal488/AT

Personal488 User’s Manual, Rev. 3.0 I-13

 3. Personal488/AT

Topics

• The Package .. I-13
• Hardware Installation (for PC/XT/AT) .. I-13

Installation & Configuration of the Interface Card.................................. I-13
Default Settings... I-13
I/O Base Address Selection .. I-13
Interrupt Selection ... I-14
DMA Channel Selection ... I-15
Board Installation .. I-15

The Package
Personal488/AT, including the IEEE 488 interface board and the Driver488 software, is carefully
inspected, both physically and electronically, before shipment. When you receive the product, unpack
all items carefully from the shipping carton and check for any obvious signs of physical damage that
may have occurred during shipment. Report any such damage to the shipping agent immediately.
Remember to retain all shipping materials in the event shipment back to the factory becomes necessary.

The Personal488/AT includes:

• AT488 IEEE Bus Interface Board

• Driver488 Software Disks
 (Driver488/DRV, Driver488/SUB, Driver488/W31, & Driver488W95)

• Personal488 User’s Manual

Hardware Installation (for PC/XT/AT)

Installation & Configuration of the Interface Card
The following paragraphs explain configuration and physical installation of the interface card.
Software installation and setup are covered in a separate section. After configuring your board, please
make note of the following: the I/O Base Address, the interrupt channel, the DMA channel, if any, and
whether or not the board is the System Controller. This information is needed for Driver488 software
installation.

The Personal488/AT has two DIP switches (S1 and S2), and three 14-pin headers (IRQ, DACK and
DRQ). The DIP switch settings, along with the arrangement of the jumpers on the headers, set the
hardware configuration.

Default Settings
Notice that S1 and IRQ set the interrupt response level, S2 controls the I/O base address, and DACK
and DRQ select the DMA channel.

3. Personal488/AT I. HARDWARE GUIDES

I-14 Personal488 User’s Manual, Rev. 3.0

I/O Base Address Selection
The I/O base address sets the addresses used by the computer to communicate with the IEEE 488
interface hardware on the board. The address is normally specified in hexadecimal and can be 02E1,
22E1, 42E1, or 62E1. The registers of the IOT7210 IEEE 488 controller chip and other auxiliary
registers are then located at fixed offsets from the base address.

Most versions of Driver488 are capable of
managing as many as four IEEE 488 interface
boards. To do so, the board configurations
must be arranged to avoid conflict among
themselves. No two boards may have the
same I/O address, but they may, and usually
should, have the same DMA channel and
interrupt level.

The factory default I/O base address is 02E1.
To use a different base address, set S2
according to the figure.

I/O Base Address Register
02E1 22E1 42E1 62E1 Read Register Write Register
02E1 22E1 42E1 62E1 Data In Data Out
06E1 26E1 46E1 66E1 Interrupt Status 1 Interrupt Mask 1
0AE1 2AE1 4AE1 6AE1 Interrupt Status 2 Interrupt Mask 2
0EE1 2EE1 4EE1 6EE1 Serial Poll Status Serial Poll Mode
12E1 32E1 52E1 72E1 Address Status Address Mode
16E1 36E1 56E1 76E1 CMD Pass Through Auxiliary Mode
1AE1 3AE1 5AE1 7AE1 Address 0 Address 0/1
1EE1 3EE1 5EE1 7EE1 Address 1 End of String

Interrupt Selection
The AT488 interface board may be set to interrupt the PC on the occurrence of certain hardware
conditions. The main board interrupt may be set to IRQ level 3 through 7, 9 through 12, 14, or 15.

I. HARDWARE GUIDES 3. Personal488/AT

Personal488 User’s Manual, Rev. 3.0 I-15

Interrupts 10 through 15 are only available in a 16-bit slot on an AT-class machine. Interrupt 9
becomes synonymous with interrupt 2 when used in a PC/XT bus. The selected interrupt may be
shared among several AT488s in the same PC/AT chassis. The AT488 adheres to the “AT-style”
interrupt sharing conventions. When the AT488 requires service, the IRQ jumper determines which PC
interrupt level is triggered. When an interrupt occurs, the interrupting device must be reset by writing
to an I/O address which is different for each interrupt level. The switch settings determine the I/O
address to which the board’s interrupt rearm circuitry responds. The IRQ jumper and switch settings
must both indicate the same interrupt level for correct operation with interrupts. The previous figure
shows the settings for selected interrupts.

DMA Channel Selection
Direct Memory Access (DMA) is a high-speed method of transferring data from or to a peripheral, such
as a digitizing oscilloscope, to or from the PC’s memory. The AT class machine has seven DMA
channels. Channels 0-3 (8-bit), 5, 6, and 7 (16-bit) are available only in a 16-bit slot on a PC/AT-class
machine. Channel 2 is usually used by the floppy disk controller, and is unavailable. Channel 3 is
often used by the hard disk controller in PCs, XTs, and the PS/2 with the ISA bus, but is usually not
used in ATs. Channels 5 through 7 are 16-bit DMA channels. They offer the highest throughput (up to
1 Megabyte per second). Channels 0 through 3 are 8-bit DMA channels. Although slower, they offer
compatibility with existing GP488B applications that only made use of 8-bit DMA channels. Under
some rare conditions, it is possible for high-speed transfers on DMA channel 1 to demand so much of
the available bus bandwidth that simultaneous access of a floppy controller will be starved for data due
to the relative priorities of the two channels. Both the DRQ and DACK jumpers must be set to the
desired DMA channel for proper operation. Configure the board according to which DMA channel is
available. The following figure shows settings for selecting the DMA channels.

Personal488/AT DMA Selection

Board Installation
The IEEE 488 interface board(s) are installed into expansion slots inside the PC’s system unit. PC/AT-
compatible computers have two types of expansion slots: 8-bit (with one card-edge receptacle), and 16-
bit (with two card-edge receptacles). Eight-bit boards, such as the IEEE 488 interface boards, may be
used in either type of slot, 8- or 16-bit. Some machines may have special 32-bit memory expansion
slots which should not be used for IEEE 488 interface boards.

3. Personal488/AT I. HARDWARE GUIDES

I-16 Personal488 User’s Manual, Rev. 3.0

Install each IEEE 488 interface board into the expansion slots as follows: Ensure the PC is turned off
and unplug the power cord. Remove the cover mounting screws from the rear of the PC system unit.
Remove the system unit cover by sliding it forward and tilting it upward.

A rear panel opening is provided at the end of each expansion slot for mounting I/O connectors. If a
slot is unused, this opening is covered by a metal plate held in place with a screw. Remove this screw
and the cover plate from the desired expansion slot, saving the screw.

Insert the IEEE 488 interface board carefully into the expansion slot, fitting the IEEE 488 connector
through the rear panel opening, and inserting its card edge into the motherboard card edge receptacle.
With the board firmly in place, fix its mounting bracket to the rear panel, using the screw removed from
the cover plate.

Slide the system unit cover back on, re-attaching it with the screws. Plug the power cord in and turn on
the PC. If all is well, the system should boot normally. If not, carefully check that none of the I/O
addresses conflict with any other devices or boards. If you are not sure, contact your PC’s dealer or
manufacturer.

I. HARDWARE GUIDES 4. Personal488/NB

Personal488 User’s Manual, Rev. 3.0 I-17

 4. Personal488/NB

Topics

• The Package .. I-17
• Hardware Installation (for Notebook, Laptop, & Desktop PCs)I-17

The Package
Personal488/NB, including the IEEE 488 interface hardware and the Driver488 software, is carefully
inspected, both mechanically and electrically, before shipment. When you receive the product, unpack
all items carefully from the shipping carton and check for any obvious signs of physical damage that
may have occurred during shipment. Report any such damage to the shipping agent immediately.
Remember to retain all shipping materials in the event shipment back to the factory becomes necessary.

Personal488/NB includes:

• NB488 IEEE 488 Bus Interface Board

• Driver488 Software Disks (Driver488/DRV, Driver488/SUB & Driver488/W31)

• Printer Port to Interface Cable (CA-35-2)

• Keyboard Port Power Adapter (CA-107)

• AC Power Adapter (TR-2)

• DIN-5 to DIN-6 Adapter (CN-15-6) for CA-107 (Optional; Contact factory if required)

• Driver488 User’s Manual

Hardware Installation (for Notebook, Laptop, & Desktop PCs)
Personal488/NB does not need to be disassembled during installation, as there are no internal switches
or controls to set. Simply connect the Personal488/NB to any PC parallel printer port (female DB25)
by unplugging the printer cable and plugging the supplied cable’s (CA-35-2) male end into the
computer and the female end into the mating connector on the Personal488/NB. Any printer port:
LPT1, LPT2, or LPT3 may be used, but should be noted for future software installation. Next connect
the IEEE 488 cable to the mating connector on the Personal488/NB.

Personal488/NB allows for LPT pass-through for simultaneous IEEE 488 instrument control and
printer operation. When using a printer in the system configuration, attach the original printer cable
(male DB25) into the remaining mating connector on the Personal488/NB.

The Personal488/NB may be powered with a supplied cable (CA-107) from the PC’s keyboard port or
via a supplied external power unit (TR-2) that plugs into any standard AC wall outlet.

If powering the unit through the PC keyboard port, attach the supplied power cord to the keyboard port
and connect to the power jack on the Personal488/NB. If using an AC power adapter, plug it into a
120 VAC outlet and attach the low voltage end to the jack on the Personal488/NB. The POWER LED
should now be on and hardware installation complete.

At power-on, the printer should behave normally and can be checked by issuing a Print Screen
command (or any other convenient method of checking the printer). However, installation of the
software will be necessary before the Personal488/NB can communicate with IEEE 488 instruments.

Once the NB488 is installed, a utility program has been included to help identify the LPT port type.
Software installation requires the user to specify whether the LPT port is a standard IBM
PC/XT/AT/PS/2 compatible port or a slower 4-bit option. Type NBTEST.EXE to run this program.

5. Personal488/MM I. HARDWARE GUIDES

I-18 Personal488 User’s Manual, Rev. 3.0

 5. Personal488/MM

Topics

• The Package...I-18
• Hardware Installation (for PC/XT/AT)...I-18

Installation & Configuration of the Interface Card..................................I-18
Default Settings...I-18
I/O Base Address Selection...I-19
Interrupt Selection..I-20
DMA Channel Selection..I-20
Internal Clock Selection ..I-21
Board Installation ..I-21

The Package
Personal488/MM, including IEEE 488 interface board and Driver488 software, is carefully inspected,
both physically and electronically, before shipment. When you receive the product, carefully remove
all items carefully from the shipping carton and check for any obvious signs of physical damage that
may have occurred during shipment. Report any such damage to the shipping agent immediately.
Remember to retain all shipping materials in the event shipment back to the factory becomes necessary.

The Personal488/MM includes:

• GP488/MM IEEE 488 Bus Interface Board

• Driver488 Software Disks
 (Driver488/DRV, Driver488/SUB, Driver488/W31 & Driver488/W95)

• Personal488 User’s Manual

Hardware Installation (for PC/XT/AT)

Installation & Configuration of the Interface Card
The following paragraphs explain configuration and physical installation of the interface card.
Software installation and setup are covered in a separate section. After configuring your board, please
make note of the following. This information is needed for Driver488 software installation.

• I/O Base Address

• Interrupt Channel

• DMA channel, if applicable

• Whether or not the board is the System Controller

Note: The GP488/MM is only compatible with the Ampro PC/104. The board includes one DIP
switch, two 12-pin headers and one 3-pin header, labeled SW1, JP2, JP3, and JP1,
respectively. The DIP switch setting, along with the arrangement of the jumpers on the
headers, set the hardware configuration.

I. HARDWARE GUIDES 5. Personal488/MM

Personal488 User’s Manual, Rev. 3.0 I-19

Default Settings
There are presently two revision levels of GP488/MM board, Rev. A and Rev. B. The following figure
indicates the GP488/MM default configuration on a Rev. B board. The configuration is the same for

Rev. A, however, on Rev. A boards the JP2 and JP3 labels are reversed from that illustrated. Switch
SW1 controls the wait state generation and the I/O base address and interrupt response level. On the
Rev. B board, JP2 sets the interrupt request level and JP3 selects the DMA channel. On Rev. A boards,
the JP2 and JP3 labels are reversed from those shown in the following diagram. For both board
revision levels JP1 selects the clock source.

I/O Base Address Selection
The I/O base address sets the addresses used by the computer to communicate with the IEEE 488
interface hardware on the board. The address is normally specified in hexadecimal and can be 02E1,
22E1, 42E1, or 62E1. The registers of the IOT7210 IEEE 488 controller chip and other auxiliary
registers are then located at fixed offsets from the base address.

Most versions of Driver488 are capable of managing as many as four IEEE 488 interface boards. To
do so, the board configurations must be arranged to avoid conflict among themselves. No two boards
may have the same I/O address, but they may, and usually should, have the same DMA channel and
interrupt level.

The factory default I/O base address is 02E1. To use another, set SW1 switches 4 and 5 according to
the following table and figure.

I/O Base Address Register
02E1 22E1 42E1 62E1 Read Register Write Register
02E1 22E1 42E1 62E1 Data In Data Out
06E1 26E1 46E1 66E1 Interrupt Status 1 Interrupt Mask 1
0AE1 2AE1 4AE1 6AE1 Interrupt Status Interrupt Mask 2
0EE1 2EE1 4EE1 6EE1 Serial Poll Status Serial Poll Mode
12E1 32E1 52E1 72E1 Address Status Address Mode
16E1 36E1 56E1 76E1 CMD Pass Through Auxiliary Mode
1AE1 3AE1 5AE1 7AE1 Address 0 Address 0/1
1EE1 3EE1 5EE1 7EE1 Address 1 End of String

5. Personal488/MM I. HARDWARE GUIDES

I-20 Personal488 User’s Manual, Rev. 3.0

Interrupt Selection
The GP488/MM interface board may be set to interrupt the PC on the occurrence of certain hardware
conditions. The level of the interrupt generated is set by JP3 on Rev. B boards (JP2 on Rev. A boards).
The GP488/MM interface board adheres to the “AT-style” interrupt sharing conventions. When an
interrupt occurs, the interrupting device must be reset by writing to I/O address 02FX, where X is the
interrupt level (from 0-7). This interrupt response level is set by switches 1, 2, and 3 of SW1 which
must be set to correspond to the JP3 (Rev. B board) interrupt level setting. Interrupt selection for a
Rev. B board is illustrated in the following figure.

Note: The jumper label would read JP2 for Rev. A boards.

DMA Channel Selection
Direct Memory Access (DMA) is a high-speed method of
transferring data from or to a peripheral, such as a
digitizing oscilloscope, to or from the PC’s memory.
The factory default selection is DMA channel 1. Note
that jumper JP2 is used to configure revision B boards
while the jumper labeled JP3 is used to select the DMA
channel on version A boards.

Note: Check your computer documentation to ensure
the selected DMA channel is not being used by
another device. The GP488B/MM board has
circuitry which allows for more than one
GP488/MM board to share the same channel.
Most computers use DMA channel 2 for floppy
disk drives, making that channel unavailable.

I. HARDWARE GUIDES 5. Personal488/MM

Personal488 User’s Manual, Rev. 3.0 I-21

Internal Clock Selection
The IEEE 488 bus interface circuitry requires a master clock. This
clock is normally connected to an on-board 8 MHz clock oscillator.
However, some compatible IEEE 488 interface boards connect this
clock to the PC’s own clock signal. Using the PC clock to drive
the IEEE 488 bus clock is not recommended because the PC clock
frequency depends on the model of computer. A standard PC has a
4.77 MHz clock, while an AT might have a 6 MHz or 8 MHz
clock. Other manufacturers’ computers may have almost any
frequency clock. If you are using a software package designed for
an interface board (that derived its clock from the PC clock) and
you need to do the same to use GP488/MM with that particular
software, the clock source can be changed. However, the clock frequency must never be greater than 8
MHz, and clock frequency must be correctly entered in the Driver488 software.

Board Installation
IEEE 488 interface board(s) are installed into expansion slots
inside the PC’s system unit. PC/AT-compatible computers have
two types of expansion slots: 8-bit (with one card-edge
receptacle), and 16-bit (with two card-edge receptacles). Eight-
bit boards, such as the IEEE 488 interface boards, may be used
in either type of slot, 8- or 16-bit. Some machines may have
special 32-bit memory expansion slots which should not be used
for IEEE 488 interface boards.

Install each IEEE 488 interface board into the expansion slots as
follows: Ensure the PC is turned off and unplug the power cord.
Remove the cover mounting screws from the rear of the PC
system unit. Remove the system unit cover by sliding it forward and tilting it upward.

A rear panel opening is provided at the end of each expansion slot for mounting I/O connectors. If a
slot is unused, this opening is covered by a metal plate held in place with a screw. Remove this screw
and the cover plate from the desired expansion slot, saving the screw.

Insert the IEEE 488 interface board carefully into the expansion slot, fitting the IEEE 488 connector
through the rear panel opening, and inserting its card edge into the motherboard card edge receptacle.
With the board firmly in place, fix its mounting bracket to the rear panel, using the screw removed from
the cover plate.

Slide the system unit cover back on, re-attaching it with the screws. Plug the power cord in and turn on
the PC. If all is well, the system should boot normally. If not, carefully check that none of the I/O
addresses conflict with any other devices or boards. If you are not sure, contact your PC’s dealer or
manufacturer.

6. Personal488/CARD I. HARDWARE GUIDES

I-22 Personal488 User’s Manual, Rev. 3.0

 6. Personal488/CARD

Topics

• The Package...I-22
• Introduction...I-22
• Hardware Installation (for Notebook & Desktop PCs)I-23

Interfaces & Connectors...I-23
Interface Cable Connection ...I-23
Installation into a PC...I-24
Interface Cable & IEEE 488 Accessories ..I-24

• Software Installation ...I-24
Initialization Software...I-24
Configuration Software..I-27

• Functionality ...I-29

The Package
The Personal488/CARD components were carefully inspected prior to shipment. After receiving your
order, carefully unpack all items from the shipping carton and check for any signs of physical damage
which may have occurred during shipment. Immediately report any damage to the shipping agent.

Retain all shipping materials in case you must return the unit to the factory. If the unit is damaged, a
RMA # (Return Material Authorization Number) must be obtained before returning it. An RMA # can
be obtained by calling (216) 439-4091 or your sales representative.

Every Personal488/CARD is shipped with the following items:

• IEEE 488 PCMCIA interface Card

• Interface Cable (CA-137)

• Initialization Software: Client Driver, and Enabler

• Driver Software (Programming Support including Configuration Utilities):
 Driver488/DRV, Driver488/W31, and Driver488/SUB

• Personal488 User’s Manual

Introduction
The Personal488/CARD is a low-power Type II PCMCIA IEEE 488 interface that enables IEEE 488.2
control from notebook and desktop PCs. This card plugs into any Type II (5mm) PCMCIA socket and
is PCMCIA PC Card Standard Specification 2.1 compliant. CardSoftTM Card and Socket services are
available on the majority of notebook PCs currently sold. If your notebook has different software, you
may purchase the CardSoftTM software from the Personal488/CARD manufacturer. The
Personal488/CARD does not require an ISA-bus expansion slot or external power.

The Personal488/CARD is highly flexible with respect to I/O addressing and interrupt level use. It can,
by default, automatically configure itself upon insertion into your notebook or desktop PC or upon
system startup. In addition, users may specify any interrupt level and any I/O space base address for
the Personal488/CARD. The card permits “Hot-Swapping”, that is, insertion of the PCMCIA card
while the system is powered.

I. HARDWARE GUIDES 6. Personal488/CARD

Personal488 User’s Manual, Rev. 3.0 I-23

Hardware Installation (for Notebook & Desktop PCs)
Hardware installation topics are covered in the following paragraphs. It is strongly suggested that you
read and perform the following instructions to assure the proper installation and usage of the
Personal488/CARD.

The hardware installation topics include:

• Personal488/CARD-to-Interface Cable connection

• Installation of Personal488/CARD into PC

• Interface Cable connection with IEEE 488 compatible accessories

The plug and play operation of the Personal488/CARD allows for the operating parameters to be
configured via software, circumventing the need for switch or jumper settings.

Interfaces & Connectors
The Personal488/CARD is shipped with an interface
cable (CA-137) that permits the card to directly
interface with up to fourteen (14) IEEE 488
instruments.

The PCMCIA card connects to the CA-137 cable via
the female slot connector found along its “bottom”
edge, as shown in the figure. The unit itself, being a
PCMCIA socket card, constitutes a Type II (5mm)
PCMCIA socket interface.

The opposite end of the CA-137 Interface Cable is
terminated in an IEEE 488 connector with metric
studs. A pin-out of this connector is provided below.

Interface Cable Connection
Follow the instructions below to connect the Personal488/CARD to the Interface Cable (CA-137).

Note: The PCMCIA Card and the Slot
Connector End of the Interface
Cable are keyed to ensure proper
connection. The card and cable
should connect easily and fit
snug. DO NOT force the
PCMCIA Card / Interface
Cable mating. Refer to the
figures on this page while
performing these instructions.

1. In one hand, hold the PCMCIA Card
so that the company logo is face up
and the bottom edge of the card is
facing you.

2. In the other hand, hold the Slot
Connector End of the Interface Cable
so that the groove (keyed portion of the connector) is face down and the company logo is face up.

3. Press the Slot Connector into the PCMCIA Card. The Personal488/CARD should now be firmly
connected to the Interface Cable.

6. Personal488/CARD I. HARDWARE GUIDES

I-24 Personal488 User’s Manual, Rev. 3.0

Note: The slot connector is keyed to match the PCMCIA Card so that an improper connection can
not be made. Therefore, DO NOT force this connection as damage may result! For proper
contact, the connection of the card and cable must be snug.

Installation into a PC
With your PC powered-down (turned off), install your Personal488/CARD using the instructions
provided below.

Note: If the Client Driver Software is used, you are not required to power down your PC before
installing the Personal488/CARD. The Client Driver Software enables insertion and removal
of the card into any Type II socket at any time, and automatically configures the card upon its
insertion (“Hot-Swapping”).

Note: Enabler Software, on the other hand, does not allow “Hot-Swapping.” More detailed
information is provided later in this chapter.

Note: “Hot-Swapping” refers to the insertion and removal of the PCMCIA card while the system is
powered.

1. With your PC powered down (turned off), insert the PCMCIA Card into the PCMCIA socket with
the company logo face up (for most Notebook PCs).

2. Push the PCMCIA Card into the PCMCIA socket as if you were loading a diskette into a diskette
drive. Stop once the card is engaged into the socket. This is marked by hearing a “click” and
seeing that the socket eject button has been engaged (pushed out).

Note: CardSoft™ Card and Socket Services are available on the majority of notebook PCs currently
sold. If your notebook has incompatible software, you may purchase the CardSoft™ software
from the Personal488/CARD manufacturer.

Interface Cable & IEEE 488 Accessories
Only IEEE 488 compatible accessories (instruments) can interface with the Personal488/CARD. The
Personal488/CARD and cable permit a fan-out of fourteen (14) directly interfaced IEEE 488
instruments.

1. Plug the IEEE 488 connector end of the Interface Cable into any compatible IEEE 488 accessories.

2. With your fingers and/or applicable flat bladed screw driver, tighten the screw pins (metric studs)
located on the IEEE 488 connector to secure the connection.

Note: You will need additional IEEE 488 interface cables (terminated at both ends with IEEE 488
connectors) for subsequent IEEE 488 instruments.

At this point, the default configuration of the Personal488/CARD will be used. The default
configuration is the initialization of the “CARD” upon system boot-up having not used the Client
Driver or Enabler to make changes to the “CARD’s” settings. Once all connections have been
checked for correctness, the “system” can be powered up. If communication problems exist due to
initialization conflicts, the Client Driver or Enabler will have to be installed in order to make
initialization changes. This subject is covered in the following paragraphs.

Note: The Client Driver or Enabler is needed even if there are no configuration conflicts but a desire
to change the Personal488/CARD’s configuration to meet predetermined specifications and/or
needs.

Software Installation
The Personal488/CARD is provided with both Initialization and Configuration Software (the
Configuration Software is driver specific and therefore included with each driver). This text introduces
support for the Initialization Software (Client Driver and Enabler). For more information, refer to the
driver-specific “Installation & Configuration” Sub-Chapters found in Chapters 8 through 12. The

I. HARDWARE GUIDES 6. Personal488/CARD

Personal488 User’s Manual, Rev. 3.0 I-25

following drivers are available for the Personal488/CARD: Driver488/DRV, Driver488/SUB, and
Driver488/W31.

Initialization Software
Initialization of the Personal488/CARD is software oriented. The Client Driver and Enabler files
conform to the PCMCIA (PC Card) Card Services Specification 2.1. When used with CardSoft™ Card
and Socket Services (or compatible) software, the Personal488/CARD automatically configures itself
upon system start-up. The use of CardSoft™ is not required, however, the chosen utility software must
be compatible with the PCMCIA (PC Card) Card Services Specification 2.1.

If you need to control which resources the Personal488/CARD utilizes, you must load either the Client
Driver or Enabler, but not both. The Personal488/CARD’s resources are IRQ level, base I/O port
address for sixteen consecutive ports, and PCMCIA Type II socket number (with 0 being the first
socket).

Using the Client Driver

The Client Driver sets the IRQ, Socket # (if more than one PCMCIA socket is available), and an I/O
Address Range for communication purposes. The settings which result are referred to as default.
There is no predetermined default setting since these settings depend on what the Client Driver finds
vacant and, therefore, usable. This does not take into account transparent devices not seen by the
Client Driver.

Note: Depending on your system configuration, the default settings may conflict with the IRQ,
Socket #, and I/O Address Range that your system has already allocated to another device. If
this is the case, change the initialization settings as described below.

Using the Enabler

The Enabler performs the same function of setting up the needed system resources as the Client Driver,
but in a more direct and somewhat limited way. The only real advantage of using the Enabler is the
amount of PC memory rescued (about 7 kb). This memory would be used indefinitely by the Client
Driver, since the Client Driver must store a program in memory to manage “Hot-Swapping.” If the
Card and Socket Services are only needed for the Client Driver, you could save more memory by not
loading them when using the Enabler.

On the down side of using the Enabler, the Personal488/Card must be installed before you run the
Enabler. Also, every time the Personal488/Card is removed, and reinstalled, the Enabler must be run.

The Enabler requires explicit IRQ, Socket #, and I/O Address Range parameters. If Card and Socket
Services are running, they will not know that the Enabler allocated some resources, and may therefore
allocate them to another device.

Changing Initialization Settings

Use the following steps to change the initialization settings, or to initialize the Personal488/CARD
system to your specifications and/or needs.

Note: If your PC has a valid version of PCMCIA Card and Socket Services software, it is
recommended that you use Client Driver, since Client Driver supports

Note: “Hot-Swapping” refers to the insertion and removal of the PCMCIA card while the system is
powered.

1. Choose between the Client Driver (IOT488CL.SYS) or Enabler (IOT488EN.EXE) files as to which
one best suits your needs. The choice heavily depends upon the host computer environment and
the desire for Plug and Play functionality.

2. If you choose the Client Driver file option, you will need to update your CONFIG.SYS file by
adding the following command line:

 DEVICE=path\IOT488CL.SYS options

6. Personal488/CARD I. HARDWARE GUIDES

I-26 Personal488 User’s Manual, Rev. 3.0

3. The Personal488/CARD must be installed before using the Enabler. The initialization is only valid
as long as the Personal488/CARD is present. You will need to update your AUTOEXEC.BAT file
with the following command line:

path\IOT488EN.EXE options

Client Driver

The Client Driver has the following CONFIG.SYS file line syntax:

DEVICE=path\IOT488CL.SYS [(GROUP) [(GROUP) [...]]]

where the following parts are described as follows:

Part Client Driver Description
GROUP [ITEM[,ITEM[,ITEM]]]
ITEM Sxx | Bxxx | Ixx
Sxx The socket number, xx in [0...15], default to any available socket, if omitted.
Bxxx The I/O base address (hex), xxx in [100...3F0], default to any available I/O

address, if omitted.
Ixx The IRQ level, xx in [0...15], 0 means no interrupt, default to any available IRQ

level, if omitted.

IOT488CL.SYS

The simplest command line, shown above, will configure the card in any PCMCIA socket with
available consecutive 16 bytes in the system I/O space, and an available IRQ level. Note that you
should not assume the resource selections will always be the same.

IOT488CL.SYS (s0,b300,i5)

The command line above will configure the card in socket 0 with I/O base address at 300H and IRQ
level 5, if those resources are available.

IOT488CL.SYS (b300,i5) (i10) ()

This command line tells the client driver to configure the card in any socket with a base address of
300H and IRQ 5. If not available, the client driver will then try to configure it with a base address and
socket number assigned by the Card and Socket Services and IRQ 10. If IRQ 10 is not available, the
Client Driver will then try to configure the card with a base address, socket number, and an IRQ level
assigned by the Card and Socket Services.

Space characters are only allowed in between the groups, not inside a group. The items within a group
are separated by a single comma. The order of items in a group does not make any difference. Nor are
the characters in an item case sensitive.

Enabler

The command line syntax for the Enabler is similar to that used by the Client Driver.

DEVICE=path\IOT488EN.EXE (Sxx,Bxxx,Ixx[,Wxx])

where the following parts are described as follows:

Part Enabler Description
GROUP [ITEM[,ITEM[,ITEM]]]
ITEM Sxx | Bxxx | Ixx
Sxx The same as the Client Driver syntax, except it must be specified to enable the card.
Bxxx The same as the Client Driver syntax, except it must be specified to enable the card.
Ixx The same as the Client Driver syntax, except it must be specified to enable the card.
Wxx Specifies the PCIC memory window, xx (hex) in [80...EF], default to D0 if

omitted.

IOT488EN.EXE (Sxx,R[,Wxx])

I. HARDWARE GUIDES 6. Personal488/CARD

Personal488 User’s Manual, Rev. 3.0 I-27

To reset the card, the command line syntax above can be used, in which R is the reset switch. Socket
number must be specified, but Wxx can be omitted (default memory window at D0000H). After
executing an IOT488EN.EXE command with the reset option, IOT488EN.EXE must be run again to set
the card’s resources.

IOT488EN.EXE (s0,r)

This command line resets the card in socket 0 (default memory window at D0000H),

IOT488EN.EXE (s1,r,wc8)

This command line resets the card in socket 1 (with PCIC memory window at C8000H).

Configuration Software
For ease of use, this text repeats material found in the driver-specific “Installation & Configuration”
Sub-Chapters found in Chapters 8 through 12 of this manual. In addition, this text includes
Personal488/CARD information not contained elsewhere. Aside from this chapter on
Personal488/CARD, you should also read through the “External Device Interfacing” Sub-Chapters
found in Chapters 8, 9, and 10 of this manual.

Configuration Utility

The configuration utility permits you to specify the Driver488 system configuration, add interfaces,
define external devices, etc. It does so by modifying the Driver488 startup configuration and is
specified in a Windows-style initialization file named DRVR488.INI. The first screen of the
CONFIG.EXE program is used to enter the configuration settings so the Driver488 software can be
correctly modified to reflect the state of the hardware.

The driver can be reconfigured at any time by running the CONFIG.EXE program. Changes to the
configuration will not be recognized by the driver until the driver is unloaded and reloaded. Typically,
this is accomplished by rebooting your computer or using the utilities MARKDRVR and REMDRVR. For
details regarding utilities, refer to the “Utility Programs” Sub-Chapters found in Chapters 8, 9, and 10
of this manual

To start the CONFIG program, type CONFIG within the directory in which the configuration utility
resides, typically C:\IEEE488.

The minimum requirement for configuring your system is to make certain that your Personal488/CARD
is selected under “Device Type.” The default settings in all of the other fields match those of the
interface as shipped from the factory. If you are unsure of a setting, it is recommended that you leave it
as is.

Interfaces and External Devices
The CONFIG program can configure both interfaces and external devices. Interfaces are the
Personal488/Card and serial ports. External devices are instruments or other devices attached to the
IEEE 488 bus or the MP488(CT) Counter/Timers and Digital I/O devices.

Configuration Program Screens
In general, all Driver488 configuration utility screens have three main windows: the “name” of the
interfaces or devices on the left, the “configuration” window on the right, and the “instruction” window
at the bottom of the screen. Based on current cursor position, the valid keys for each window will
display in the Instructions box.

To begin the interface configuration, move the cursor in the name window to select an interface
description for modification. (Interfaces can be added or deleted using <F3> and <F4>). Notice
moving the cursor up and down the list of interfaces or devices in the left window changes the
parameters in the configuration window. The configuration fields always correspond with the currently
selected interface and device type.

Once all modifications have been made to the configuration screen, <F10> must be pressed to accept
the changes made or <F9> can be pressed to exit without saving any change. Additional function keys

6. Personal488/CARD I. HARDWARE GUIDES

I-28 Personal488 User’s Manual, Rev. 3.0

allow the user to continue onto the configuration of external devices via <F5> or to view a graphic
representation of the interface card with the selected settings via <F7>.

Configuring Driver488 Interfaces

Driver488 supports two types of interfaces: IEEE and Serial. Once the CONFIG.EXE program is
entered, highlight the Device Type selection from the Configuration Window and choose the
CARD488 option from the resulting pop-up menu. The Driver488/DRV screen, shown next, or one
similar, will be displayed.

Once an interface is selected, the fields and default entries which appear in the configuration window
depend on the device type specified. To add another IEEE interface, select <F3>. If you will be using
more than one interface, refer to other sections of this manual for additional information, as needed.
The configuration parameters of the IEEE interface are described following the figure of the
Driver488/DRV screen.

Configuration Parameters

• Name: This field is a
descriptive instrument
name which is
manually assigned by
the user. This must be
a unique name.
Typically, IEEE or
COM is used (up to 8
characters).

• IEEE Bus Address:
This is the setting for
the IEEE bus address
of the board. It will be
checked against all the
instruments on the bus
for conflicts. It must
be a valid IEEE bus
address from 0 to 30.

• Interrupt: A
hardware interrupt
level can be specified to improve the efficiency of the I/O adapter control and communication
using Driver488. Personal488/CARDs may not share the same interrupt level. If no interrupt level
is to be used, select NONE. Valid interrupt levels depend on the type of interface, since interrupt
sharing is not permitted in the PCMCIA 2.1 specification. Settings are as follows: Levels 3-7,
Levels 9-12, Levels 14-15, or NONE.

• SysController: This field determines whether or not the Personal488/CARD is to be the System
Controller. The system controller has ultimate control of the IEEE 488 bus, and the ability of
asserting the interface clear (IFC) and remote enable (REN) signals. Each IEEE 488 bus can have
only one system controller. If the PCMCIA IEEE Card is a peripheral, it may still take control of
the IEEE 488 bus if the Active Controller passes control to it. The “CARD” may then control the
bus and, when it is done, pass control back to the System Controller or another controller, which
then becomes the active controller. If the “CARD” will be operating in Peripheral mode (not
System Controller), leave this field blank.

• LightPen: This field determines whether the LightPen command is to be used. If selected, it will
disable the detection of interrupts via setting the light pen status. The default is light pen interrupt
enabled.

• Timeout (ms): The time out period is the amount of time that data transfers wait before assuming
that the device does not transfer data. If the time out period elapses while waiting to transfer data,

I. HARDWARE GUIDES 6. Personal488/CARD

Personal488 User’s Manual, Rev. 3.0 I-29

an error signal occurs. This field is the default timeout for any bus request or action, measured in
milliseconds. If no timeout is desired, the value may be set to zero.

• Device Type: This field specifies the type of board or module, in this case a Personal488/CARD
(CARD488), represented by the IEEE device name selected.

I/O Address

• IEEE 488: This field is the I/O base address which sets the addresses used by the computer to
communicate with the IEEE interface hardware on the board. The address is specified in
hexadecimal and can be 100 through 3F0 on even 16-byte boundaries (those ending in 0). The
Personal488/CARD uses sixteen (16) consecutive I/O ports.

Note: Since many I/O ports in the allowed range are [or may be] in use by other system hardware,
we recommend using port 300 to 360 hex. Using a port already in use could cause loss of
data, or physical damage.

• Wait State: Wait States can be generated if IEEE 488 bus I/O synchronization between the
Personal488/CARD and PC is an issue. It should be noted that the time out specification is
independent of wait state(s). The Personal488/CARD is fast enough to be compatible with
virtually every PC/XT/AT-compatible computer on the market. Even if the computer is very fast,
the processor is normally slowed to 8 MHz or below when accessing the I/O channel. If the I/O
channel runs faster than 8 MHz, it may be faster than the Personal488/CARD. If this is a
suspected problem, the computer can be made to wait for the “CARD” by enabling wait states.
Increasing the number of wait states slows down the access to the “CARD”. The overall resultant
performance degradation is usually only a few percent.

• Bus Terminators: The IEEE 488 bus terminators specify the characters and/or end-or-identify
(EOI) signal that are to be appended to data that is sent to the external device, or mark the end of
data that is received from the external device.

In conclusion, to save your changes to disk press <F10>. All changes will be saved in the directory
where you installed Driver488. If at any time you wish to alter your Driver488 configuration, simply
rerun CONFIG. The changes made will not take effect until the system is rebooted (Warm or Cold).

Driver488/W31 Configuration Utility

The configuration utility provided with Driver488/W31 has been updated to provide a familiar
Windows user interface. The interface contains the same characteristics as the DOS configuration
program, however, the file storage differs as indicated by the table below.

Driver File Storage
Driver Version File Name File Location
Windows DRVR488W.INI WIN.COM (in Windows Directory)
DOS DRVR488.INI CONFIG.EXE (in assigned directory)

Functionality
The Personal488/CARD transfers data to the host computer via the PCMCIA interface. This interface
provides access to the PC’s data bus, allowing real-time data collection and storage to disk at 1.0 M
byte/sec.

The Personal488/CARD built-in 7210 controller device controls the IEEE 488 bus using the IOT7210
Controller Chip, which is 100% compatible with the NEC µPD7210. However, the IOT7210 exhibits
better performance and lower power consumption.

The programmed I/O mode allows the host computer to acquire individual data samples or large blocks
of data under application control.

6. Personal488/CARD I. HARDWARE GUIDES

I-30 Personal488 User’s Manual, Rev. 3.0

The interrupt transfer mode allows the host computer to perform other tasks until the
Personal488/CARD has sent or received a programmed amount of data. This mode provides the most
efficient use of computer resources and data transfer.

Note: For more information on the functionality of the Personal488/CARD, refer to the “Data
Transfers,” “Operating Modes,” and “Command Descriptions” Sub-Chapters found in
Chapters 8 and 9 of this manual.

II-32 Personal488 User’s Manual, Rev. 3.0

Section II:

 SOFTWARE GUIDES

Personal488 User’s Manual, Rev. 3.0 II-33

Driver488/DRV Software Guides

II-34 Personal488 User’s Manual, Rev. 3.0

 II. SOFTWARE GUIDES

Chapters

7. Overview.. II-33
8. Driver488/DRV.. II-34
9. Driver488/SUB .. II-133
10. Driver488/W31... II-191
11. Driver488/W95... II-257
12. Driver488/WNT ... II-258

 7. Overview
The Software Guides section contains chapters pertaining to various Driver488 software. Information
includes instruction for installation and configuration, device interfacing, and API (Application
Program Interface) command references. Note that more detailed topic-specific tables of contents are
included with each of the topics identified above.

In addition to this manual, Power488 and PowerCT users receive a manual supplement describing the
Standard Commands for Programmable Instruments (SCPI) command set and the IOTTIMER.DLL, a
Microsoft Windows Dynamic Link Library of functions.

II. SOFTWARE GUIDES 8. Driver488/DRV

Personal488 User’s Manual, Rev. 3.0 II-35

 8. Driver488/DRV

Sub-Chapters

8A. Introduction... II-34
8B. Installation & Configuration.. II-35
8C. External Device Interfacing... II-45
8D. Getting Started.. II-49
8E. Microsoft C ... II-53
8F. Microsoft Fortran ... II-63
8G. QuickBASIC ... II-64
8H. Turbo C.. II-71
8I. Turbo Pascal .. II-82
8J. Spreadsheets.. II-90
8K. Other Languages... II-95
8L. Language-Specific Information... II-104
8M. Data Transfers ... II-108
8N. Operating Modes... II-115
8O. Utility Programs ... II-120
8P. Command Descriptions ... II-124
8Q. Command Reference .. II-132

 8A. Introduction
Driver488 represents a family of software drivers for IEEE 488 interfaces and other peripherals,
emphasizing a consistent, easy to use interface to simplify IEEE 488 instrument control and application
program development. Different versions of the driver are available to suit almost any application. For
maximum functionality and ease of use, a resident driver is accessible via both Character Command
Language (CCL) and subroutine calls to control a multitude of IEEE 488 interfaces and other
instruments. At the opposite extreme is a small, fast driver entirely linked to the application program,
which can control just one IEEE 488 interface and instruments attached thereto. Portability of any
given application among the Driver488 family members is ensured with a consistent interface, which
allows an application using CCL to use any driver offering that interface with minimal change.
Similarly, any application using the subroutine interface would require little if any change to be used
with another version of Driver488.

Driver488/DRV uses HP (Hewlett-Packard) style commands which simplify IEEE 488 instrument
control and application development by transparently executing multiple low-level bus management
tasks, shielding the user form the complexities of IEEE 488 protocol. These commands can be used in
application programs written in any popular software language. Driver488/DRV features a menu-
driven installation/configuration program with options for programming language; type and number of
hardware interfaces (IEEE 488 board type and options); and external devices, such as time out limits,
terminators, symbolic device names, and device numeric addresses.

To get optimal use of your PC’s conventional 640Kbyte memory, Driver488/DRV automatically
detects and loads itself into high memory when used with a system employing DOS 5.0 or higher.

Driver488/DRV provides PC serial (COM) port support, enabling direct serial communication from
programming languages and spreadsheets. In addition, Driver488/DRV supports asynchronous

8A. Overview II. SOFTWARE GUIDES - 8. Driver488/DRV

II-36 Personal488 User’s Manual, Rev. 3.0

communication and automatic program vectoring to service routines for Basic, C and Pascal programs.
For example, upon the occurrence of a specified event, such as SRQ, TRIGGER, TALK, or ERROR,
Driver488/DRV will automatically vector to your interrupt service routine.

Using Driver488/DRV, SCPI (Standard Command for Programmable Instruments) programmability
can be brought to Power488 I/O functions. SCPI is a language that defines common commands and
syntax for communication between controller and instruments. As such, it provides a consistent
programming environment for all SCPI-compatible equipment, simplifying programming and letting
you exchange instruments regardless of their make or type, without the need for extensive
reprogramming.

Driver488/DRV supports up to four IEEE 488 interfaces. There can be multiple external devices on
each interface up to the limits imposed by either electrical loading (14 devices), or with a product such
as Expander488, to the limits of the IEEE 488 addressing protocols.

Driver488/DRV supports the GP488B, AT488, GP488/MM, MP488, MP488CT and NB488 series of
IEEE 488.2 interface hardware. All interaction between the application and the driver takes place via
subroutine calls.

Before You Get Started
Prior to Driver488/DRV software installation, configure your interface board by setting the appropriate
jumpers and switches as detailed in “Section I: Hardware Guides.” Note the configuration settings
used, as they must match those used within the Driver488/DRV software installation.

Once the IEEE 488 interface hardware is installed, you are ready to proceed with the steps outlined
within this Sub-Chapter to install and configure the Driver488/DRV software. The Driver488/DRV
software disk(s) include the driver files themselves, installation tools, example programs, and various
additional utility programs. A file called README.TXT, if present, is a text file containing new material
that was not available when this manual went to press.

 8B. Installation & Configuration

Topics

• Before You Get Started ... II-35
• Making Backup Disk Copies .. II-36
• Driver Installation.. II-36

Selective Installation of Support files.. II-36
Driver Installation to Disk .. II-37

• Configuration Utility ... II-38
Interfaces.. II-38
External Devices .. II-38
Opening the Configuration Utility ... II-38

• Configuration of IEEE 488 Interfaces.. II-39
• Configuration of Serial Interfaces.. II-41
• Configuration of IEEE 488 External Devices II-42
• Multiple Interface Management.. II-43

II. SOFTWARE GUIDES - 8. Driver488/DRV 8B. Installation & Configuration

Personal488 User’s Manual, Rev. 3.0 II-37

NOTICE

1. The Driver488/DRV software, including all files and data, and the diskette on which it is
contained (the “Licensed Software”), is licensed to you, the end user, for your own internal use.
You do not obtain title to the licensed software. You may not sublicense, rent, lease, convey,
modify, translate, convert to another programming language, decompile, or disassemble the
licensed software for any purpose.

2. You may:

• only use the software on one single machine

• copy the software into any machine-readable or printed form for backup in support
of your use of the program on the single machine

• transfer the programs and license to use to another party if the other party agrees to
accept the terms and conditions of the licensing agreement. If you transfer the
programs, you must at the same time either transfer all copies whether in printed or
in machine-readable form to the same party and destroy any copies not transferred.

The first thing to do, before installing the software, is to make a backup copy of the Driver488/DRV
software disks onto blank disks. To make the backup copy, follow the instructions given below.

Making Backup Disk Copies
1. Boot up the system according to the manufacturer’s instructions.

2. Type the command CD\ to go back to your system’s root directory.

3. Place the first Driver488/DRV software disk into drive A:.

4. Type DISKCOPY A:A: and follow the instructions given by the DISKCOPY program. (You may
need to swap the original (source) and blank (target) disks in drive A: several times to complete
the DISKCOPY. If your blank disk is unformatted, the DISKCOPY program allows you to format it
before copying.)

5. When the copy is complete, remove the backup (target) disk from drive A: and label it to match
the original (source) Driver488/DRV software disk just copied.

6. Store the original Driver488/DRV software disk in a safe place.

7. Place the next Driver488/DRV software disk into drive A: and repeat steps 4-6 for each original
(source) disk included in the Driver488/DRV package.

8. Place the backup copy of the installation disk into drive A:, type A:INSTALL, then follow the
instructions on the screen.

Driver Installation
There are two steps involved in installing Driver488/DRV onto your working disk: The required files
must first be extracted from the distribution disk to the working disk, and the software must be
configured. Since the Driver488/DRV files are compressed on the distribution disks, the INSTALL
program must be used to properly extract them.

Driver488/DRV should normally be installed on a hard disk. Installing Driver488/DRV on a floppy
disk, while possible, is not recommended. Assuming that the Driver488/DRV disk is in drive A:, start
the installation procedure by typing A:INSTALL at the prompt.

Selective Installation of Support files
The installation program allows you to choose which files are to be copied to your working disk. A
menu will display a listing of the following files:

8B. Installation & Configuration II. SOFTWARE GUIDES - 8. Driver488/DRV

II-38 Personal488 User’s Manual, Rev. 3.0

Files Description
Driver488/DRV Driver Modules Contains the driver modules needed for the initial installation

and proper execution.
Driver488/DRV Executable The primary file which loads the driver; required for proper

execution.
ReadMe File Contains any new information about the driver not already

included in the user manual.
Default Config Files These are .INI files which contain suggested configurations

for the various interfaces.
Character Command Language Files Programming language specific examples and utilities.
IEEE 488 Utility Files Includes utilities for redirection of COM and LPT ports, the

Keyboard Controller, and utilities for removing
Driver488/DRV from memory after use.

Transfer488 Utilities Utilities for transferring files to and from HP computers
using HP BASIC (Rocky Mountain Basic).

Example Files Sample programs.

All the files will appear with a check mark beside them, indicating that they are selected for installation.
If you wish to unselect an item, please move the cursor to the item bar and press the <Space Bar> to
toggle the check mark off. Pressing the <Space Bar> again will toggle the check mark on. In this
way you can select or omit those file categories you wish to install.

For a normal first installation, allow INSTALL to install all parts of Driver488/DRV. For a first-time
installation, the Device Driver files are mandatory. However, if hard disk space is extremely limited,
certain parts, such as language support and examples for languages not immediately used, may be
omitted. The distribution disks may be used to install or reinstall any or all parts of Driver488/DRV at
a later time. You may rerun INSTALL at any time to install files that you previously omitted.

When you have finished your selection, press <Enter>. The Directory Selection screen will appear
with two horizontal windows.

Driver Installation to Disk
The Directory Selection screen allows you to specify where the Driver488/DRV files are to be
installed. The upper window will be highlighted and contain the words “Install from:” on the first line,
and the path from which you are installing Driver488/DRV (typically “A:”) on the second line. If this
“Install from:” path is correct, press <Enter> to accept and move to the next window. If it is not
correct, edit the path before pressing <Enter>.

Pressing <Enter> will move you to the second window, with the words “Install to:” on the first line
and the default directory “C:\IEEE488" on the second line. Simply press <Enter> to accept the
default or edit the path as you prefer and then press <Enter>.

Two smaller boxes will display below the two directory windows: “Start” and “Cancel.” “Start” should
be highlighted. To proceed with installing Driver488/DRV, press <Enter>. Otherwise move the
cursor to “Cancel” and press <Enter> to abort the installation.

If you proceed with the installation, the files selected from the previous menu will be extracted from the
distribution disk to your hard disk. INSTALL will prompt you for disk insertion if you have a multiple
disk distribution set of Driver488/DRV. When INSTALL is finished transferring the files to your hard
disk, the message “Driver488/DRV Software Installation is Complete” will appear. At this point, press
<Enter> to continue with the installation.

Next, the install program displays a prompt regarding the modification of your AUTOEXEC.BAT file.
This file holds operating system commands that are executed after all other system setup and
configuration is done, and just before commands are accepted from the keyboard. The AUTOEXEC.BAT
file can be used for many purposes. For more details, see your operating system manual.

The Driver488/DRV installation program provides the following options:

II. SOFTWARE GUIDES - 8. Driver488/DRV 8B. Installation & Configuration

Personal488 User’s Manual, Rev. 3.0 II-39

• If “Yes” is selected, the Driver488/DRV command line will be added to the beginning of your
AUTOEXEC.BAT file.

• If “No” is selected, no changes will be made to the AUTOEXEC.BAT file.

• If “Manually” is selected, you can choose where the Driver488/DRV command line is to be added
in your AUTOEXEC.BAT file.

After modifying the AUTOEXEC.BAT file, the installation program automatically invokes the
configuration program: CONFIG. You may also run CONFIG from the command line at a later time to
modify your configuration as required. Note if any error messages display when you are trying to load
DRVR488.EXE in memory, If so, refer to “Section IV: Troubleshooting” in this manual.

Configuration Utility
The configuration utility permits you to specify the Driver488/DRV system configuration, add
interfaces, define external devices, etc. It does so by modifying the Driver488/DRV startup
configuration specified in a Windows-style initialization file named DRVR488.INI. The first screen of
the CONFIG program is used to enter the configuration settings so the Driver488/DRV software can be
correctly modified to reflect the state of the hardware.

The driver can be reconfigured at any time by running the CONFIG program. Changes to the
configuration will not be recognized by the driver until the driver is unloaded and reloaded. Typically,
this is accomplished by rebooting your computer or using the utilities MARKDRVR and REMDRVR. For
details on these utilities, refer to the “Utility Programs” Sub-Chapters found in Chapters 8 and 9 in this
manual.

To start the CONFIG program, type CONFIG within the directory in which the configuration utility
resides, typically C:\IEEE488.

Interfaces
The minimum requirement for configuring your system is to make certain that your IEEE 488.2
interface board or module is selected under “Device Type.” The default settings in all of the other
fields match those of the interface as shipped from the factory. If you are unsure of a setting, it is
recommended that you leave it as is.

External Devices
The CONFIG program can configure both interfaces and external devices. Interfaces are IEEE interface
boards and serial ports. External devices are instruments or other devices attached to the IEEE 488 bus
or the MP488(CT) Counter/Timers and Digital I/O devices. For more details, refer to the topic
“Configuration of IEEE 488 External Devices” found later in this Sub-Chapter.

Opening the Configuration Utility
In general, all Driver488/DRV configuration utility screens have three main windows: the “name” of
the interfaces or devices on the left, the “configuration” window on the right, and the “instruction”
window at the bottom of the screen. Based on current cursor position, the valid keys for each window
will display in the Instructions box.

To begin the interface configuration, move the cursor in the name window to select an interface
description for modification. (Interfaces can be added or deleted using <F3> and <F4>.) Notice
moving the cursor up and down the list of interfaces or devices in the left window changes the
parameters in the configuration window. The configuration fields always correspond with the currently
selected interface and device type.

Once all modifications have been made to the configuration screen, <F10> must be pressed to accept
the changes made or <F9> can be pressed to exit without making any change. Additional function keys

8B. Installation & Configuration II. SOFTWARE GUIDES - 8. Driver488/DRV

II-40 Personal488 User’s Manual, Rev. 3.0

allow the user to continue onto the configuration of external devices via <F5> or to view a graphic
representation of the interface card with the selected settings via <F7>.

Configuration of IEEE 488 Interfaces
The Driver488/DRV supports
two types of interfaces: IEEE
and Serial (COM). The
following Driver488/DRV
figure displays the configuration
screen of an MP488CT
IEEE 488.2 interface.

To add another IEEE interface,
select <F3>. If you will be
using more than one interface,
refer to the final topic “Multiple
Interface Management” in this
Sub-Chapter.

Once an interface is selected,
the fields and default entries
which display in the
configuration window depend
on the device type specified.
The configuration parameters of
the interface, are as follows:

Configuration Parameters

• Name: This field is a descriptive instrument name which is manually assigned by the user. This
must be a unique name. Typically, IEEE or COM is used.

• IEEE Bus Address: This is the setting for the IEEE bus address of the board. It will be checked
against all the instruments on the bus for conflicts. It must be a valid address from 0 to 30.

• DMA: A direct memory access (DMA)
channel can be specified for use by the I/O
interface card. If DMA is to be used, select
a channel as per the hardware setting. If no
DMA is to be used, select NONE. The
NB488 does not support DMA, so the DMA
field will not display if this device type is
used. Valid settings are shown in the table.

• Interrupt: A hardware interrupt level can
be specified to improve the efficiency of the
I/O adapter control and communication
using Driver488/DRV. For DMA operation
or any use of OnEvent and Arm functions,
an interrupt level must be selected. Boards
may share the same interrupt level. If no
interrupt level is to be used, select NONE.
Valid interrupt levels depend on the type of
interface. Possible settings are shown in the table.

• SysController: This field determines whether or not the IEEE 488 interface card is to be the
System Controller. The System Controller has ultimate control of the IEEE 488 bus, and the
ability of asserting the interface clear (IFC) and remote enable (REN) signals. Each IEEE 488 bus
can have only one System Controller. If the board is a peripheral, it may still take control of the
IEEE 488 bus if the Active Controller passes control to the board. The board may then control the

I/O Board Specified DMA Channel
GP488B 1, 2, 3 or none
AT488 1, 2, 3, 5, 6, 7 or none
MP488 1, 2, 3, 5, 6, 7 or none
MP488CT 1, 2, 3, 5, 6, 7 or none
NB488 Not applicable
CARD488 Not applicable

I/O Board Specified Interrupt Level
GP488B levels 2-7 or none
AT488 levels 3-7, 9-12, 14-15 or none
MP488 levels 3-7, 9-12, 14-15 or none
MP488CT levels 3-7, 9-12, 14-15 or none
NB488 level 7 for LPT1, level 5 for LPT2
CARD488 levels 3-7, 9-12, 14-15 or none

II. SOFTWARE GUIDES - 8. Driver488/DRV 8B. Installation & Configuration

Personal488 User’s Manual, Rev. 3.0 II-41

bus and, when it is done, pass control back to the System Controller or another computer, which
then becomes the active controller. If the board will be operating in Peripheral mode (not System
Controller), select NO in this field.

• LightPen: This field determines whether the LIGHT PEN command is to be used. If selected, it
will disable the detection of interrupts via setting the light pen status. The default is light pen
interrupt enabled.

• Timeout (ms): The time out period is the amount of time that data transfers wait before assuming
that the device does not transfer data. If the time out period elapses while waiting to transfer data,
an error signal occurs. This field is the default timeout for any bus request or action, measured in
milliseconds. If no timeout is desired, the value may be set to zero.

• Device Type: This field specifies the type of board or module (such as GP488, MP488CT or
NB488) represented by the IEEE device name selected.

I/O Address

• IEEE 488: This field is the I/O base address which sets the addresses used by the computer to
communicate with the IEEE interface hardware on the board. The address is specified in
hexadecimal and can be 02E1, 22E1, 42E1 or 62E1.

 Note: This field does not apply to the NB488. Instead, the NB488 uses the I/O address of the data
register (the first register) of the LPT port interface, typically 0x0378.

• Digital I/O: This field is the base address of the Digital I/O registers. It is only applicable for
MP488 and MP488CT boards. Note that the Digital I/O SCPI communication parameters are
configured as an external device. Refer to the “Section I: Hardware Guides” for more information.

• Counter/Timer: This field is the base address of the Counter/Timer registers. It is only
applicable for MP488CT boards. Note the Counter/Timer SCPI communication parameters are
configured as an external device. Refer to the “Section I: Hardware Guides” for more information.

• Bus Terminators: The IEEE 488 bus terminators specify the characters and/or end-or-identify
(EOI) signal that is to be appended to data that is sent to the external device, or mark the end of
data that is received from the external device.

This second Driver488/DRV
configuration example displays
an IEEE interface with the
NB488 interface module
specified. This screen
resembles the previous IEEE
interface example with the
exception of 3 different
configuration parameters which
are described below.

Configuration Parameters

• LPT Port: The LPT port
is the external parallel port
to be connected to the
NB488. Valid selections
are: LPT1, LPT2 or LPT3.
This field takes the place
of the I/O Address field.

• Enable Printer Port:
Because most laptop and notebook PCs provide only one LPT port, the NB488 offers LPT pass-
through for simultaneous IEEE 488 instrument control and printer operation. If this option is
selected, a printer connected to the NB488 will operate as if it were connected directly to the LPT
port. If not enabled, then the printer will not operate when the NB488 is active. The disadvantage

8B. Installation & Configuration II. SOFTWARE GUIDES - 8. Driver488/DRV

II-42 Personal488 User’s Manual, Rev. 3.0

of pass-through printer support is that it makes communications with the NB488 about 20%
slower.

• LPT Port Type: This field is used to specify whether the LPT port is a standard IBM
PC/XT/AT/PS/2 compatible port. Valid options are: Standard or 4-bit. The slower 4-bit option is
provided for those computers which do not fully implement the IBM standard printer port. These
computers can only read 4 bits at a time from the NB488 making communication with the NB488
up to 30% slower.

A test program has been provided with NB488 to help identify the user’s LPT port type. Once the
NB488 is installed, type: NBTEST.EXE. This program will determine if your computer can
communicate with the NB488 and what type of LPT port is installed (Standard or 4-bit).

It is important to note there are four different versions of the NB488 driver. The CONFIG utility
determines which is to be used based on the user-defined parameters. If both pass-through printer
support and the 4-bit LPT port support are selected, then the communication with the IEEE 488 bit
may be slowed as much as 40% compared with the fastest case in which neither option is selected.
The actual performance will very depending on the exact type and speed of the computer used.

To save your changes to disk, press <F10>, or to exit without making any changes, press <F9>. All
changes will be saved in the directory where you installed Driver488/DRV. If at any time you wish to
alter your Driver488/DRV configuration, simply rerun CONFIG.

Configuration of Serial Interfaces
The following Driver488/DRV
screen displays the
configuration of a Serial
(COM) interface.

To add another serial interface,
select <F3>. The following
serial interface parameters are
available for modification.

Configuration Parameters

• Name: This field is a
descriptive instrument
name which is manually
assigned. This must be a
unique name.

• Baud Rate: The
allowable Data Rates range
from 75 to 115.2K and all
standard rates therein.
This includes: 75, 110, 150, 300, 600, 1200, 1800, 2400, 4800, 9600, 19.2K, 38.4K, 57.6K, and
115.2K. Slower processors may have difficulty at the higher data rates because of the amount of
processing required for terminator, end of buffer, and fill processing.

• Flow: X-ON/X-OFF is supported. With this configured, Driver488/DRV scans incoming
characters for an X-OFF character. Once it is received, no more characters are transmitted until an
X-ON character is received. The driver also issues an X-OFF to ask the attached device to stop
sending when its internal buffer becomes three-quarters full and issues an X-ON when its buffer has
emptied to one-quarter full.

II. SOFTWARE GUIDES - 8. Driver488/DRV 8B. Installation & Configuration

Personal488 User’s Manual, Rev. 3.0 II-43

• Interrupt: A hardware interrupt level can be
specified to improve the efficiency of the I/O
adapter control and communication using
Driver488/DRV. For any use of OnEvent
and Arm functions, an interrupt level must be
selected. If no interrupt level is to be used,
select NONE. Valid interrupt levels depend
on the device type.

• Input Buffer: This field is used to enter the buffer sizes for I/O.

• Output Buffer: This field is used to enter the buffer sizes for I/O.

• Parity: Parity can be EVEN, ODD, NONE, MARK, or SPACE.

• CTS Timeout: The driver supports 3 hardware handshake lines: Data Carrier Detect (DCD), Data
Set Ready (DSR), and Clear To Send (CTS). Each line can be individually designated to be
ignored, used with no specified timeout, or used with a selected timeout. The timeout is selected
by specifying the number of milliseconds to wait for the indicated condition to become satisfied.

• Data Bits: Data formats from 5 though 8 Data Bits are supported.

• DSR Timeout: The driver supports 3 hardware handshake lines: Data Carrier Detect (DCD), Data
Set Ready (DSR), and Clear To Send (CTS). Each line can be individually designated to be
ignored, used with no specified timeout, or used with a selected timeout. The timeout is selected
by specifying the number of milliseconds to wait for the indicated condition to become satisfied.

• Stop Bits: With 6, 7, or 8 Data Bits specified, either 1 or 2 Stop Bits are allowed. With 5 Data
Bits specified, 1 or 1.5 Stop Bits may be selected.

• DCD Timeout: The driver supports 3 hardware handshake lines: Data Carrier Detect (DCD), Data
Set Ready (DSR), and Clear To Send (CTS). Each line can be individually designated to be
ignored, used with no specified timeout, or used with a selected timeout. The timeout is selected
by specifying the number of milliseconds to wait for the indicated condition to become satisfied.

• Timeout (ms): The time out period is the amount of time that data transfers wait before assuming
that the device does not transfer data. If the time out period elapses while waiting to transfer data,
an error signal occurs. This field is the default timeout for any bus request or action, measured in
milliseconds. If no timeout is desired, the value may be set to zero.

• Device Type: This field specifies the type of device represented by the serial external device
name selected.

• I/O Address: The I/O Address is the
computer bus address for the board. It is set to
default values, as listed in the table, during the
initial installation. These values can be
changed, however, using the default address
values is recommended. Any conflict will be
noted by a pop up help screen.

• Bus Terminators: The bus terminators specify the characters to be appended to data that is sent
to the external device, or mark the end of data that is received from the external device.

Configuration of IEEE 488 External Devices
Within your IEEE 488.2 application program, devices on the bus may be accessed by name. These
names must be created and configured with the CONFIG program, after you have configured your
interfaces.

The following figure displays the configuration screen of an external device named DMM195. When
configuring an IEEE interface, this screen can be accessed by selecting <F5> Configure External
Devices.

I/O Comm. Typical Interrupt Level
COM1 typically level 4
COM2 typically level 3
COM3 typically level 4 or 5
COM4 typically level 2 or 3

I/O Comm. Default Address Values
COM1 typically address 3F8
COM2 typically address 2F8
COM3 typically address 3E8
COM4 typically address 2E8

8B. Installation & Configuration II. SOFTWARE GUIDES - 8. Driver488/DRV

II-44 Personal488 User’s Manual, Rev. 3.0

To add additional devices, use <F3>. Note this external device screen is also used to configure
MP488CT Digital I/O (DIGIO) and Counter/Timers (TIMER).

The following parameters are available for modification.

Configuration Parameters

• Name: External device
names are user defined
names which are used to
convey the configuration
information about each
device, from the
initialization file to the
application program. Each
external device must have
a name to identify its
configuration to
Driver488/DRV. The
name can then be used to
obtain a handle to that
device which will be used
by all of the
Driver488/DRV
commands. External
device names consist of 1
to 6 characters, and the first character must be a letter. The remaining characters may be letters,
numbers, or underscores (_). External device names are case insensitive; upper and lower case
letters are equivalent. ADC is the same device as adc.

• IEEE Bus Address: This is the setting for the IEEE 488 bus address of the device. It will be
checked against all the devices on the bus for conflicts. The IEEE 488 bus address consists of a
primary address from 00 to 31, and an optional secondary address from 00 to 31 or “NONE”.

• Timeout (ms): The time out period is the amount of time that data transfers wait before assuming
that the device does not transfer data. If the time out period elapses while waiting to transfer data,
an error signal occurs. This field is the default timeout for any bus request or action, measured in
milliseconds. If no timeout is desired, the value may be set to zero.

• Device Type: This field specifies the type of device represented by the external device name
selected.

• Bus Terminators: The IEEE 488 bus terminators specify the character(s) and/or end-or-identify
(EOI) signal that is to be appended to data that is sent to the external device, or mark the end of
data that is received from the external device.

Note: Because secondary addresses and bus terminators are specified for each external device name,
it may be useful to have several different external devices defined for a single IEEE 488 bus
device. For example, separate names would be used to communicate with different secondary
addresses within a device. Also, different names might be used for communication of
command and status strings (terminated by carriage return/line feed) and for communication
of binary data (terminated by EOI).

Note: If installation or configuration problems exist, refer to “Section IV: Troubleshooting.”

To save your changes to disk, press <F10>. All changes will be saved in the directory where you
installed Driver488/DRV. If at any time you wish to alter your Driver488/DRV configuration, simply
rerun CONFIG.

II. SOFTWARE GUIDES - 8. Driver488/DRV 8B. Installation & Configuration

Personal488 User’s Manual, Rev. 3.0 II-45

Multiple Interface Management
When designing a complex data acquisition system, it might be necessary to have more than one
IEEE 488 bus interface controlled by the computer. Typical instances include: A system with more
than 15 devices, the use of distributed control or the simultaneous operation of multiple transactions.

System With More Than 15 Devices

The IEEE 488 electrical specification limits the number of devices on a single bus (including the
controller) to 15. While a bus expander, such as the Expander488, can increase that limit to 28,
complex systems may require two or more IEEE 488 buses and have more controllers.

In this case, two or more interfaces would be used, each configured as a System Controller. Because
they are attached to completely separate buses, the two interfaces do not affect each other. They can
have the same IEEE 488 bus address, and the addresses of the devices on one bus may be the same as
the addresses of the devices on the other bus.

Use of Distributed Control

Two or more IEEE 488 buses can also be useful when they have different functions. For example, a
computer might use one bus as a System Controller to control instruments, while using another bus as a
Peripheral, to communicate with another computer.

Simultaneous Operation of Multiple Transactions

Another use of two IEEE 488 buses is to allow simultaneous operation of two separate transactions.
Some instruments, such as spectrum analyzers, have the ability to send their results, through the
IEEE 488 bus, directly to a printer or a plotter. Such an instrument, along with a printer or plotter,
would be attached to one interface, while other devices would be attached to another IEEE 488
interface. The computer could configure the spectrum analyzer to plot its results and then pass control
to it, allowing it to control the printer or plotter. Meanwhile, the computer would be using the other
bus to control other equipment.

To allow such complex systems, Driver488/DRV supports as many as four interfaces on a single
computer. The CONFIG program helps you to configure multiple interfaces and notifies you of possible
conflicts.

The examples in this manual assume, for the most part, that only one board is installed in the system,
and that it is accessed through the three device names given above for the first board. If multiple
interfaces are installed, then they are accessed in just the same manner as the first board, except that
different device names, as given above, are used. If, for example, two interfaces are installed, then a
BASIC program to use them might be:

100 OPEN “\DEV\IEEEIN” FOR INPUT AS #1
110 OPEN “\DEV\IEEEOUT” FOR OUTPUT AS #2
120 OPEN “\DEV\IEEEIN2" FOR INPUT AS #3
130 OPEN “\DEV\IEEEOUT2" FOR OUTPUT AS #4
140 PRINT#2,"OUTPUT 10;R0X"
150 PRINT#4,"OUTPUT 10;R1X"

where line 140 sends R0X to device 10 on the IEEE 488 bus controlled by board 1, and line 150 send
R1X to device 10 on the second IEEE 488 bus. Because they are on two physically different IEEE 488
buses, there is no confusion as to which device 10 is being accessed.

Note: If installation or configuration problems exist, refer to “Section IV: Troubleshooting.”

8C. External Device Interfacing II. SOFTWARE GUIDES - 8. Driver488/DRV

II-46 Personal488 User’s Manual, Rev. 3.0

Introduction
This Sub-Chapter is a technical review of external device interfacing. It contains information on how
to use external devices, DOS devices and multiple interfaces.

Driver488/DRV controls I/O interfaces and their attached external devices. In turn, Driver488/DRV is
controlled by one of two access methods: the Character Command Language (CCL), and direct DOS
I/O devices.

Driver488/DRV communicates directly with I/O interfaces, such as an IEEE 488 interface board and a
serial (RS-232) port. More than one I/O interface may reside on a single plug-in board. For example,
an RS-232 board often contains two or four functionally separate I/O interfaces, one for each port. The
GP488B board contains the IEEE 488 I/O interface; and an MP488CT board contains an IEEE 488
interface, a digital I/O interface, and a counter/timer I/O interface.

I/O interfaces connect to external devices such as: digitizers, multimeters, plotters, and oscilloscopes
(IEEE 488 interface); and serial devices such as printers, plotters, and modems (serial RS-232 port).
Driver488/DRV allows direct control of IEEE 488 external devices, but it does not support other
external devices such as an RS-232 plotter. Such devices are supported by directly controlling the I/O
interface (serial port).

Driver488/DRV is controlled by sending data and commands, and receiving responses and status by
one of two access methods: the Character Command Language, and Direct DOS I/O devices. These
methods, also known as Application Program Interfaces or APIs, are available to connect the
application (user’s) program to Driver488/DRV.

Character Command Language (CCL)
The Character Command Language (CCL) API is a type of DOS device driver that can control and
communicate with Driver488/DRV. A DOS device driver is a special type of program that appears to
the user’s program as a file that can be written to and read from like any disk file, but that does not
actually read and write the disk. For example, the DOS command:

COPY FILE.LST LPT1

copies the disk file FILE.LST to the device driver LPT1 which prints FILE.LST. There is no file
named LPT1; the LPT1 device driver program has the responsibility for communicating with the
printer. The COPY command can write to LPT1 just like an ordinary file, but DOS knows LPT1 is only
a device driver and allows it to process the data.

 8C. External Device Interfacing

Topics

• Introduction... II-45
• Character Command Language (CCL) II-45
• DOS Devices... II-46
• Configuration of Named Devices .. II-46
• Use of External Devices... II-47
• Direct I/O with DOS Devices .. II-47
• Extensions For Multiple Interfaces.. II-48

Duplicate Device Names... II-48
Access of Multiple Interfaces ... II-48
Example .. II-49

II. SOFTWARE GUIDES - 8. Driver488/DRV 8C. External Device Interfacing

Personal488 User’s Manual, Rev. 3.0 II-47

The Character Command Language is a device driver that writes commands to, and reads responses
from, Driver488/DRV. To use the Character Command Language, the application program opens a file
with a special name, such as: “\DEV\IEEE”, and uses standard DOS file I/O commands to
communicate with the Character Command Language device driver. Since the CCL is a device driver,
standard DOS commands such as: TYPE and COPY may be used to communicate with Driver488/DRV
via the CCL.

DOS Devices
Driver488/DRV may also be controlled by using DOS Devices. A DOS Device is a special type of
DOS device driver that uses Driver488/DRV to communicate with a single External Device.
Remember that, as a DOS device driver, a DOS Device may be written to and read from, like any disk
file. When writing data to a DOS Device, the device driver commands Driver488/DRV to send the
data to the corresponding External Device. Similarly, when reading from the DOS Device, the device
driver commands Driver488/DRV to read data from the External Device.

Driver488/DRV allows DOS Devices to be created that refer to specific External Devices, just as LPT1
refers to the printer. For example, if an IEEE 488 plotter were configured as a DOS Device named
PLOTDD (DD for DOS Device), then we could use COPY to send a plot file to it:

COPY PLOTFILE.PLT PLOTDD

Configuration of Named Devices
External Devices and DOS Devices are most easily configured by using CONFIG. The device names,
terminators, time out period, and bus addresses may be entered into CONFIG which then writes a
configuration file containing the device configuration information. This configuration file is
automatically read when Driver488/DRV loads to install the configured devices.

Every device to be accessed by Driver488/DRV must have a valid device name. Driver488/DRV
comes with several device and interface names preconfigured for use. Among those already configured
for the GP488B board, for example, are: IEEE and COM1. You can configure up to 50 external devices
for the IEEE 488 bus.

It is also possible to configure new named devices by using the Driver488/DRV command
MAKE DEVICE. The MAKE DEVICE command creates a temporary device that is an identical copy of
an already existing Driver488/DRV device. The new device has default configuration settings identical
to those of the existing device. The new device can then be reconfigured by calling the proper
functions, such as BUS ADDRESS, INT LEVEL, and TIME OUT. When Driver488/DRV is closed, the
new device is forgotten unless the KEEP DEVICE command is used to make it permanent.

The following code illustrates how the Character Command Language API version of the MAKE
DEVICE command could be used to configure several new named devices:

100 PRINT#1,"MAKE DEVICE DMM =ADC"
110 PRINT#1,"BUSADDRESS 16"
120 PRINT#1,"TERM CR LF EOI"
200 PRINT#1,"MAKE DEVICE SCOPECMD =ADC"
210 PRINT#1,"BUSADDRESS 1200"
220 PRINT#1,"TERM LF"
300 PRINT#1,"MAKE DEVICE SCOPE =ADC"
310 PRINT#1,"BUSADDRESS 1201"
320 PRINT#1,"TERM EOI"

Lines 100-120 of the above example define an external device named DMM (digital multi-meter) as
device 16 with bus terminators of carriage-return line-feed (CR LF) and EOI. Lines 200-220 configure
an oscilloscope command channel to use line-feed as its IEEE 488 bus terminator at a primary address
of 12 and secondary address 00. Lines 300-320 configure the oscilloscope data channel to use EOI
only as the bus terminator so that it can transfer binary data to its address of 1201: primary address 12,
secondary address 01.

External Devices and DOS Devices defined at installation time are permanent. Their definitions last
until they are explicitly removed or until the computer is restarted. Devices defined after installation

8C. External Device Interfacing II. SOFTWARE GUIDES - 8. Driver488/DRV

II-48 Personal488 User’s Manual, Rev. 3.0

are normally temporary. They are forgotten as soon as the program finishes. The KEEP DEVICE and
KEEP DOS NAME commands can be used to make these devices permanent. The REMOVE DEVICE and
REMOVE DOS NAME commands remove the definitions of devices even if they are permanent. These
commands are described in further detail in the “Section III: Command Reference” of this manual.

Use of External Devices
Once we have configured the external devices, we can refer to devices by name. For example, using
the Character Command Language, the following program allows Driver488/DRV to communicate
with a digital multimeter:

200 PRINT#1,"CLEAR DMM"
210 PRINT#1,"OUTPUT DMM;VDC"
220 PRINT#1,"ENTER DMM"
230 INPUT#2,VOLTAGE
300 PRINT#1,"TRIGGER SCOPECMD"
320 PRINT#1,"ENTER SCOPE #1000 BUFFER 11";DS%;":";VARPTR(ARRAY)

In these commands we CLEAR the DMM, configure it for DC volts, take a reading and store it in the
variable VOLTAGE. Next, we TRIGGER the SCOPE at its command address and then read from its binary
data channel into an array. While these commands are hypothetical, they show how device names can
be used wherever a device address is allowed.

As mentioned above, named devices have another advantage: they automatically use the correct bus
terminators and time out. When a named device is defined, it is assigned bus terminators and a time
out period. When communication with that named device occurs, Driver488/DRV uses these
terminators and time out period automatically. Thus TERM statements are not needed to reconfigure the
bus terminators for devices that cannot use the default terminators (which are usually carriage-return
line-feed EOI). It is still possible to override the automatic bus terminators by explicitly specifying the
terminators in an ENTER or OUTPUT command. For more information, see the ENTER, OUTPUT, and
TERM commands described in “Section III: Command References.”

Direct I/O with DOS Devices
DOS Devices can be opened as files for direct communication. For example, we can configure two
names to refer to a plotter with an IEEE 488 bus address of 05:

400 PRINT #1,"MAKE DEVICE PLOTTER BUSADDRESS 05"
410 PRINT #1,"MAKE DOS NAME PLOT=PLOTTER"
420 PRINT #1,"MAKE DOS NAME PLOTIN=PLOTTER"

Then we can open them, one for input and one for output:

430 OPEN “PLOT” FOR OUTPUT AS #3
440 OPEN “PLOTIN” FOR INPUT AS #4

Two different names are used to communicate with the plotter because, in BASIC, the same file cannot
be used for both input and output. In other languages, it might be possible to use the same file (with the
same device name) for both input and output. Also note that BASIC normally has a limit of 3 open
files. To open more than 3 files (as in this example; 2 for Driver488/DRV commands, and 2 for the
plotter), BASIC must be started with the parameter /F:n (where n is the number of files). See your
BASIC manual for more details.

For clarity, the DOS Device names are not the same as External Device names. In normal use, one of
the DOS Device names might be chosen to be the same as an External Device name to show that they
communicate with the same External Device. Of course, the two DOS Device names must be different.

Once the files are opened, we can communicate PRINT commands to the plotter and INPUT responses
from the plotter without using the Driver488/DRV OUTPUT or ENTER commands. When a named
device is used as a file, the OUTPUT and ENTER commands occur automatically.

500 PRINT#3,"IN; SP1; PA1000,1000;" ‘Send plot commands
510 PRINT#3,"OE;" ‘Request plotter status
520 INPUT#4,ST$ ‘Read plotter status

II. SOFTWARE GUIDES - 8. Driver488/DRV 8C. External Device Interfacing

Personal488 User’s Manual, Rev. 3.0 II-49

530 PRINT ST$ ‘and display it

Once a named device is configured, standard DOS commands may be used to transfer data to that
device. For example:

COPY PLOTFILE.DAT PLOT

copies the plot data file PLOTFILE.DAT to the IEEE 488 bus plotter.

CAUTION

Because named devices can be used as files, some care must be taken so that they do not interfere
with other file or device names in the system:

1. Device names should not be the same as the primary name (the part before the period) of any
existing files or directories. For example, if you define a device with the name “BASIC”,
then you cannot use the program “BASIC.EXE”, and if you name a device “IEEE 488", then
you cannot access the Driver488/DRV subdirectory.

2. Device names should not be one of the standard DOS device names: COM, AUX, CON, LPT,
or PRN. This could interfere with normal DOS operation.

3. Device names should normally not be duplicated. If duplicate device names are used, only
the last one of them installed is accessible. To avoid confusion, duplicate device names are
not recommended.

With the considerations noted in the above warning, External Devices and DOS Devices make
Driver488/DRV significantly easier to use. External Devices allow IEEE 488 bus devices to be
referenced symbolically, by a name, rather than by their bus address. They also automatically use the
appropriate IEEE 488 bus terminators and time out period. Finally, it is possible to communicate
directly with DOS Devices just as you would communicate with any file.

Extensions For Multiple Interfaces
Driver488/DRV allows the simultaneous control of multiple interfaces each with several attached
devices. To avoid confusion, external devices may be referred to by their “full name” which consists of
two parts. The “first name” is the hardware interface name, followed by a colon separator (:). The
“last name” is the external device name on that interface. For example, the “full name” of DMM might
be IEEE:DMM.

Duplicate Device Names
Duplicate device names are most often used in systems that consist of several identical sets of
equipment. For example, a test set might consist of a signal generator and an oscilloscope. If three test
sets were controlled by a single computer using three separate IEEE 488 interfaces, then each signal
generator and each oscilloscope might be given the same name and the program would specify which
test set to use by opening the correct interface (OPEN“IEEE” for one, OPEN“IEEE2" for the other), or
by using the interface names when communicating with the devices (”IEEE:GENERATOR" for one and
“IEEE2:GENERATOR” for the other.)

Unique names are appropriate when the devices work together, even if more than one interface is used.
If two different oscilloscopes, on two different interfaces are used as part of the same system, then they
would each be given a name appropriate to its function. This avoids confusion and eliminates the need
to specify the interface when opening the devices.

Access of Multiple Interfaces
If the computer only has one IEEE 488 interface, then there is no confusion, for every external device
is known to be on that interface. However, if the computer has more than one IEEE 488 interface, then
rules apply when using the Character Command Language:

8D. Getting Started II. SOFTWARE GUIDES - 8. Driver488/DRV

II-50 Personal488 User’s Manual, Rev. 3.0

1. If the external device name is defined on the current hardware interface, then that interface is used
to communicate with that device. The current hardware interface is the one that was opened to
communicate with Driver488/DRV. This would be IEEE for the first IEEE 488 interface, IEEE2
for the second, etc.

2. If the name is defined on another hardware interface, that other interface is used to communicate
with that device.

3. If the name is defined on more than one other interface (and not on the current interface) then one
of those interfaces is used. The choice of which particular interface is not defined.

4. In order to specify the interface to use, the interface name may be prefixed with a colon to the
device name. For example, IEEE2:DMM refers to the digital multimeter attached to interface
IEEE2. If the specified device does not exist on the specified interface, then an error occurs.

Example
Assume there are three IEEE 488 interfaces: IEEE, IEEE2, and IEEE3 controlling multiple devices:
SCOPE (on IEEE), DA (on IEEE2) and DA (on IEEE3). Since there are two external devices, both
named DA, their full name must be used to specify them.

After opening the interfaces with the following command lines:

OPEN “IEEE” AS #1
OPEN “IEEE2" AS #2
OPEN “IEEE3" AS #3

we can communicate with the external devices, according to the four rules above.

PRINT #1,"OUTPUT SCOPE;..." SCOPE on IEEE. See Rule 1
PRINT #3,"OUTPUT SCOPE;..." SCOPE on IEEE (not IEEE2). See Rule 2
PRINT #1,"OUTPUT DA;..." DA on IEEE2 or IEEE3 (not specified). See Rule 3
PRINT #1,"OUTPUT IEEE2:DA;..." DA on IEEE2. See Rule 4
PRINT #1,"OUTPUT IEEE2:SCOPE;..." ERROR (not IEEE:SCOPE). See Rule 4

Introduction
Once Driver488/DRV has been installed in your system, it is ready to begin controlling IEEE 488 bus
devices. This Sub-Chapter describes methods of controlling the bus directly from the keyboard. Other
Sub-Chapters in this Chapter develop short programs, in various languages, to control a Keithley
Instruments Model 195 digital multimeter. The techniques used in these programs are quite general,
and apply to the control of most instruments.

It is not necessary to write programs to control IEEE 488 bus devices using Driver488/DRV. Instead,
using the Character Command Language Application Program Interface (CCL API), commands to the
bus may be sent directly from the keyboard, with responses displayed on the screen or sent to a file.
The Keyboard Controller program provides this capability, as do the standard MS-DOS commands.

 8D. Getting Started

Topics

• Introduction... II-49
• Keyboard Controller Program... II-50
• Direct Control from DOS Using CCL ... II-51

II. SOFTWARE GUIDES - 8. Driver488/DRV 8D. Getting Started

Personal488 User’s Manual, Rev. 3.0 II-51

Keyboard Controller Program
The program KBC.EXE is a utility program that allows you to enter Driver488/DRV commands from
the keyboard and see what effect they have. When KBC is run, it displays an IEEE> prompt and waits
for a command to be entered from the keyboard. When the <Enter> key is pressed, KBC sends the
command to Driver488/DRV and displays any response or error messages that occur. This allows you
to test the various Driver488/DRV commands and their effects on your instruments without having to
write a program. A dialog with KBC might be:

First, we can use the HELLO command to display the Driver488/DRV revision identification:

IEEE> HELLO <Enter>
Driver488 Revision X.X ©199X IOtech, Inc.

Then check the Driver488/DRV status:

IEEE> STATUS <Enter>
CS21 1 I000 000 T0 C0 P0 OK

The following indicators describe each component of the Driver488/DRV status:

Next, take a reading from IEEE 488 bus device 16:

IEEE> ENTER 16 <Enter>
NDCV=035.679E-3

Now, list the commands that have been executed so far and re-execute the ENTER command:

IEEE> .L <Enter>
3 HELLO
2 STATUS
1 ENTER 16
IEEE .1 <Enter>
IEEE> ENTER 16 <Enter>
NDCV+032.340E-3

Notice that the .L and .1 commands are not Driver488/DRV commands. Instead, they are supplied by
the KBC program. The .L command is used to show a list of the previously entered commands. KBC
keeps the last 20 commands in this list. Any of these commands can be reentered by typing a period
followed by the number of that command. For example, the .1 command reenters the last command
that was entered. The user may then edit this command, or may just press <Enter> re-executing the
command.

Indicator Driver488/DRV Status
C It is in the Controller state.
S It is the System Controller.
21 The value of its IEEE 488 bus address.
1 An Address Change has occurred.
I It is idle (neither a talker nor a listener).
0 There is no ByteIn available.
0 It is not ready to send a ByteOut.
0 Service Request (SRQ) is not asserted.
000 There is no outstanding error.
T0 It has not received a bus device TRIGGER command (only applicable in the Peripheral

mode).
C0 It has not received a CLEAR command (only applicable in the Peripheral mode).
P0 No CONTINUE transfer is in progress.
OK The error message is “OK”.

8D. Getting Started II. SOFTWARE GUIDES - 8. Driver488/DRV

II-52 Personal488 User’s Manual, Rev. 3.0

Finally, EXIT causes KBC to terminate:

IEEE> EXIT <Enter>

As already mentioned, KBC obeys the standard DOS editing keys. In using these editing keys, the
previous command is used as a template. Characters from the template are copied into the current
command line under control of the editing keys. These editing keys, coupled with the ability to retrieve
previous commands, greatly ease the task of trying various Driver488/DRV commands.

The editing keys and their actions are:

Editing Key Editing Function
<F1> or <ÆÆ> Copies one character from the template to the command line.
<F2>char Copies characters from the template to the command line up to the character

specified.
<F3> Copies all remaining characters from the template to the command line.
<F4>char Skips over (does not copy) characters from the template up to the character

specified.
<F5> Replaces the template with the current command line.
 Skips over (does not copy) one character in the template.
<Ins> Toggles insert mode. When insert mode is off (the default) characters from

the template are skipped as characters are entered from the keyboard.
When insert mode is on, no characters in the template are skipped.

<Esc> Clears the command line and leaves the template unchanged.

Direct Control from DOS Using CCL
Because Driver488/DRV is a standard MS-DOS device driver, any program that can read and write
characters to files can control the IEEE 488 bus. In particular, MS-DOS (and PC-DOS) provide
several commands that can communicate directly with Driver488/DRV. To begin communication, it is
helpful to turn on the Driver488/DRV automatic error display:

C:\> ECHO ERROR ON> IEEE <Enter>

and tell Driver488/DRV to end its responses with an end-of-file character (control-Z, ASCII 26):

C:\> ECHO FILL $26> IEEE <Enter>

Note the format of these commands: the DOS command ECHO, followed by the Driver488/DRV
command ERROR ON or FILL $26, which is redirected by the > to a file named IEEE. When ECHO
tries to write the command to IEEE, DOS notices that IEEE is the name of a device driver, not a file,
and so sends the command to the device driver which of course is Driver488/DRV.

Once the input terminator is initialized to the end-of-file character, DOS can be used to get responses
from Driver488/DRV and the attached IEEE 488 bus devices.

First, we can use the HELLO command to display the Driver488/DRV revision identification:

C:\> ECHO HELLO> IEEE <Enter>
C:\> TYPE IEEE <Enter>
Driver488 Revision X.X ©199X IOtech Inc.

Then check the Driver488/DRV status:

C:\> ECHO STATUS> IEEE <Enter>
C:\> TYPE IEEE <Enter>
CS21 1 I000 000 T0 C0 P0 OK

The following indicators describe each component of the Driver488/DRV status:

II. SOFTWARE GUIDES - 8. Driver488/DRV 8D. Getting Started

Personal488 User’s Manual, Rev. 3.0 II-53

Next, take a reading from IEEE 488 bus device 16:

C:\> ECHO ENTER 16> IEEE <Enter>
C:\> TYPE IEEE <Enter>
NDCV=035.679E-3

Now, if an IEEE 488 bus device name has been defined using the INSTALL program, that name can be
used to refer to the bus device. For example, assume that a Keithley Instruments Model 195 digital
multimeter has been given the name K195. The meter could be reset to its power-on conditions with a
CLEAR command:

C:\> ECHO CLEAR K195> IEEE <Enter>

To program the 195 for the 2 VDC range, send it the R3F0X command:

C:\> ECHO OUTPUT K195;R3F0X> IEEE <Enter>

This could also be achieved by sending the command directly to the device:

C:\> ECHO R3F0X> K195 <Enter>

To check the status of the 195, use the SERIAL POLL, or SPOLL command:

C:\> ECHO SPOLL K195> IEEE <Enter>
C:\> TYPE IEEE <Enter>

To display a reading from the 195, use the ENTER command:

C:\> ECHO ENTER K195> IEEE <Enter>
C:\> TYPE IEEE <Enter>

To view continuous readings from the 195, read directly from the K195 device:

C:\> TYPE K195 <Enter>

This causes readings to be taken from the 195 and displayed until <Ctrl-Break> is typed. Note that
<Ctrl-Break> may halt Driver488/DRV in the middle of a transaction, causing the first attempt at
another command to give a SEQUENCE ERROR. If this should occur, simply retry the last command.

It is also possible to save the bus device data into a file:

C:\> ECHO ENTER K195> IEEE <Enter>
C:\> TYPE IEEE> DATA <Enter>
C:\> ECHO ENTER FREQ> IEEE <Enter>
C:\> TYPE IEEE>> DATA <Enter>

The first two commands create a file named DATA that holds a reading from the 195. The next two
commands append a reading from the device FREQ to the data file. Note the use of the >> to indicate
append.

Indicator Driver488/DRV Status
C It is in the Controller state.
S It is the System Controller.
21 The value of its IEEE 488 bus address.
1 An Address Change has occurred.
I It is idle (neither a talker nor a listener).
0 There is no ByteIn available.
0 It is not ready to send a ByteOut.
0 Service Request (SRQ) is not asserted.
000 There is no outstanding error.
T0 It has not received a bus device TRIGGER command (only applicable in the Peripheral

mode).
C0 It has not received a CLEAR command (only applicable in the Peripheral mode).
P0 No CONTINUE transfer is in progress.
OK The error message is “OK”.

8E. Microsoft C II. SOFTWARE GUIDES - 8. Driver488/DRV

II-54 Personal488 User’s Manual, Rev. 3.0

Use of the Character Command Language
In order to simplify programming Driver488/DRV with C, the following files are provided on the
Driver488/DRV program disk:

• IEEEIO.C: Communications routines for Driver488/DRV

• IEEEIO.H: Header file, contains declarations from IEEEIO.C

• IEEEDEMO.C: Example file showing use of fputs and fgets with Driver488/DRV (included
with Microsoft C only)

• CRITERR.ASM: Critical error handler assembly language source file (included with Microsoft C
and Turbo C only)

• CRITERR.OBJ: Object file produced from CRITERR.ASM (included with Microsoft C and Turbo
C only)

• CRITERR.H: Header file, contains declarations for using CRITERR.ASM

The actual demonstration program is contained in 195DEMO.C.

All files for Microsoft C are in the \MSC directory.

To execute the demonstration program, the files must be compiled and then linked. The following
DOS commands perform these steps:

C> msc 195demo;
C> msc ieeeio;
C> link 195demo ieeeio;

Finally, the demonstration program is run by typing 195DEMO <Enter>. Notice that the critical error
handler CRITERR.ASM is not required for the demonstration program. Its use is described later in
“CRITERR.ASM (Microsoft C & Turbo C),” one of the last topics in this Sub-Chapter.

The above command assumes that you have Microsoft C and that the files have been copied into the
appropriate directory for use with your C compiler. Notice that the program uses a small data model
because it uses less than 64K of code and data.

Initialization of the System
Any program using Driver488/DRV must first establish communications with the Driver488/DRV
software driver. In C, this is accomplished using the OPEN statement. Communication both to and
from Driver488/DRV is required. Thus, the file must be opened for both reading and writing (RDWR).

 8E. Microsoft C

Topics

• Use of the Character Command Language............................... II-53
• Initialization of the System.. II-53
• Configuration of the 195 DMM .. II-56
• Taking Readings ... II-56
• Buffer Transfers.. II-56
• Interrupt Handling .. II-57
• IEEEIO.C .. II-59
• CRITERR.ASM (Microsoft C & Turbo C)................................... II-61
• Sample Program ... II-62

II. SOFTWARE GUIDES - 8. Driver488/DRV 8E. Microsoft C

Personal488 User’s Manual, Rev. 3.0 II-55

Also, in Microsoft C and Turbo C, the file must be opened in BINARY mode so that end-of-line
characters are not translated.

In Microsoft C and Turbo C, the file is opened with the following statement:

ieee=open(“ieee”,O_RDWR | O_BINARY);

which is part of the IEEEINIT function contained in IEEEIO.C. IEEEIO.C supplies several other
useful routines and definitions. These routines and definitions are described later in more detail in
“Interrupt Handling,” an upcoming topic in this Sub-Chapter.

In the above statement, the value returned by OPEN and placed into the integer variable IEEE, is either
the handle of the opened file, or -1 if some error has occurred. The IEEEINIT routine checks for this
error indication and returns a -1 if there has been such an error.

Of course, the file descriptor variable name IEEE may be changed as desired, but throughout this
manual and the program files, IEEE has been used. Once the file is opened, we can send commands
and receive responses from Driver488/DRV.

Normally, when DOS communicates with a file, it checks for special characters, such as control-Z
which can indicate end-of-file. When communicating with IEEE 488 devices, DOS’s checking would
interfere with the communication. The RAWMODE function prevents DOS from checkings for special
characters:

rawmode(ieee);

As an additional benefit, communication with Driver488/DRV is much more efficient when DOS does
not check for special characters.

Driver488/DRV can accept commands only when it is in a quiescent, ready state. While
Driver488/DRV should normally be ready, it is possible that it was left in some unknown state by a
previous program failure or error. In order to force Driver488/DRV into its quiescent state, we use the
IOCTL_WT function:

ioctl_wt(ieee,"break",5);

This IOCTL_WT function is equivalent to the BASIC statement IOCTL#1,“BREAK” which sends the
BREAK command through a “back door” to Driver488/DRV. Driver488/DRV recognizes this “back
door” command regardless of what else it might be doing and resets itself so that it is ready to accept a
normal command. We can then completely reset the Driver488/DRV with the RESET command:

ieeewt(“reset\r\n”);

which resets the operating parameters of the Driver488/DRV back to their normal values (those that
were set during system boot by the DRVR488 DOS command). Notice that the EOL OUT terminators
that mark the end of a Driver488/DRV command are reset to carriage return and line feed by the
IOCTL_WT command. Thus, the RESET command must be terminated by both a carriage return (\r)
and a line feed (\n). As it is more convenient if Driver488/DRV accepts line feed only as the
command terminator, we use the EOL OUT command to set the command terminator to just line feed
(\n):

ieeewt(“eol out lf\r\n”);

Notice that this command must also be terminated by both a carriage return and a line feed because the
command terminator is not changed until after the EOL OUT command is executed.

Character strings in C are normally terminated by a null (an ASCII 0). Thus, it is appropriate for
Driver488/DRV to terminate its responses to the program with a null so that the response can be treated
as a normal character string. We can use the EOL IN command to configure Driver488/DRV so that it
does provide an ASCII null terminator:

ieeewt(“eol in $0\n”);

Finally, we enable SEQUENCE - NO DATA AVAILABLE error detection by setting the FILL mode to
ERROR:

ieeewt(“fill error\n”);

8E. Microsoft C II. SOFTWARE GUIDES - 8. Driver488/DRV

II-56 Personal488 User’s Manual, Rev. 3.0

All the commands discussed so far: OPEN, RAWMODE, IOCTL_WT, RESET, EOL OUT, EOL IN and FILL
ERROR are part of the IEEEINIT function included in IEEEIO.C. IEEEINIT returns a zero if these
steps were executed successfully, and a -1 if some error was encountered. Thus, to accomplish all the
above steps, we just use the following:

#include “ieeeio.h”
#include <stdio.h>
if (ieeeinit() == -1) {
printf(“Cannot initialize IEEE system.\n”);
exit(1);
}

The two INCLUDE statements provide the program with definitions of the standard I/O and IEEE I/O
functions so they can be referenced by the demo program. IEEEINIT is called to initialize the system,
and if it indicates an error (returns a -1), we print an error message and exit. If there was no error, we
just continue with the program.

Once everything is reset, we can test the communications and read the Driver488/DRV revision number
with the HELLO command:

char response[256];
ieeewt(“hello\n”);
ieeerd(response);
printf(“%s\n”,response);

We first IEEEWT the HELLO command, then IEEERD the response from Driver488/DRV into the
character string response (IEEEWT and IEEERD are both supplied in IEEEIO.C). Finally, we display
the response with a PRINTF.

It is not necessary to perform the HELLO command, but it is included here as a simple example of
normal communication with Driver488/DRV. Its response is the revision identification of the
Driver488/DRV software: Driver488 Revision X.X ©199X IOtech, Inc.

We can also interrogate Driver488/DRV for its status:

ieeewt(“status\n”);
ieeerd(response);
printf(“%s\n”,response);

Subsequently, the printed response is similar to the following:

CS21 1 I000 000 T0 C0 P0 OK

The following indicators describe each component of the Driver488/DRV status:

Indicator Driver488/DRV Status
C It is in the Controller state.
S It is the System Controller.
21 The value of its IEEE 488 bus address.
1 An Address Change has occurred.
I It is idle (neither a talker nor a listener).
0 There is no ByteIn available.
0 It is not ready to send a ByteOut.
0 Service Request (SRQ) is not asserted.
000 There is no outstanding error.
T0 It has not received a bus device TRIGGER command (only applicable in the Peripheral

mode).
C0 It has not received a CLEAR command (only applicable in the Peripheral mode).
P0 No CONTINUE transfer is in progress.
OK The error message is “OK”.

II. SOFTWARE GUIDES - 8. Driver488/DRV 8E. Microsoft C

Personal488 User’s Manual, Rev. 3.0 II-57

Configuration of the 195 DMM
Once the system is initialized we are ready to start issuing bus commands. The IEEE 488 bus has
already been cleared by the Interface Clear (IFC) sent by the RESET command, so we know that all bus
devices are waiting for the controller to take some action. To control an IEEE 488 bus device, we
output an appropriate device-dependent command to that device. For example, the F0R0X command
line below sets the 195 to read DC volts with automatic range selection:

ieeewt(“output 16;F0R0X\n”);

The OUTPUT command takes a bus device address (16 in this case) and data (F0R0X) and sends the data
to the specified device. The address can be just a primary address, such as 12, or 05, or it can include
a secondary address: 1201. Note that both the primary address and, if present, the secondary address
are two-digit decimal numbers. A leading zero must be used, if necessary to make a two-digit address.

Taking Readings
Once we have set the 195’s operating mode, we can take a reading and display it:

float voltage;
ieeewt(“enter 16\n”);
ieeescnf(“%*4s%e”,&voltage);
printf(“The read value is %g\n”,voltage);

The ENTER command takes a bus address (with an optional secondary address) and configures that bus
device so that it is able to send data (addressed to talk). No data is actually transferred, however, until
the IEEESCNF statement requests the result from Driver488/DRV at which time data is transferred to
the program into the variable voltage. A typical reading from a 195 might be NDCV+1.23456E-2,
consisting of a four character prefix followed by a floating point value. The format passed to
IEEESCNF causes it to skip the four character prefix (%*4s) and then convert the remaining string into
the float variable voltage.

All the power of C may be used to manipulate, print, store, and analyze the data read from the
IEEE 488 bus. For example, the following statements print the average of ten readings from the 195:

Buffer Transfers
Instead of using an IEEERD(_) function to receive the data from a device, we can direct
Driver488/DRV to place the response directly into a data buffer of our choosing. For example, each
reading from the 195 consists of 17 bytes: a four-byte prefix and an eleven-byte reading followed by
the two-byte command terminator. So, we can collect 100 readings in a 1700-byte array. To do this,
we must first allocate the required space in an array:

char hundred[1700];

Now that we have allocated a place for the readings, we can direct Driver488/DRV to put readings
directly into hundred with the ENTER #count BUFFER command:

ieeeprtf(“ENTER 16 #1700 BUFFER %d:%d\n”,
segment(hundred),offset(hundred));

This command consists of the keyword ENTER, followed by the bus device address (16), a number sign
(#), the number of bytes to transfer (1700), and the keyword BUFFER, followed by the memory address
of the buffer. The buffer address is specified as segment:offset where segment and offset are

int i;
float sum;
sum=0.0;
for (i=0; i<10; i++) {
 ieeewt(“enter 16\n”);
 ieeescnf(“%*4s%e”,&voltage);
 sum=sum+voltage;
}
printf(“The average of 10 readings is %g\n”,sum/10.0);

8E. Microsoft C II. SOFTWARE GUIDES - 8. Driver488/DRV

II-58 Personal488 User’s Manual, Rev. 3.0

each 16-bit numbers and the colon (:) is required to separate them. The segment and offset values
we need are returned by the segment and offset functions, respectively.

Once the data has been received, we can print it out:

for (i=0; i<1700; i++) putchar(hundred[i]);

The program could process the previous set of data while collecting a new set into a different buffer.
To allow the program to continue, specify continue in the command:

ieeeprtf(“ENTER 16 #1700 BUFFER continue\n”,
segment(hundred),offset(hundred));

Once we have started the transfer, we can check the status:

ieeewt(“status\n”);
ieeerd(response);
printf(“%s\n”,response);

The status that is returned is typically:

CS21 1 L100 000 T0 C0 P1 OK

Notice P1 which states a transfer is in progress, and L which shows we are still a listener. If the bus
device is so fast that the transfer completes before the program can check status, the response is P0
showing that the transfer is no longer in progress. We can also WAIT for the transfer to complete and
check the status again:

ieeewt(“wait\n”);
ieeewt(“status\n”);
ieeerd(response);
printf(“%s\n”,response);

This time the status must be P0 as the WAIT command waits until the transfer has completed. Now that
we know the transfer is complete, we are ready to print out the received data as shown above.

Interrupt Handling
The IEEE 488 bus is designed to be able to attend to asynchronous (unpredictable) events or
conditions. When such an event occurs, the bus device needing attention can assert the Service
Request (SRQ) line to signal that condition to the controller. Once the controller notices the SRQ, it can
interrogate the bus devices, using Parallel Poll (PPOLL) and/or Serial Poll (SPOLL) to determine the
source and cause of the SRQ, and take the appropriate action.

Parallel Poll is the fastest method of determining which device requires service. Parallel Poll is a very
short, simple IEEE 488 bus transaction that quickly returns the status from many devices. Each of the
eight IEEE 488 bus data bits can contain the Parallel Poll response from one or more devices. So, if
there are eight or fewer devices on the bus, then just the single Parallel Poll can determine which
requires service. Even if the bus is occupied by the full complement of 15 devices, then Parallel Poll
can narrow the possibilities down to a choice of no more than two.

Unfortunately, the utility of Parallel Poll is limited when working with actual devices. Some have no
Parallel Poll response capability. Others must be configured in hardware, usually with switches or
jumpers, to set their Parallel Poll response. If Parallel Poll is not available, or several devices share the
same Parallel Poll response bit, then Serial Polling is still required to determine which device is
requesting service.

Serial Poll, though it is not as fast as Parallel Poll, does offer three major advantages: it gives an
unambiguous response from a single bus device; it returns additional status information beyond the
simple request/no-request for service; and, most importantly, it is implemented on virtually all bus
devices.

The SRQ line can be monitored in two ways: it can be periodically polled by using the STATUS
command, or by checking the “light pen status.”

BASIC provides a method for detecting and servicing external interrupts: the ON PEN statement. The
ON PEN statement tells BASIC that, when an external interrupt is detected, a specific subroutine,

II. SOFTWARE GUIDES - 8. Driver488/DRV 8E. Microsoft C

Personal488 User’s Manual, Rev. 3.0 II-59

known as the interrupt service routine (ISR), is to be executed. Normally, the interrupt detected by
ON PEN is the light pen interrupt. However, Driver488/DRV redefines this “light pen interrupt” to
signal when an IEEE 488 bus related interrupt (such as SRQ) has occurred.

Unlike BASIC, C does not provide an automatic method of checking for light pen interrupts.
Therefore, a function is needed to check for the interrupt. The function could use the STATUS
command, but it is much faster to check the interrupt status directly using a BIOS interrupt. The
CKLPINT (check light pen interrupt) function provided in IEEEIO.C uses the BIOS to check for
Driver488/DRV interrupts and returns true (1) if one is pending. Interrupts are checked automatically
by the IEEEWT routine before sending any data to Driver488/DRV. However, IEEEWT does not call
CKLPINT directly. Instead, it calls the routine that is pointed to by IEEE_CKI (IEEE check interrupt).
If IEEE_CKI points to CKLPINT, then IEEEWT checks for Driver488/DRV interrupts, but if
IEEE_CKI points to _false_, a function that always returns 0, then interrupt checking is disabled.
Initially, IEEE_CKI does point to _false_, and so interrupt checking is disabled. To enable interrupt
checking IEEE_CKI must be redirected to CKLPINT:

int cklpint();
ieee_cki = cklpint;

Once an interrupt has been detected, an interrupt service routine must be invoked to handle the
interrupting condition. When IEEEWT detects an interrupt, it calls the interrupt service routine (ISR).
Just as IEEEWT does not call the check-for-interrupt routine directly, it does not call the ISR directly,
either. Instead, it calls the routine pointed to by IEEE_ISR (IEEE interrupt service routine). If
IEEE_ISR is set to point to some specific ISR, then that ISR is executed when IEEEWT detects an
interrupt. Initially, IEEE_ISR points to no_op, a function that does nothing. So, unless IEEE_ISR is
redirected to another routine, nothing is done when an interrupt is detected. In the 195DEMO example
program an interrupt service routine, called isr, has been provided. So, IEEE_ISR must be set to
point this routine for interrupts to be handled properly:

ieee_isr = isr;

Once we have enabled interrupt checking by setting IEEE_CKI to point to CKLPINT, and specified the
interrupt service routine by setting IEEE_ISR to point to isr, then we can specify which conditions are
to cause an interrupt. The ARM command specifies those conditions. In this example we want the
interrupt to occur on the detection of a Service Request (SRQ):

ieeewt(“arm srq\n”);

The 195 can be set to request service on any of several different internal conditions. In particular, the
M2 command causes an SRQ on the detection of any invalid command or command option by the 195:

ieeewt(“output 16;M2X”);

This OUTPUT command is placed early in the program so that all subsequent commands to the 195
cause an SRQ, if they are invalid.

Now that interrupt detection is enabled, and the interrupt service routine is specified, we must specify
the actions to take to service the interrupt. We first display a message indicating that an interrupt was
detected, and then turn off interrupt checking:

void isr()
{ int _false_();
printf(“Interrupt detected...”);
ieee_cki = _false_;

We next check the Driver488/DRV Serial Poll Status to determine if an SRQ actually caused the
interrupt:

int sp;
ieeewt(“spoll\n”);
ieeescnf(“%d”,&sp);
if (sp==0) {
printf(“Non-SRQ Interrupt!\n”);
exit(1);
}

8E. Microsoft C II. SOFTWARE GUIDES - 8. Driver488/DRV

II-60 Personal488 User’s Manual, Rev. 3.0

We then Serial Poll the 195 to determine its status. If there were other devices on the bus that could be
generating the SRQ, each of them would be have to be checked in turn.

int st195;
ieeewt(“spoll 16\n”);
ieeescnf(“%d”,&st195);
if ((st195 & 0x40) == 0) {
printf(“Non-195 SRQ!\n”);
exit();
}

Bit DIO7, with a value of 0x40, is returned as true (1) in the Serial Poll response of those devices
requesting service. In our simple example we expect that the 195 is the only possible cause of an SRQ,
and if not, there must be some error.

Now that we have identified the device that is requesting service, we can further examine the Serial
Poll status to classify the request:

if ((st195 & 0x20) == 0) {
if (st195 & 0x01)
printf(“Overflow\n”);
if (st195 & 0x02)
printf(“Buffer Full\n”);
if (st195 & 0x04)
printf(“Buffer 1/2 Full\n”);
if (st195 & 0x08)
printf(“Reading Done\n”);
if (st195 & 0x10)
printf(“Busy\n”);
} else {
if (st195 & 0x01)
printf(“Illegal Command Option\n”);
if (st195 & 0x02)
printf(“Illegal Command\n”);
if (st195 & 0x04)
printf(“No Remote\n”);
if (st195 & 0x08)
printf(“Trigger Overrun\n”);
if (st195 & 0x10)
printf(“Failed Selftest\n”);
}

The action taken depends on the system design, but in this example, a message display is adequate.
Now, after decoding the cause of the SRQ, we can re-enable interrupts and return to the main program:

ieee_cki = cklpint;

IEEEIO.C
The IEEEIO.C file contains several useful declarations and functions, many of which have been used
in the 195DEMO example program. They are:

• IEEE is an integer that holds the file descriptor (MS-DOS handle) returned by OPEN.

int ieee

• segment and offset return the 16-bit segment and offset values that make up a pointer.

int segment(ptr)
void *ptr
int offset(ptr)
void *ptr

The implementation of these functions depends on the memory model being used. In the small
data model, pointers are 16 bits and are exactly the offset desired. Here, the segment is always
the internal ds register value. In the large data model, pointers are 32 bits, one word of which is
the segment and the other is the offset. For more information on memory models, see the
“Other Languages” Sub-Chapter in this Chapter.

II. SOFTWARE GUIDES - 8. Driver488/DRV 8E. Microsoft C

Personal488 User’s Manual, Rev. 3.0 II-61

• ERRNO holds the error code for I/O and other errors.

extern int errno;

• IOCTL_RD and IOCTL_WT are special versions of IOCTL_IO which reads and writes to the I/O
control channel of a device.

int ioctl_io(handle,chars,size,iocall)
int handle,
size,
iocall;
char chars[];
#define ioctl_rd(handle,chars,size) \
ioctl_io(handle,chars,size,0x4402)
#define ioctl_wt(handle,chars,size) \
ioctl_io(handle,chars,size,0x4403)

The I/O control channel of a device is read from and written to exactly as the normal (data)
channel is read and written, but the data transferred is not to be treated in the same way. Normally,
the I/O control channel is used to communicate setup and status information regarding the device
without actually transferring any data to or from it. When using Driver488/DRV, IOCTL_WT is
used to force Driver488/DRV to be ready to accept a command, and IOCTL_RD is used to return
status information from the driver. These functions correspond exactly to the IOCTL and IOCTL$
commands, as described in “Section III: Command References.”

• CKLPINT, IEEE_CKI, and IEEE_ISR are functions and pointers which provide for automatic
interrupt detection and servicing.

int cklpint()
int _false_()
int (*ieee_cki)() = _false_
void no_op()
void (*ieee_isr)() = no_op

Driver488/DRV signals interrupts, which are enabled with the ARM command, by causing the light
pen signal to appear “true.” The CKLPINT checks that Driver488/DRV is able to service an
interrupt (the response from IOCTL_RD is 0) and then checks if an interrupt is pending by
checking the light pen status. The IEEEWT routine (described below) calls the function pointed to
by IEEE_CKI to determine if an IEEE interrupt needs to be serviced. The IEEE_CKI normally
points to the function _false_ which always returns zero (0). To enable interrupt checking
IEEE_CKI must be redirected to point to CKLPINT. Interrupt checking is disabled by pointing
IEEE_CKI back to _false_. Once an interrupt has been detected, IEEEWT calls the interrupt
service routine pointed to by IEEE_ISR to service the interrupt. The IEEE_ISR initially points to
no_op, a function that does nothing, but it may be redirected as needed to specify the appropriate
interrupt service routine for each part of a program.

• _IEEEWT and _IEEERD are very similar to the unbuffered WRITE and READ routines provided in
the C library.

int _ieeewt(handle,chars)
int handle
char chars[]
int _ieeerd(handle,chars,size)
int handle,
size
char chars[]
#define ieeewt(chars) _ieeewt(ieee,chars)
#define ieeerd(chars) _ieeerd(ieee,chars,sizeof(chars))

The _IEEEWT differs from WRITE in that it checks for Driver488/DRV interrupts before writing,
determines the number of characters to write by using STRLEN, and prints an error message if an
error has occurred during writing. The _IEEERD differs from READ only in that it prints an error
message if an error has occurred during reading. IEEEWT and IEEERD (without the leading
underscore) write and read to the file IEEE. Notice that IEEERD uses SIZEOF to determine the
number of characters to read. This only works if SIZEOF can determine the number of bytes in the

8E. Microsoft C II. SOFTWARE GUIDES - 8. Driver488/DRV

II-62 Personal488 User’s Manual, Rev. 3.0

receive buffer, chars. This means chars must be an array of known size, for example,
char chars[256], not char*chars.

• IEEEPRTF and IEEESCNF are IEEE 488 versions of PRINTF and SCANF, respectively.

int ieeeprtf(format,...)
char *format
int ieeescnf(format,a,b,c,d,e)
char *format,*a,*b,*c,*d,*e

The IEEEPRTF accepts a format string and a list of arguments. It formats its arguments according
to the specified format and sends the formatted string to Driver488/DRV. The IEEESCNF accepts
a format string and up to 5 pointers (to the types specified in the format string). It reads a string of
up to 256 bytes from Driver488/DRV, terminates it with a zero, converts it according to the format
string, and places the converted values into the variables pointed to by the specified pointers.

• RAWMODE sets the file specified by handle for “raw mode” I/O.

int rawmode(handle)
int handle

In “raw mode” MS-DOS does not interpret the characters received from the file. In particular,
control-Z is not taken as end-of-file. “Raw mode” is usually appropriate for IEEE 488
communications because it does not interfere with the transfer of binary data and because it is
much more efficient than “non-raw mode” I/O.

• IEEEINIT establishes communications with Driver488/DRV and configures it for use with C.

int ieeeinit()

It first opens the file IEEE for both reading and writing and puts the file descriptor into IEEE. It
then puts the file into “raw mode”. Driver488/DRV is then initialized by sending the IOCTL
“BREAK” and RESET commands. Normal output from C is terminated by a new-line (line feed)
character, and returned strings should be terminated by a null, so EOL OUT LF and EOL IN $0
commands are then issued. Finally a FILL ERROR command is issued to enable SEQUENCE - NO
DATA AVAILABLE error detection. If an error is detected during any of these commands,
IEEEINIT returns a -1, otherwise it returns a zero (0).

CRITERR.ASM (Microsoft C & Turbo C)
Normally, when Driver488/DRV detects an error, perhaps due to a syntax error in a command, it
responds with an I/O error to DOS. When this happens, DOS normally issues an ABORT, RETRY or
IGNORE message and waits for a response from the keyboard. There is no way for the user’s program
to detect such an error, determine the cause, and take appropriate action. However, DOS does provide
a method of redefining the action to be taken on such a “critical error”. CRITERR.ASM contains a
critical error handler that, when invoked, makes it appear to the calling program that some less-critical
error has occurred. The critical error handler is installed by CRIT_ON() and removed by
CRIT_OFF().The critical error handler is also automatically removed by DOS when the program exits.
The following program fragment demonstrates the use of the critical error handler:

#include “criterr.h”
crit_on(ieee);
if (ieeewt(“output 16;F0X”) == -1) {
printf(“Error writing F0X to device 16, \n”);
crit_off();
ioctl_wt(ieee,"break",5);
ieeewt(“eol out lf\r\n”);
ieeewt(“status\n”);
ieeerd(response);
printf(“status = %s\n”,response);
crit_on(ieee);
}

We must first #include the header file with the definitions of the critical error routines. We then
enable critical error trapping with CRIT_ON which takes as a parameter the handle of the file for which

II. SOFTWARE GUIDES - 8. Driver488/DRV 8E. Microsoft C

Personal488 User’s Manual, Rev. 3.0 II-63

critical error trapping is to be enabled. Only read and write commands to that handle are trapped.
Errors caused by other actions, or associated with other files are not trapped. Error trapping may only
be enabled for one file at a time.

Now, if IEEEWT signals an error by returning a -1, we can check what happened. We first PRINTF an
error message, then we turn critical error trapping off with CRIT_OFF so that, if another critical error
occurs, we get the ABORT, RETRY or IGNORE message and know a catastrophic double error has
occurred. We then IOCTL_WT(_BREAK_) to force Driver488/DRV to listen to our next command.
The IOCTL_WT also resets the EOL OUT terminator so we can be sure that Driver488/DRV detects the
end of our commands. We next reset the EOL OUT terminator to our preferred line feed only and ask
Driver488/DRV for its status. On receiving the response, we could interpret the status and take
whatever action is appropriate. However, in this example, we just display the status. Finally, we re-
enable the critical error handler and continue with the program.

Sample Program
#include “ieeeio.h”
#include <stdio.h>
void main (void){
int ieee
char response[256];
float voltage;
int i;
float sum;
char hundred[1700];
ieee=open(“ieee”,O_RDWR | O_BINARY);
rawmode(ieee);
ioctl_wt(ieee,"break",5);
ieeewt(“reset\r\n”);
ieeewt(“eol out lf\r\n”);
ieeewt(“eol in $0\n”);
ieeewt(“fill error\n”);
if (ieeeinit() == -1) {
printf(“Cannot initialize IEEE system.\n”);
exit(1);
}
ieeewt(“hello\n”);
ieeerd(response);
printf(“%s\n”,response);
ieeewt(“status\n”);
ieeerd(response);
printf(“%s\n”,response);
ieeewt(“output 16;F0R0X\n”);
ieeewt(“enter 16\n”);
ieeescnf(“%*4s%e”,&voltage);
printf(“The read value is %g\n”,voltage);
sum=0.0;
for (i=0; i<10; i++) {
ieeewt(“enter 16\n”);
ieeescnf(“%*4s%e”,&voltage);
sum=sum+voltage;
}
printf(“The average of 10 readings is %g\n”,sum/10.0);
ieeeprtf(“ENTER 16 #1700 BUFFER %d:%d\n”,
segment(hundred),offset(hundred));
for (i=0; i<1700; i++) putchar(hundred[i]);
ieeeprtf(“ENTER 16 #1700 BUFFER continue\n”,
segment(hundred),offset(hundred));
ieeewt(“status\n”);
ieeerd(response);
printf(“%s\n”,response);
int cklpint();
ieee_cki = cklpint;
ieee_isr = isr;
ieeewt(“arm srq\n”);

8E. Microsoft C II. SOFTWARE GUIDES - 8. Driver488/DRV

II-64 Personal488 User’s Manual, Rev. 3.0

ieeewt(“output 16;M2X”);
}
void isr()
{ int _false_();
int st195;
printf(“Interrupt detected...”);
ieee_cki = _false_;
int sp;
ieeewt(“spoll\n”);
ieeescnf(“%d”,&sp);
if (sp==0) {
printf(“Non-SRQ Interrupt!\n”);
exit(1);
}
ieeewt(“spoll 16\n”);
ieeescnf(“%d”,&st195);
if ((st195 & 0x40) == 0) {
printf(“Non-195 SRQ!\n”);
exit();
}
if ((st195 & 0x20) == 0) {
if (st195 & 0x01)
printf(“Overflow\n”);
if (st195 & 0x02)
printf(“Buffer Full\n”);
if (st195 & 0x04)
printf(“Buffer 1/2 Full\n”);
if (st195 & 0x08)
printf(“Reading Done\n”);
if (st195 & 0x10)
printf(“Busy\n”);
} else {
if (st195 & 0x01)
printf(“Illegal Command Option\n”);
if (st195 & 0x02)
printf(“Illegal Command\n”);
if (st195 & 0x04)
printf(“No Remote\n”);
if (st195 & 0x08)
printf(“Trigger Overrun\n”);
if (st195 & 0x10)
printf(“Failed Selftest\n”);
}
ieee_cki = cklpint;

 8F. Microsoft Fortran

Note: The following short program illustrates the use of Driver488/DRV with Microsoft Fortran.
Most of the program length is composed of utilities that simplify character I/O in Fortran.

Sample Program
Character Result*127
Integer StrLen
Call OpenIeee
Write(1,*)’RESET’
Write(1,*)’REMOTE 16’
Write(1,*)’OUTPUT 16;Z1X’
Write(1,*)’ENTER 16’
Call FlushIeee
Read(2) Result
Write(*,*)Result(1:StrLen(Result,127))
END

II. SOFTWARE GUIDES - 8. Driver488/DRV 8G. QuickBASIC

Personal488 User’s Manual, Rev. 3.0 II-65

SUBROUTINE OpenIeee
Open(1,File=’\dev\ieeeout’,Status=’OLD’,
1 Access=’SEQUENTIAL’)
Open(2,File=’\dev\ieeein’,Status=’OLD’,
1 Access=’SEQUENTIAL’,Form=’BINARY’)
END
SUBROUTINE FlushIeee
Rewind 1
Rewind 2
END
FUNCTION StrLen(String,MaxLen)
Character String*127
StrLen=MaxLen-1
DO 10 i=1,MaxLen-2
If (String(i:i) .eq. CHAR(13) .and.
1 String(i+1:i+1) .eq. CHAR(10)) then
StrLen=i-1
Goto 20
EndIf
10 Continue
20 Continue
END

Use of the Character Command Language
Several versions of Microsoft QuickBASIC are currently popular: 2.0, 3.0, 4.0, and 4.5. While they
vary considerably in their user interface and performance, they are virtually identical when it comes to
controlling Driver488/DRV. Two demonstration programs are included for QuickBASIC:
195DEMO.BAS and 195DEMO4.BAS. 195DEMO.BAS is compatible with versions 2.0 and higher of
QuickBASIC, while 195DEMO4.BAS requires version 4.0 or version 4.5. These examples can be found
on the Driver488/DRV disk in the \QB directory.

To execute the demo program, start QuickBASIC with the QB /L command. The /L parameter tells
QuickBASIC to load the default library containing the ABSOLUTE subroutine. This /L parameter is not
needed in version 4.0 using 195DEMO4.BAS. Also, in earlier versions of QuickBASIC, such as 2.0, the
EVENT TRAPPING and CHECKING BETWEEN STATEMENTS compiler options must be turned on for the
program to compile and execute correctly.

Initialization of the System
Any program using Driver488/DRV must first establish communications with the Driver488/DRV
software driver. In BASIC and most other languages this is accomplished using an OPEN statement.
Communication both to and from Driver488/DRV is required. In BASIC, this means that two files

 8G. QuickBASIC

Topics

• Use of the Character Command Language............................... II-64
• Initialization of the System.. II-64
• Configuration of the 195 DMM.. II-66
• Taking Readings... II-66
• Buffer Transfers ... II-67
• BASIC VARPTR & SADDR ... II-68
• Interrupt Handling .. II-68
• Sample Program ... II-70

8G. QuickBASIC II. SOFTWARE GUIDES - 8. Driver488/DRV

II-66 Personal488 User’s Manual, Rev. 3.0

must be opened, one for input, and one for output. Other languages may allow the same file to be
opened for both input and output. Three file names are allowed: \DEV\IEEEOUT, \DEV\IEEEIN, and
\DEV\IEEE. By convention, they are used for output, input, and both input and output, respectively.
But in actuality, they are all the same and any one of them can be used for input, output, or both,
depending on the programming language.

In BASIC, the files are opened with the following commands:

110 OPEN “\DEV\IEEEOUT” FOR OUTPUT AS #1
200 OPEN “\DEV\IEEEIN” FOR INPUT AS #2

Of course, file numbers may change as desired, but throughout this manual, file #1 is assumed to output
to Driver488/DRV, and file #2 is assumed to input from Driver488/DRV.

Once these files are opened, we can send commands and receive responses from Driver488/DRV.
While Driver488/DRV should normally be in a reset, inactive state, it is possible that it was left in
some unknown state by a previous program failure or error. In order to force Driver488/DRV into its
quiescent state we can use the IOCTL statement:

160 IOCTL#1,"BREAK"

IOCTL is a BASIC statement that sends commands through a “back door” to Driver488/DRV.
Driver488/DRV recognizes this “back door” command regardless of what else it might be doing and
resets itself so that it is ready to accept a normal command. We can then completely reset the
Driver488/DRV with the RESET command:

170 PRINT#1,"RESET"

which resets the operating parameters of the Driver488/DRV back to their normal values (those that
were set during system boot by the DRVR488 DOS command).

The IOCTL BREAK and RESET commands guarantee that Driver488/DRV is ready for action. Note
that the IOCTL BREAK and RESET commands are placed before the OPEN statement for file #2. This
guarantees that BASIC is able to open Driver488/DRV for input. For more details, see the FILL
command in “Section III: Command References.”

With the initialization commands and some comments, the program now appears as:

100 ‘Establish communications with Driver488/DRV
110 OPEN “\DEV\IEEEOUT” FOR OUTPUT AS #1
120 ‘
150 ‘Reset Driver488/DRV
160 IOCTL#1,"BREAK"
170 PRINT#1,"RESET"
180 ‘
190 ‘Open file to read responses from Driver488/DRV
200 OPEN “\DEV\IEEEIN” FOR INPUT AS #2

Once everything is reset, we can enable the SEQUENCE - NO DATA AVAILABLE error detection by
setting the FILL mode to ERROR:

225 PRINT#1,"FILL ERROR"

We can also test the communications and read the Driver488/DRV revision number with the HELLO
command:

310 PRINT#1,"HELLO"
320 INPUT#2,A$
330 PRINT A$

First we PRINT the HELLO command to file #1, then we INPUT the response from file #2 into the
character string variable A$ (“A-string”). Finally we display the response with a PRINT to the screen.
Because BASIC cannot both PRINT and INPUT from the same file, we use two OPEN statements, and
two different file numbers to communicate with Driver488/DRV. PRINT must reference the file
opened for output (in these examples, file #1) and INPUT must reference the file opened for input (file
#2). Attempting to communicate with the wrong file (such as INPUT#1) results in an error.

II. SOFTWARE GUIDES - 8. Driver488/DRV 8G. QuickBASIC

Personal488 User’s Manual, Rev. 3.0 II-67

It is not necessary to perform the HELLO command, but it is included here as a simple example of
normal communication with Driver488/DRV. Its response is the revision identification of the
Driver488/DRV software: Driver488 Revision X.X ©199X IOtech, Inc.

We can also interrogate Driver488/DRV for its status:

410 PRINT#1,"STATUS"
420 INPUT#2,ST$
430 PRINT ST$

Subsequently, the printed response is similar to the following:

CS21 1 I000 000 T0 C0 P0 OK

Configuration of the 195 DMM
Once the system is initialized we are ready to start issuing bus commands. The IEEE 488 bus has
already been cleared by the Interface Clear (IFC) sent by the RESET command, so we know all bus
devices are waiting for the controller to take some action. To control an IEEE 488 bus device, we
OUTPUT an appropriate device-dependent command to that device. For example, the command F0R0X
sets the 195 to read DC volts with automatic range selection:

610 PRINT#1,"OUTPUT 16;F0R0X"

The OUTPUT command takes a bus device address (16 in this case) and data (F0R0X) and sends the data
to the specified device. The address can be just a primary address, such as 12, or 05, or it can include
a secondary address: 1201. Note that both the primary address and, if present, the secondary address
are two-digit decimal numbers. A leading zero must be used, if necessary, to make a two-digit address.

Taking Readings
Once we have set the 195’s operating mode, we can take a reading and display it:

710 PRINT#1,"ENTER 16"
720 INPUT#2,R$
730 PRINT R$

The ENTER command takes a bus address (with an optional secondary address) and configures that bus
device so that it is able to send data (addressed to talk). No data is actually transferred, however, until
the INPUT statement requests the result from Driver488/DRV at which time data is transferred to the
program into the variable R$.

Once the result has been received, any BASIC functions or statements can be used to modify or
interpret it. In this example, the result is in the form NDCV+1.23456E-2 showing the range (NDCV)

The following indicators describe each component of the Driver488/DRV status:

Indicator Driver488/DRV Status
C It is in the Controller state.
S It is the System Controller.
21 The value of its IEEE 488 bus address.
1 An Address Change has occurred.
I It is idle (neither a talker nor a listener).
0 There is no ByteIn available.
0 It is not ready to send a ByteOut.
0 Service Request (SRQ) is not asserted.
000 There is no outstanding error.
T0 It has not received a bus device TRIGGER command (only applicable in the Peripheral

mode).
C0 It has not received a CLEAR command (only applicable in the Peripheral mode).
P0 No CONTINUE transfer is in progress.
OK The error message is “OK”.

8G. QuickBASIC II. SOFTWARE GUIDES - 8. Driver488/DRV

II-68 Personal488 User’s Manual, Rev. 3.0

and the numeric value of the reading (+1.23456E-2). The BASIC MID$ function can be used to strip
off the range characters and keep only the numeric part (the fifth character and beyond), and the VAL
function can be used to convert this string to a number:

740 N$=MID$(R$,5)
741 N=VAL(N$)
742 PRINT “The read value is”;N

These may be combined for efficiency:

740 PRINT “The read value is”;VAL(MID$(R$,5))

All the power of BASIC may be used to manipulate, print, store, and analyze the data read from the
IEEE 488 bus. For example, the following statements print the average of ten readings from the 195:

810 SUM=0
820 FOR I=1 TO 10
830 PRINT#1,"ENTER 16"
840 INPUT#2,R$
850 SUM=SUM+VAL(MID$(R$,5))
860 NEXT I
870 PRINT “The average of ten readings is”;SUM/10

Buffer Transfers
Instead of using an INPUT#2 statement to receive the data from a device, we can direct
Driver488/DRV to place the response directly into a data buffer of our choice. For example, each
reading from the 195 consists of 17 bytes: a four-byte prefix and an eleven-byte reading followed by
the two-byte command terminator. So, we can collect 100 readings in a 1700-byte string.

To do this, we must first allocate the required space in a string variable:

910 R$=SPACE$(1700)

And then we must tell Driver488/DRV where R$ is located in memory.

In QuickBASIC 4.0, the VARSEG function allows us to determine the segment address of a variable.

DS%=VARSEG(R$)

Now that we know the segment address of R$, we can get its offset address by using SADDR:

RDESC=0
RDESC=SADDR

Notice that we first create RDESC by setting it to zero. This prevents R$ from being moved as a result
of creating RDESC after calling SADDR.

Now we have the segment and offset of R$, we can pass it directly to Driver488/DRV with the
ENTER #count BUFFER command:

PRINT#1,"ENTER16 #1700 BUFFER"; DS%; “:”;RDESC

This command consists of the keyword ENTER, followed by the bus device address (16), a number sign
(#), the number of bytes to transfer (1700), and the keyword BUFFER, followed by the memory address
of the buffer. The buffer address is specified as segment:offset where segment and offset are
each 16-bit numbers and the colon (:) is required to separate them. The segment value we need, is the
BASIC data segment value that we have just acquired into DS% with GET.SEGMENT. The offset
value is the offset of the string in that data segment, which is RDESC.

Once the data has been received, we can print it out:

980 PRINT R$

The program can continue with other work while the transfer occurs. For example, the program could
process the previous set of data while collecting a new set into a different buffer. To allow the program
to continue, specify CONTINUE in the command:

PRINT#1,"ENTER16 #1700 BUFFER"; DS%; “:”;RDESC; “CONTINUE”

II. SOFTWARE GUIDES - 8. Driver488/DRV 8G. QuickBASIC

Personal488 User’s Manual, Rev. 3.0 II-69

Once we have started the transfer, we can check the status:

980 PRINT#1,"STATUS"
990 INPUT#2,ST$
1000 PRINT ST$

The status that is returned is typically:

CS21 1 L100 000 T0 C0 P1 OK

Notice P1 which states a transfer is in progress, and L which shows we are still a listener. If the bus
device is so fast that the transfer completes before the program can check status, the response is P0
showing that the transfer is no longer in progress. We can also WAIT for the transfer to complete and
check the status again:

This time the status must be P0 as the WAIT command waits until the transfer has completed. Now that
we know the transfer is complete, we are ready to print out the received data as shown above.

BASIC VARPTR & SADDR
The BASIC VARPTR and SADDR functions must be used with caution. The first time a variable such as
I or ST$ is encountered, or an array such as R%() is dimensioned, space is made for it in BASIC’s data
space. The other variable or arrays may be moved to make room for the new item. If the memory
location of an item must be fixed, then BASIC cannot be allowed to encounter any new variables or
arrays. For example, in the ENTER statement shown above, Driver488/DRV is told the memory address
of R$ (for GW-BASIC, R%(0)). Then, while the transfer is going on, the Driver488/DRV status is read
into the string variable ST$. If ST$ has not been used previously then BASIC would have to create a
new ST$ and might move R$. Of course, Driver488/DRV would have no way of knowing that R$ has
been moved, and the data would not be placed correctly into R$.

Interrupt Handling
The IEEE 488 bus is designed to be able to attend to asynchronous (unpredictable) events or
conditions. When such an event occurs, the bus device needing attention can assert the Service
Request (SRQ) line to signal that condition to the controller. Once the controller notices the SRQ, it can
interrogate the bus devices, using Parallel Poll (PPOLL) and/or Serial Poll (SPOLL) to determine the
source and cause of the SRQ, and take the appropriate action.

Parallel Poll is the fastest method of determining which device requires service. Parallel Poll is a very
short, simple IEEE 488 bus transaction that quickly returns the status from many devices. Each of the
eight IEEE 488 bus data bits can contain the Parallel Poll response from one or more devices. So, if
there are eight or fewer devices on the bus, then just the single Parallel Poll can determine which
requires service. Even if the bus is occupied by the full complement of 15 devices, then Parallel Poll
can narrow the possibilities down to a choice of no more than two.

Unfortunately, the utility of Parallel Poll is limited when working with actual devices. Some have no
Parallel Poll response capability. Others must be configured in hardware, usually with switches or
jumpers, to set their Parallel Poll response. If Parallel Poll is not available, or several devices share the
same Parallel Poll response bit, then Serial Polling is still required to determine which device is
requesting service.

Serial Poll, though it is not as fast as Parallel Poll, does offer two major advantages: it returns
additional status information beyond the simple request/no-request for service, and it is implemented on
virtually all bus devices.

The SRQ line can be monitored in two ways: it can be periodically polled using the STATUS command,
or it can be used to cause an external interrupt when asserted.

1010 PRINT#1,"WAIT"
1020 PRINT#1,"STATUS"
1030 INPUT#2,ST$
1040 PRINT ST$

8G. QuickBASIC II. SOFTWARE GUIDES - 8. Driver488/DRV

II-70 Personal488 User’s Manual, Rev. 3.0

BASIC provides a method for detecting and servicing external interrupts: the ON PEN statement. The
ON PEN statement tells BASIC that, when an external interrupt is detected, a specific subroutine,
known as the interrupt service routine (ISR), is to be executed. Normally, the interrupt detected by
ON PEN is the light pen interrupt. However, Driver488/DRV redefines this “light pen interrupt” to
signal when an IEEE 488 bus related interrupt (such as SRQ) has occurred.

When Driver488/DRV detects an interrupt, it informs the user’s program that an interrupt has occurred
by making it appear that a light pen interrupt has occurred. To allow BASIC and Driver488/DRV to
work together to detect and service the interrupt, the following steps are required:

1. BASIC must be told which subroutine to execute upon detection of the interrupt.

2. BASIC interrupt detection must be enabled.

3. Driver488/DRV must be configured to detect the interrupt.

The ON PEN GOSUB, PEN ON, and ARM SRQ commands, respectively, perform these steps:

250 ON PEN GOSUB ISR
260 PEN ON
270 PRINT#1,"ARM SRQ"

1. The ON PEN GOSUB command tells BASIC that the subroutine called ISR is to be executed when
the light pen interrupt is detected. Driver488/DRV causes the light pen interrupt to occur on
detection of an IEEE 488 interrupt.

2. The PEN ON command enables the actual checking for light pen interrupt status.

3. The ARM SRQ command tells Driver488/DRV that an interrupt is to be signaled on detection of a
service request from the IEEE 488 bus.

These commands are placed near the beginning of the program to catch Service Requests (SRQ)
whenever they occur.

The 195 can be set to request service on any of several different internal conditions. In particular, the
M2 command causes an SRQ on the detection of any invalid command or command option by the 195:

550 PRINT#1,"OUTPUT 16;M2X"

This OUTPUT command is placed early in the program so that all subsequent commands to the 195
cause an SRQ, if they are invalid.

At this point BASIC is checking for an interrupt, and knows to GOSUB SRQ when an interrupt is
detected. Driver488/DRV is set to generate an interrupt on detection of an SRQ generated by the 195
on detection of an invalid command. We must still, however, specify what action should be taken once
an interrupt is detected.

Upon entering the interrupt service routine, we first check Driver488/DRV to see if it is ready for a
command and if so, read the Serial Poll Status to determine if an SRQ actually caused the interrupt:

2000 SRQ: ‘Interrupt service routine—Entered due to SRQ
2010 ‘
2020 ‘RETURN if Driver488/DRV is not ready for commands.
2030 IF IOCTL$(2)"0" THEN RETURN
2040 ‘
2050 ‘Check that it is indeed an SRQ
2060 PRINT#1,"SPOLL"
2070 INPUT#2,SP
2080 IF SP=0 THEN PRINT “Non-SRQ Interrupt!”: STOP

Next we Serial Poll the 195 to determine its status. If there were other devices on the bus that could be
generating the SRQ, each of them would be have to be checked in turn.

2110 PRINT#1,"SPOLL 16"
2120 INPUT#2,ST195
2130 IF (ST195 AND 64) = 0 THEN PRINT “Non-195 SRQ!”: STOP

II. SOFTWARE GUIDES - 8. Driver488/DRV 8G. QuickBASIC

Personal488 User’s Manual, Rev. 3.0 II-71

Bit DIO7, with a value of 64, is returned as true (1) in the Serial Poll response of those devices
requesting service. In our simple example, we expect that the 195 is the only possible cause of an SRQ,
and if not, there must be some error.

Now that we have identified the device that is requesting service, we can further examine the Serial
Poll status to classify the request. If DIO6 is set, then the 195 is signaling an error condition. If that bit
is clear, some non-error condition caused the SRQ:

2160 IF (ST195 AND 32)=0 THEN ‘Test ERROR Status Bit
‘Interpret no-error status
2210 IF ST195 AND 1 THEN PRINT “Overflow”
2220 IF ST195 AND 2 THEN PRINT “Buffer Full”
2230 IF ST195 AND 4 THEN PRINT “Buffer 1/2 Full”
2240 IF ST195 AND 8 THEN PRINT “Reading Done”
2250 IF ST195 AND 16 THEN PRINT “Busy”
2260 ELSE
‘Interpret error status
2310 IF ST195 AND 1 THEN PRINT “Illegal Command Option”
2320 IF ST195 AND 2 THEN PRINT “Illegal Command”
2330 IF ST195 AND 4 THEN PRINT “No Remote”
2340 IF ST195 AND 8 THEN PRINT “Trigger Overrun”
2350 IF ST195 AND 16 THEN PRINT “Failed Selftest”
2360 END IF

Finally, once we have diagnosed the error, we are ready to return to the main program:

2400 RETURN

Sample Program
100 ‘Establish communications with Driver488/DRV
110 OPEN “\DEV\IEEEOUT” FOR OUTPUT AS #1
120 ‘
150 ‘Reset Driver488/DRV
160 IOCTL#1,"BREAK"
170 PRINT#1,"RESET"
180 ‘
190 ‘Open file to read responses from Driver488/DRV
200 OPEN “\DEV\IEEEIN” FOR INPUT AS #2
225 PRINT#1,"FILL ERROR"
250 ON PEN GOSUB ISR
260 PEN ON
270 PRINT#1,"ARM SRQ"
310 PRINT#1,"HELLO"
320 INPUT#2,A$
330 PRINT A$
410 PRINT#1,"STATUS"
420 INPUT#2,ST$
430 PRINT ST$
550 PRINT#1,"OUTPUT 16;M2X"
610 PRINT#1,"OUTPUT 16;F0R0X"
710 PRINT#1,"ENTER 16"
720 INPUT#2,R$
730 PRINT R$
740 N$=MID$(R$,5)
741 N=VAL(N$)
742 PRINT “The read value is”;N
740 PRINT “The read value is”;VAL(MID$(R$,5))
810 SUM=0
820 FOR I=1 TO 10
830 PRINT#1,"ENTER 16"
840 INPUT#2,R$
850 SUM=SUM+VAL(MID$(R$,5))
860 NEXT I
870 PRINT “The average of ten readings is”;SUM/10
910 R$=SPACE$(1700)
980 PRINT#1,"STATUS"

8G. QuickBASIC II. SOFTWARE GUIDES - 8. Driver488/DRV

II-72 Personal488 User’s Manual, Rev. 3.0

990 INPUT#2,ST$
1000 PRINT ST$
1010 PRINT#1,"WAIT"
1020 PRINT#1,"STATUS"
1030 INPUT#2,ST$
1040 PRINT ST$
2000 SRQ: ‘Interrupt service routine—Entered due to SRQ
2010 ‘
2020 ‘RETURN if Driver488/DRV is not ready for commands.
2030 IF IOCTL$(2)"0" THEN RETURN
2040 ‘
2050 ‘Check that it is indeed an SRQ
2060 PRINT#1,"SPOLL"
2070 INPUT#2,SP
2080 IF SP=0 THEN PRINT “Non-SRQ Interrupt!”: STOP
2110 PRINT#1,"SPOLL 16"
2120 INPUT#2,ST195
2130 IF (ST195 AND 64) = 0 THEN PRINT “Non-195 SRQ!”: STOP
2160 IF (ST195 AND 32)=0 THEN ‘Test ERROR Status Bit
‘Interpret no-error status
2210 IF ST195 AND 1 THEN PRINT “Overflow”
2220 IF ST195 AND 2 THEN PRINT “Buffer Full”
2230 IF ST195 AND 4 THEN PRINT “Buffer 1/2 Full”
2240 IF ST195 AND 8 THEN PRINT “Reading Done”
2250 IF ST195 AND 16 THEN PRINT “Busy”
2260 ELSE
‘Interpret error status
2310 IF ST195 AND 1 THEN PRINT “Illegal Command Option”
2320 IF ST195 AND 2 THEN PRINT “Illegal Command”
2330 IF ST195 AND 4 THEN PRINT “No Remote”
2340 IF ST195 AND 8 THEN PRINT “Trigger Overrun”
2350 IF ST195 AND 16 THEN PRINT “Failed Selftest”
2360 END IF
2400 RETURN

Use of the Character Command Language
In order to simplify programming Driver488/DRV with C, the following files are provided on the
Driver488/DRV program disk:

 8H. Turbo C

Topics

• Use of the Character Command Language............................... II-71
• Initialization of the System.. II-72
• Configuration of the 195 DMM .. II-74
• Taking Readings ... II-74
• Buffer Transfers.. II-75
• Interrupt Handling .. II-76
• IEEEIO.C .. II-78
• CRITERR.ASM (Microsoft C & Turbo C)................................... II-80
• Sample Program ... II-80

II. SOFTWARE GUIDES - 8. Driver488/DRV 8H. Turbo C

Personal488 User’s Manual, Rev. 3.0 II-73

• IEEEIO.C: Communications routines for Driver488/DRV

• IEEEIO.H: Header file, contains declarations from IEEEIO.C

• CRITERR.ASM: Critical error handler assembly language source file (included with Microsoft C
and Turbo C, only)

• CRITERR.OBJ: Object file produced from CRITERR.ASM (included with Microsoft C and Turbo
C, only)

• CRITERR.H: Header file, contains declarations for using CRITERR.ASM

The actual demonstration program is contained in 195DEMO.C (described by the project file
195DEMO.PRJ in Turbo C, only).

All files for Microsoft C are in the \MSC directory; all files for Turbo C are in the \TURBOC directory.

To execute the demonstration program, enter Turbo C and perform the following steps:

1. Type <Alt-p> (for Project) p (for Project Name) 195demo.

2. Press <Enter> to set up the project to run.

3. Then type <Alt-r> to compile and run the demonstration program.

The above process assumes that you have Turbo C, and that the files have been copied into the
appropriate directory for use with your C compiler. Note that the program uses a small data model
because it uses less than 64K of code and data.

Initialization of the System
Any program using Driver488/DRV must first establish communications with the Driver488/DRV
software driver. In C, this is accomplished using the OPEN statement. Communication both to and
from Driver488/DRV is required. Thus, the file must be opened for both reading and writing (RDWR).
Also, in Microsoft C and Turbo C, the file must be opened in BINARY mode so that end-of-line
characters are not translated.

In Microsoft C and Turbo C, the file is opened with the following statement:

ieee=open(“ieee”,O_RDWR | O_BINARY);

In Aztec C, the file is opened with the following statement:

ieee=open(“ieee”,O_rdwr);

which is part of the IEEEINIT function contained in IEEEIO.C. IEEEIO.C supplies several other
useful routines and definitions. These are described in more detail in “Interrupt Handling,” an
upcoming topic in this Sub-Chapter.

In the above statement, the value returned by OPEN and placed into the integer variable IEEE, is either
the handle of the opened file or -1 if some error has occurred. The IEEEINIT routine checks for this
error indication and returns a -1 if there has been such an error.

Of course, the file descriptor variable name IEEE may be changed as desired, but throughout this
manual and the program files, IEEE has been used. Once the file is opened, we can send commands
and receive responses from Driver488/DRV.

Normally, when DOS communicates with a file, it checks for special characters, such as control-Z
which can indicate end-of-file. When communicating with IEEE 488 devices, DOS’s checking would
interfere with the communication. The RAWMODE function prevents DOS from checkings for special
characters:

rawmode(ieee);

As an additional benefit, communication with Driver488/DRV is much more efficient when DOS does
not check for special characters.

8H. Turbo C II. SOFTWARE GUIDES - 8. Driver488/DRV

II-74 Personal488 User’s Manual, Rev. 3.0

Driver488/DRV can accept commands only when it is in a quiescent, ready state. While
Driver488/DRV should normally be ready, it is possible that it was left in some unknown state by a
previous program failure or error. In order to force Driver488/DRV into its quiescent state, we use the
IOCTL_WT function:

ioctl_wt(ieee,"break",5);

This IOCTL_WT function is equivalent to the BASIC statement IOCTL#1,“BREAK” which sends the
BREAK command through a “back door” to Driver488/DRV. Driver488/DRV recognizes this “back
door” command regardless of what else it might be doing and resets itself so that it is ready to accept a
normal command. We can then completely reset the Driver488/DRV with the RESET command:

ieeewt(“reset\r\n”);

which resets the operating parameters of the Driver488/DRV back to their normal values (those that
were set during system boot by the DRVR488 DOS command). Notice that the EOL OUT terminators
that mark the end of a Driver488/DRV command are reset to carriage return and line feed by the
IOCTL_WT command. Thus, the RESET command must be terminated by both a carriage return (\r)
and a line feed (\n). As it is more convenient if Driver488/DRV accepts line feed only as the
command terminator, we use the EOL OUT command to set the command terminator to line feed (\n):

ieeewt(“eol out lf\r\n”);

Notice that this command must also be terminated by both a carriage return and a line feed because the
command terminator is not changed until after the EOL OUT command is executed.

Character strings in C are normally terminated by a null (an ASCII 0). Thus, it is appropriate for
Driver488/DRV to terminate its responses to the program with a null so that the response can be treated
as a normal character string. We can use the EOL IN command to configure Driver488/DRV so that it
does provide an ASCII null terminator:

ieeewt(“eol in $0\n”);

Finally, we enable SEQUENCE - NO DATA AVAILABLE error detection by setting the FILL mode to
ERROR:

ieeewt(“fill error\n”);

All the commands discussed so far: OPEN, RAWMODE, IOCTL_WT, RESET, EOL OUT, EOL IN and FILL
ERROR are part of the IEEEINIT function included in IEEEIO.C. IEEEINIT returns a zero if these
steps were executed successfully, and a -1 if some error was encountered. Thus, to accomplish all the
above steps, we just use the following:

#include “ieeeio.h”
#include .h
if (ieeeinit() == -1) {
printf(“Cannot initialize IEEE system.\n”);
exit(1);
}

The two INCLUDE statements provide the program with definitions of the standard I/O and IEEE I/O
functions so they can be referenced by the demo program. IEEEINIT is called to initialize the system,
and if it indicates an error (returns a -1), we print an error message and exit. If there was no error, we
just continue with the program.

Once everything is reset, we can test the communications and read the Driver488/DRV revision number
with the HELLO command:

char response[256];
ieeewt(“hello\n”);
ieeerd(response);
printf(“%s\n”,response);

We first IEEEWT the HELLO command, then IEEERD the response from Driver488/DRV into the
character string response (IEEEWT and IEEERD are both supplied in IEEEIO.C). Finally, we display
the response with a PRINTF.

II. SOFTWARE GUIDES - 8. Driver488/DRV 8H. Turbo C

Personal488 User’s Manual, Rev. 3.0 II-75

It is not necessary to perform the HELLO command, but it is included here as a simple example of
normal communication with Driver488/DRV. Its response is the revision identification of the
Driver488/DRV software: Driver488 Revision X.X ©199X IOtech, Inc.

We can also interrogate Driver488/DRV for its status:

ieeewt(“status\n”);
ieeerd(response);
printf(“%s\n”,response);

Subsequently, the printed response is similar to the following:

CS21 1 I000 000 T0 C0 P0 OK

Configuration of the 195 DMM
Once the system is initialized we are ready to start issuing bus commands. The IEEE 488 bus has
already been cleared by the Interface Clear (IFC) sent by the RESET command, so we know that all bus
devices are waiting for the controller to take some action. To control an IEEE 488 bus device, we
output an appropriate device-dependent command to that device. For example, the F0R0X command
line below sets the 195 to read DC volts with automatic range selection:

ieeewt(“output 16;F0R0X\n”);

The OUTPUT command takes a bus device address (16 in this case) and data (F0R0X) and sends the data
to the specified device. The address can be just a primary address, such as 12, or 05, or it can include
a secondary address: 1201. Note that both the primary address and, if present, the secondary address
are two-digit decimal numbers. A leading zero must be used, if necessary to make a two-digit address.

Taking Readings
Once we have set the 195’s operating mode, we can take a reading and display it:

float voltage;
ieeewt(“enter 16\n”);
ieeescnf(“%*4s%e”,&voltage);
printf(“The read value is %g\n”,voltage);

The ENTER command takes a bus address (with an optional secondary address) and configures that bus
device so that it is able to send data (addressed to talk). No data is actually transferred, however, until
the IEEESCNF statement requests the result from Driver488/DRV at which time data is transferred to
the program into the variable voltage. A typical reading from a 195 might be NDCV+1.23456E-2,
consisting of a four character prefix followed by a floating point value. The format passed to
IEEESCNF causes it to skip the four character prefix (%*4s) and then convert the remaining string into
the float variable voltage.

The following indicators describe each component of the Driver488/DRV status:

Indicator Driver488/DRV Status
C It is in the Controller state.
S It is the System Controller.
21 The value of its IEEE 488 bus address.
1 An Address Change has occurred.
I It is idle (neither a talker nor a listener).
0 There is no ByteIn available.
0 It is not ready to send a ByteOut.
0 Service Request (SRQ) is not asserted.
000 There is no outstanding error.
T0 It has not received a bus device TRIGGER command (only applicable in the Peripheral

mode).
C0 It has not received a CLEAR command (only applicable in the Peripheral mode).
P0 No CONTINUE transfer is in progress.
OK The error message is “OK”.

8H. Turbo C II. SOFTWARE GUIDES - 8. Driver488/DRV

II-76 Personal488 User’s Manual, Rev. 3.0

All the power of C may be used to manipulate, print, store, and analyze the data read from the
IEEE 488 bus. For example, the following statements print the average of ten readings from the 195:

int i;
float sum;
sum=0.0;
for (i=0; i; i++) {
 ieeewt(“enter 16\n”);
 ieeescnf(“%*4s%e”,&voltage);
 sum=sum+voltage;
}
printf(“The average of 10 readings is %g\n”,sum/10.0);

Buffer Transfers
Instead of using an IEEERD(_) function to receive the data from a device, we can direct
Driver488/DRV to place the response directly into a data buffer of our choosing. For example, each
reading from the 195 consists of 17 bytes: a four-byte prefix and an eleven-byte reading followed by
the two-byte command terminator. So, we can collect 100 readings in a 1700-byte array. To do this,
we must first allocate the required space in an array:

char hundred[1700];

Now that we have allocated a place for the readings, we can direct Driver488/DRV to put readings
directly into hundred with the ENTER #count BUFFER command:

ieeeprtf(“ENTER 16 #1700 BUFFER %d:%d\n”,
segment(hundred),offset(hundred));

This command consists of the keyword ENTER, followed by the bus device address (16), a number sign
(#), the number of bytes to transfer (1700), and the keyword BUFFER, followed by the memory address
of the buffer. The buffer address is specified as segment:offset where segment and offset are
each 16-bit numbers and the colon (:) is required to separate them. The segment and offset values
we need are returned by the segment and offset functions, respectively.

Once the data has been received, we can print it out:

for (i=0; i<1700; i++) putchar(hundred[i]);

The program could process the previous set of data while collecting a new set into a different buffer.
To allow the program to continue, specify continue in the command:

ieeeprtf(“ENTER 16 #1700 BUFFER continue\n”,
segment(hundred),offset(hundred));

Once we have started the transfer, we can check the status:

ieeewt(“status\n”);
ieeerd(response);
printf(“%s\n”,response);

The status that is returned is typically:

CS21 1 L100 000 T0 C0 P1 OK

Notice P1 which states a transfer is in progress, and L which shows we are still a listener. If the bus
device is so fast that the transfer completes before the program can check status, the response is P0
showing that the transfer is no longer in progress. We can also WAIT for the transfer to complete and
check the status again:

ieeewt(“wait\n”);
ieeewt(“status\n”);
ieeerd(response);
printf(“%s\n”,response);

This time the status must be P0 as the WAIT command waits until the transfer has completed. Now that
we know the transfer is complete, we are ready to print out the received data as shown above.

II. SOFTWARE GUIDES - 8. Driver488/DRV 8H. Turbo C

Personal488 User’s Manual, Rev. 3.0 II-77

Interrupt Handling
The IEEE 488 bus is designed to be able to attend to asynchronous (unpredictable) events or
conditions. When such an event occurs, the bus device needing attention can assert the Service
Request (SRQ) line to signal that condition to the controller. Once the controller notices the SRQ, it can
interrogate the bus devices, using Parallel Poll (PPOLL) and/or Serial Poll (SPOLL) to determine the
source and cause of the SRQ, and take the appropriate action.

Parallel Poll is the fastest method of determining which device requires service. Parallel Poll is a very
short, simple IEEE 488 bus transaction that quickly returns the status from many devices. Each of the
eight IEEE 488 bus data bits can contain the Parallel Poll response from one or more devices. So, if
there are eight or fewer devices on the bus, then just the single Parallel Poll can determine which
requires service. Even if the bus is occupied by the full complement of 15 devices, then Parallel Poll
can narrow the possibilities down to a choice of no more than two.

Unfortunately, the utility of Parallel Poll is limited when working with actual devices. Some have no
Parallel Poll response capability. Others must be configured in hardware, usually with switches or
jumpers, to set their Parallel Poll response. If Parallel Poll is not available, or several devices share the
same Parallel Poll response bit, then Serial Polling is still required to determine which device is
requesting service.

Serial Poll, though it is not as fast as Parallel Poll, does offer three major advantages: it gives an
unambiguous response from a single bus device; it returns additional status information beyond the
simple request/no-request for service; and, most importantly, it is implemented on virtually all bus
devices.

The SRQ line can be monitored in two ways: it can be periodically polled by using the STATUS
command, or by checking the “light pen status.”

BASIC provides a method for detecting and servicing external interrupts: the ON PEN statement. The
ON PEN statement tells BASIC that, when an external interrupt is detected, a specific subroutine,
known as the interrupt service routine (ISR), is to be executed. Normally, the interrupt detected by
ON PEN is the light pen interrupt. However, Driver488/DRV redefines this “light pen interrupt” to
signal when an IEEE 488 bus related interrupt (such as SRQ) has occurred.

Unlike BASIC, C does not provide an automatic method of checking for light pen interrupts.
Therefore, a function is needed to check for the interrupt. The function could use the STATUS
command, but it is much faster to check the interrupt status directly using a BIOS interrupt. The
CKLPINT (check light pen interrupt) function provided in IEEEIO.C uses the BIOS to check for
Driver488/DRV interrupts and returns true (1) if one is pending. Interrupts are checked automatically
by the IEEEWT routine before sending any data to Driver488/DRV. However, IEEEWT does not call
CKLPINT directly. Instead, it calls the routine that is pointed to by IEEE_CKI (IEEE check interrupt).
If IEEE_CKI points to CKLPINT, then IEEEWT checks for Driver488/DRV interrupts, but if
IEEE_CKI points to _false_, a function that always returns 0, then interrupt checking is disabled.
Initially, IEEE_CKI does point to _false_, and so interrupt checking is disabled. To enable interrupt
checking IEEE_CKI must be redirected to CKLPINT:

int cklpint();
ieee_cki = cklpint;

Once an interrupt has been detected, an interrupt service routine must be invoked to handle the
interrupting condition. When IEEEWT detects an interrupt, it calls the interrupt service routine (ISR).
Just as IEEEWT does not call the check-for-interrupt routine directly, it does not call the ISR directly,
either. Instead, it calls the routine pointed to by IEEE_ISR (IEEE interrupt service routine). If
IEEE_ISR is set to point to some specific ISR, then that ISR is executed when IEEEWT detects an
interrupt. Initially, IEEE_ISR points to no_op, a function that does nothing. So, unless IEEE_ISR is
redirected to another routine, nothing is done when an interrupt is detected. In the 195DEMO example
program an interrupt service routine, called isr, has been provided. So, IEEE_ISR must be set to
point this routine for interrupts to be handled properly:

ieee_isr = isr;

8H. Turbo C II. SOFTWARE GUIDES - 8. Driver488/DRV

II-78 Personal488 User’s Manual, Rev. 3.0

Once we have enabled interrupt checking by setting IEEE_CKI to point to CKLPINT, and specified the
interrupt service routine by setting IEEE_ISR to point to isr, then we can specify which conditions are
to cause an interrupt. The ARM command specifies those conditions. In this example we want the
interrupt to occur on the detection of a Service Request (SRQ):

ieeewt(“arm srq\n”);

The 195 can be set to request service on any of several different internal conditions. In particular, the
M2 command causes an SRQ on the detection of any invalid command or command option by the 195:

ieeewt(“output 16;M2X”);

This OUTPUT command is placed early in the program so that all subsequent commands to the 195
cause an SRQ, if they are invalid.

Now that interrupt detection is enabled, and the interrupt service routine is specified, we must specify
the actions to take to service the interrupt. We first display a message indicating that an interrupt was
detected, and then turn off interrupt checking:

void isr()
{ int _false()_;
printf(“Interrupt detected...”);
ieee_cki = _false_;

We next check the Driver488/DRV Serial Poll Status to determine if an SRQ actually caused the
interrupt:

int sp;
ieeewt(“spoll\n”);
ieeescnf(“%d”,&sp);
if (sp==0) {
printf(“Non-SRQ Interrupt!\n”);
exit(1);
}

We then Serial Poll the 195 to determine its status. If there were other devices on the bus that could be
generating the SRQ, each of them would be have to be checked in turn.

int st195;
ieeewt(“spoll 16\n”);
ieeescnf(“%d”,&st195);
if ((st195 & 0x40) == 0) {
printf(“Non-195 SRQ!\n”);
exit();
}

Bit DIO7, with a value of 0x40, is returned as true (1) in the Serial Poll response of those devices
requesting service. In our simple example we expect that the 195 is the only possible cause of an SRQ,
and if not, there must be some error.

Now that we have identified the device that is requesting service, we can further examine the Serial
Poll status to classify the request:

if ((st195 & 0x20) == 0) {
if (st195 & 0x01)
printf(“Overflow\n”);
if (st195 & 0x02)
printf(“Buffer Full\n”);
if (st195 & 0x04)
printf(“Buffer 1/2 Full\n”);
if (st195 & 0x08)
printf(“Reading Done\n”);
if (st195 & 0x10)
printf(“Busy\n”);
} else {
if (st195 & 0x01)
printf(“Illegal Command Option\n”);
if (st195 & 0x02)

II. SOFTWARE GUIDES - 8. Driver488/DRV 8H. Turbo C

Personal488 User’s Manual, Rev. 3.0 II-79

printf(“Illegal Command\n”);
if (st195 & 0x04)
printf(“No Remote\n”);
if (st195 & 0x08)
printf(“Trigger Overrun\n”);
if (st195 & 0x10)
printf(“Failed Selftest\n”);
}

The action taken depends, of course, on the design of the system, but in this example, simply displaying
a message is adequate.

Finally, after decoding the cause of the SRQ, we are ready to re-enable interrupts and return to the main
program:

ieee_cki = cklpint;

IEEEIO.C
The IEEEIO.C file contains several useful declarations and functions, many of which have been used
in the 195DEMO example program. They are:

• IEEE is an integer that holds the file descriptor (MS-DOS handle) returned by OPEN.

int ieee

• segment and offset return the 16-bit segment and offset values that make up a pointer.

int segment(ptr)
void *ptr
int offset(ptr)
void *ptr

The implementation of these functions depends on the memory model being used. In the small
data model, pointers are 16 bits and are exactly the offset desired. Here, the segment is always
the internal ds register value. In the large data model, pointers are 32 bits, one word of which is
the segment and the other is the offset. For more information on memory models, see the
“Other Languages” Sub-Chapter in this Chapter.

• ERRNO holds the error code for I/O and other errors.

extern int errno;

• IOCTL_RD and IOCTL_WT are special versions of IOCTL_IO which reads and writes to the I/O
control channel of a device.

int ioctl_io(int handle
chars,chars[],
int size,
int iocall)
#define ioctl_rd(handle,chars,size) \
ioctl_io(handle,chars,size,0x4402)
#define ioctl_wt(handle,chars,size) \
ioctl_io(handle,chars,size,0x4403)

The I/O control channel of a device is read from and written to exactly as the normal (data)
channel is read and written, but the data transferred is not to be treated in the same way. Normally,
the I/O control channel is used to communicate setup and status information regarding the device
without actually transferring any data to or from it. When using Driver488/DRV, IOCTL_WT is
used to force Driver488/DRV to be ready to accept a command, and IOCTL_RD is used to return
status information from the driver. These functions correspond exactly to the IOCTL and IOCTL$
commands, as described in “Section III: Command References.” The Turbo C library function
IOCTL could be used to perform these functions for small-data programs, but it is not compatible
with the large-data models.

• CKLPINT, IEEE_CKI, and IEEE_ISR are functions and pointers which provide for automatic
interrupt detection and servicing.

8H. Turbo C II. SOFTWARE GUIDES - 8. Driver488/DRV

II-80 Personal488 User’s Manual, Rev. 3.0

int cklpint(void)
int _false_(void)
int (*ieee_cki)(void) = _false_
void no_op(void)
void (*ieee_isr)(void) = no_op

Driver488/DRV signals interrupts, which are enabled with the ARM command, by causing the light
pen signal to appear “true.” The CKLPINT checks that Driver488/DRV is able to service an
interrupt (the response from IOCTL_RD is 0) and then checks if an interrupt is pending by
checking the light pen status. The IEEEWT routine (described below) calls the function pointed to
by IEEE_CKI to determine if an IEEE interrupt needs to be serviced. The IEEE_CKI normally
points to the function _false_ which always returns zero (0). To enable interrupt checking
IEEE_CKI must be redirected to point to CKLPINT. Interrupt checking is disabled by pointing
IEEE_CKI back to _false_. Once an interrupt has been detected, IEEEWT calls the interrupt
service routine pointed to by IEEE_ISR to service the interrupt. The IEEE_ISR initially points to
no_op, a function that does nothing, but it may be redirected as needed to specify the appropriate
interrupt service routine for each part of a program.

• _IEEEWT and _IEEERD are very similar to the unbuffered _WRITE and _READ routines provided
in the C library.

int _ieeewt(int handle,char chars[])
int _ieeerd(int handle,char chars[],int size)
#define ieeewt(chars) _ieeewt(ieee,chars)
#define ieeerd(chars) _ieeerd(ieee,chars,sizeof(chars))

The _IEEEWT differs from _WRITE in that it checks for Driver488/DRV interrupts before writing,
determines the number of characters to write by using STRLEN, and prints an error message if an
error has occurred during writing. The _IEEERD differs from _READ only in that it prints an error
message if an error has occurred during reading. IEEEWT and IEEERD (without the leading
underscore) write and read to the file IEEE. Notice that IEEERD uses SIZEOF to determine the
number of characters to read. This only works if SIZEOF can determine the number of bytes in the
receive buffer, chars. This means chars must be an array of known size, for example,
char chars[256], not char*chars.

• IEEEPRTF and IEEESCNF are IEEE 488 versions of PRINTF and SCANF, respectively.

int ieeeprtf(char *format, ...)
int ieeescnf(char *format, ...)

The IEEEPRTF accepts a format string and a list of arguments. It formats its arguments according
to the specified format and sends the formatted string to Driver488/DRV. The IEEESCNF accepts
a format string and pointers (to the types specified in the format string). It reads a string of up to
256 bytes from Driver488/DRV, terminates it with a zero, converts it according to the format
string, and places the converted values into the variables pointed to by the specified pointers.

• RAWMODE sets the file specified by handle for “raw mode” I/O.

int rawmode(int handle);

In “raw mode” MS-DOS does not interpret the characters received from the file. In particular,
control-Z is not taken as end-of-file. “Raw mode” is usually appropriate for IEEE 488
communications because it does not interfere with the transfer of binary data and because it is
much more efficient than “non-raw mode” I/O.

• IEEEINIT establishes communications with Driver488/DRV and configures it for use with C.

int ieeeinit(void);

It first opens the file IEEE for both reading and writing and puts the file descriptor into IEEE. It
then puts the file into “raw mode”. Driver488/DRV is then initialized by sending the IOCTL
“BREAK” and RESET commands. Normal output from C is terminated by a new-line (line feed)
character, and returned strings should be terminated by a null, so EOL OUT LF and EOL IN $0
commands are then issued. Finally a FILL ERROR command is issued to enable SEQUENCE - NO
DATA AVAILABLE error detection. If an error is detected during any of these commands,
IEEEINIT returns a -1, otherwise it returns a zero (0).

II. SOFTWARE GUIDES - 8. Driver488/DRV 8H. Turbo C

Personal488 User’s Manual, Rev. 3.0 II-81

CRITERR.ASM (Microsoft C & Turbo C)
Normally, when Driver488/DRV detects an error, perhaps due to a syntax error in a command, or due
to an IEEE 488 bus error (such as time out on data transfer), it responds with an I/O error to DOS.
When this happens, DOS normally issues an ABORT, RETRY or IGNORE message and waits for a
response from the keyboard. There is no way for the user’s program to detect such an error, determine
the cause, and take appropriate action. However, DOS does provide a method of redefining the action
to be taken on such a “critical error”. CRITERR.ASM contains a critical error handler that, when
invoked, makes it appear to the calling program that some less-critical error has occurred. The critical
error handler is installed by CRIT_ON() and removed by CRIT_OFF().The critical error handler is
also automatically removed by DOS when the program exits.

The following program fragment demonstrates the use of the critical error handler:

#include “criterr.h”
crit_on(ieee);
if (ieeewt(“output 16;F0X”) == -1) {
printf(“Error writing F0X to device 16, \n”);
crit_off();
ioctl_wt(ieee,"break",5);
ieeewt(“eol out lf\r\n”);
ieeewt(“status\n”);
ieeerd(response);
printf(“status = %s\n”,response);
crit_on(ieee);
}

We must first #include the header file with the definitions of the critical error routines. We then
enable critical error trapping with CRIT_ON which takes as a parameter the handle of the file for which
critical error trapping is to be enabled. Only read and write commands to that handle are trapped.
Errors caused by other actions, or associated with other files are not trapped. Error trapping may only
be enabled for one file at a time.

Now, if IEEEWT signals an error by returning a -1, we can check what happened. We first PRINTF an
error message, then we turn critical error trapping off with CRIT_OFF so that, if another critical error
occurs, we get the ABORT, RETRY or IGNORE message and know a catastrophic double error has
occurred. We then IOCTL_WT(_BREAK_) to force Driver488/DRV to listen to our next command.
The IOCTL_WT also resets the EOL OUT terminator so we can be sure that Driver488/DRV detects the
end of our commands. We next reset the EOL OUT terminator to our preferred line feed only and ask
Driver488/DRV for its status. On receiving the response, we could interpret the status and take
whatever action is appropriate. However, in this example, we just display the status. Finally, we re-
enable the critical error handler and continue with the program.

Sample Program
#include “ieeeio.h”
#include .h
void main (void) {
char response[256];
float voltage;
int i;
float sum;
char hundred[1700];
ieee=open(“ieee”,O_RDWR | O_BINARY);
ieee=open(“ieee”,O_rdwr);
rawmode(ieee);
ioctl_wt(ieee,"break",5);
ieeewt(“reset\r\n”);
ieeewt(“eol out lf\r\n”);
ieeewt(“eol in $0\n”);
ieeewt(“fill error\n”);
if (ieeeinit() == -1) {
printf(“Cannot initialize IEEE system.\n”);
exit(1);

8H. Turbo C II. SOFTWARE GUIDES - 8. Driver488/DRV

II-82 Personal488 User’s Manual, Rev. 3.0

}
ieeewt(“hello\n”);
ieeerd(response);
printf(“%s\n”,response);
ieeewt(“status\n”);
ieeerd(response);
printf(“%s\n”,response);
ieeewt(“output 16;F0R0X\n”);
ieeewt(“enter 16\n”);
ieeescnf(“%*4s%e”,&voltage);
printf(“The read value is %g\n”,voltage);
sum=0.0;
for (i=0; i; i++) {
ieeewt(“enter 16\n”);
ieeescnf(“%*4s%e”,&voltage);
sum=sum+voltage;
}
printf(“The average of 10 readings is %g\n”,sum/10.0);
ieeeprtf(“ENTER 16 #1700 BUFFER %d:%d\n”,
segment(hundred),offset(hundred));
for (i=0; i<1700; i++) putchar(hundred[i]);
ieeeprtf(“ENTER 16 #1700 BUFFER continue\n”,
segment(hundred),offset(hundred));
ieeewt(“status\n”);
ieeerd(response);
printf(“%s\n”,response);
ieeewt(“wait\n”);
ieeewt(“status\n”);
ieeerd(response);
printf(“%s\n”,response);
ieee_cki = cklpint;
ieee_isr = isr;
ieeewt(“arm srq\n”);
ieeewt(“output 16;M2X”);
}
void isr()
{ int _false()_;
int sp;
int st195;
printf(“Interrupt detected...”);
ieee_cki = _false_;
ieeewt(“spoll\n”);
ieeescnf(“%d”,&sp);
if (sp==0) {
printf(“Non-SRQ Interrupt!\n”);
exit(1);
}
ieeewt(“spoll 16\n”);
ieeescnf(“%d”,&st195);
if ((st195 & 0x40) == 0) {
printf(“Non-195 SRQ!\n”);
exit();
}
if ((st195 & 0x20) == 0) {
if (st195 & 0x01)
printf(“Overflow\n”);
if (st195 & 0x02)
printf(“Buffer Full\n”);
if (st195 & 0x04)
printf(“Buffer 1/2 Full\n”);
if (st195 & 0x08)
printf(“Reading Done\n”);
if (st195 & 0x10)
printf(“Busy\n”);
} else {
if (st195 & 0x01)
printf(“Illegal Command Option\n”);

II. SOFTWARE GUIDES - 8. Driver488/DRV 8H. Turbo C

Personal488 User’s Manual, Rev. 3.0 II-83

if (st195 & 0x02)
printf(“Illegal Command\n”);
if (st195 & 0x04)
printf(“No Remote\n”);
if (st195 & 0x08)
printf(“Trigger Overrun\n”);
if (st195 & 0x10)
printf(“Failed Selftest\n”);
}

Use of Character Command Language
In order to simplify programming Driver488/DRV with Turbo Pascal 4.0 and Turbo Pascal 6.0, the
following files are provided on the Driver488/DRV program disk in the \TURBOP40 directory:

• IEEEIO.PAS: Communications routines unit for Driver488/DRV.

• IEEEIO.TPU: Compiled unit for using Driver488/DRV.

The actual demonstration program is contained in 195DEMO.PAS.

The IEEEIO.PAS unit contains initialization code that prepares for communication with
Driver488/DRV. It opens the IeeeOut and IeeeIn files, sets them into “raw mode”, resets
Driver488/DRV with IOCTL followed by Writeln(IeeeOut,’RESET’), and enables NO DATA
AVAILABLE error detection by Writeln(IeeeOut,’FILLERROR’).

These and several other declarations and subroutines contained in the IEEEIO unit, are further
discussed below:

VAR
Regs: REGISTERS;
IeeeOut, IeeeIn: TEXT;
PROCEDURE IOCTL;
PROCEDURE IOCTLRead(var Command:STRING);
PROCEDURE RawMode(var AFile:TEXT);
PROCEDURE IeeeComplete;

• Regs, defined as a REGISTERS type in the DOS unit, is a record that is used to pass the
microprocessor registers to and from the MS-DOS and IntrPascal procedures. Each of the
accessible registers is referred to as a component of Regs. For example Regs.AX:=$1234 is the
same as Regs.AH:=$12;Regs.AL:=$34.

• IeeeOut and IeeeIn are two TEXT file variables that are used for writing to, and reading from,
Driver488/DRV, respectively. They are opened by the IEEEIO unit initialization code, and closed
by IeeeComplete.

 8I. Turbo Pascal

Topics

• Use of Character Command Language...................................... II-82
• Initialization of the System.. II-83
• Configuration of the 195 DMM.. II-84
• Taking Readings... II-85
• Buffer Transfers ... II-85
• Interrupt Handling .. II-86
• Sample Program ... II-88

8I. Turbo Pascal II. SOFTWARE GUIDES - 8. Driver488/DRV

II-84 Personal488 User’s Manual, Rev. 3.0

• IOCTL is equivalent to the IOCTL#1 BASIC statement that is described in “Section III: Command
References.” Its effect is to cause Driver488/DRV to listen to the program regardless of what state
it was previously in. This is used by IeeeInit to reset Driver488/DRV.

• IOCTLRead is equivalent to the IOCTL$ BASIC function that is described in “Section III:
Command References.” It returns a single character, either 0 or 1, stating whether (1) or not (0)
Driver488/DRV has a response to be read by the program. While it is not used in this sample
program, it is included for completeness.

• All strings are of type STRING which is a 255 character string. Unless more memory is needed,
there is no reason to define strings with fewer than their maximum of 255 characters.

• RawMode is a procedure that tells DOS not to check for control characters when communicating
with the specified TEXT file. This greatly improves the efficiency of communicating with
Driver488/DRV.

• IeeeComplete should be called at the end of programs that use Driver488/DRV to close the
IeeeOut and IeeeIn files.

Initialization of the System
Any program using Driver488/DRV must first establish communications with the Driver488/DRV
software driver. In Turbo Pascal (“Turbo”) this is accomplished using ASSIGN, REWRITE and RESET
statements. Communication both to and from Driver488/DRV, is required. In Turbo, this means that
two files must be opened, one for input, and one for output. Other languages may allow the same file to
be opened for both input and output. Three file names are allowed: IEEEOUT, IEEEIN, and IEEE. By
convention, they are used for output, input, and both input and output, respectively. But actuality, they
are all the same and any one of them can be used for input, output, or both, depending on the
programming language. Note that, unlike BASIC (refer to the “QuickBASIC” Sub-Chapter in Chapter
8), the \DEV\ prefix is not used in Turbo Pascal.

In Turbo, the files are opened with the following statements:

VAR IeeeOut, IeeeIn: TEXT;
Assign(IeeeOut,’IeeeOut’); Rewrite(IeeeOut);
Assign(IeeeIn,’IeeeIn’); Reset(IeeeIn);

which are contained in the IEEEIO unit initialization procedure.

Of course, the TEXT file variable names (IeeeOut and IeeeIn) may be changed as desired, but
throughout this manual, IeeeOut and IeeeIn are used.

Once the files are opened, we can tell DOS that they are used for binary communications and that DOS
should not check for control characters. To do this, we use RawMode:

RawMode(IeeeOut);
RawMode(IeeeIn);

Now that the files are ready, we can send commands and receive responses from Driver488/DRV.
While Driver488/DRV should normally be in a reset, inactive state, it is possible that it was left in
some unknown state by a previous program failure or error. In order to force Driver488/DRV into its
quiescent state we can use the supplied IOCTL procedure:

IOCTL; {Invoke IOCTL procedure}

The IOCTL procedure is equivalent to the BASIC statement IOCTL#1,“BREAK” which sends the
BREAK command through a “back door” to Driver488/DRV. Driver488/DRV recognizes this “back
door” command regardless of what else it might be doing and resets itself so that it is ready to accept a
normal command. We can then completely reset the Driver488/DRV with the RESET command:

Writeln(IeeeOut,’RESET’);

which resets the operating parameters of the Driver488/DRV back to their normal values (those that
were set during system boot by the DRVR488 DOS command).

II. SOFTWARE GUIDES - 8. Driver488/DRV 8I. Turbo Pascal

Personal488 User’s Manual, Rev. 3.0 II-85

Next, we can enable SEQUENCE - NO DATA AVAILABLE error detection by setting the FILL mode to
ERROR:

Writeln(IeeeOut,’FILL ERROR’);

The IOCTL, RESET, and FILL ERROR statements are also included in the IEEEIO unit initialization
code.

Once everything is reset, we can test the communications and read the Driver488/DRV revision number
with the HELLO command:

VAR Response: STRING;
Writeln(IeeeOut,’HELLO’);
Readln(IeeeIn,Response);
Writeln(Response);

First we Writeln the HELLO command to IeeeOut, then we Readln the response from IeeeIn into
the character variable Response. Finally we display the response with a Writeln to the screen.
Because Turbo Pascal cannot both Writeln and Readln from the same text file, we use two different
files to communicate with Driver488/DRV. Writeln must reference the file opened for output (in
these examples, IeeeOut) and Readln must reference the file opened for input (IeeeIn). Attempting
to communicate with the wrong file (such as Writeln(IeeeIn_)) results in an error.

It is not necessary to perform the HELLO command, but it is included here as a simple example of
normal communication with Driver488/DRV. Its response is the revision identification of the
Driver488/DRV software: Driver488 Revision X.X ©199X IOtech, Inc.

We can also interrogate Driver488/DRV for its status:

Writeln(IeeeOut,’STATUS’);
Readln(IeeeIn,Response);
Writeln(Response);

Subsequently, the printed response is similar to the following:

CS21 1 I000 000 T0 C0 P0 OK

The following indicators describe each component of the Driver488/DRV status:

Indicator Driver488/DRV Status
C It is in the Controller state.
S It is the System Controller.
21 The value of its IEEE 488 bus address.
1 An Address Change has occurred.
I It is idle (neither a talker nor a listener).
0 There is no ByteIn available.
0 It is not ready to send a ByteOut.
0 Service Request (SRQ) is not asserted.
000 There is no outstanding error.
T0 It has not received a bus device TRIGGER command (only applicable in the Peripheral

mode).
C0 It has not received a CLEAR command (only applicable in the Peripheral mode).
P0 No CONTINUE transfer is in progress.
OK The error message is “OK”.

Configuration of the 195 DMM
Once the system is initialized we are ready to start issuing bus commands. The IEEE 488 bus has
already been cleared by the Interface Clear (IFC) sent by the RESET command, so we know all bus
devices are waiting for the controller to take some action. To control an IEEE 488 bus device, we
OUTPUT an appropriate device-dependent command to that device. For example, the command F0R0X
sets the 195 to read DC volts with automatic range selection:

8I. Turbo Pascal II. SOFTWARE GUIDES - 8. Driver488/DRV

II-86 Personal488 User’s Manual, Rev. 3.0

Writeln(IeeeOut,’OUTPUT 16;F0R0X’);

The OUTPUT command takes a bus device address (16 in this case) and data (F0R0X) and sends the data
to the specified device. The address can be just a primary address, such as 12, or 05, or it can include
a secondary address: 1201. Note that both the primary address and, if present, the secondary address
are two-digit decimal numbers. A leading zero must be used, if necessary, to make a two-digit address.

Taking Readings
Once we have set the 195’s operating mode, we can take a reading and display it:

VAR Reading: STRING;
Writeln(IeeeOut,’ENTER 16’);
Readln(IeeeIn,Reading);
Writeln(Reading);

The ENTER command takes a bus address (with an optional secondary address) and configures that bus
device so that it is able to send data (addressed to Talk). No data is actually transferred, however, until
the Readln statement requests the result from Driver488/DRV at which time data is transferred to the
program into the variable Reading.

Once the result has been received, any Turbo Pascal functions or statements can be used to modify or
interpret it. In this example, the result is in the form NDCV+1.23456E-2 showing the range (NDCV)
and the numeric value of the reading (+1.23456E-2). The Turbo Pascal Copy function can be used to
strip off the range characters and keep only the numeric part (the fifth character and beyond), and the
VAL procedure can be used to convert this string to a number:

VAR
voltage: REAL;
code: INTEGER;
Reading:=Copy(Reading,5,255);
Val(Reading,voltage,code);
Writeln(‘The read value is ‘,voltage);

These may be combined for efficiency:

Val(Copy(Reading,5,255),voltage,code);
Writeln(‘The read value is ‘,voltage);

All the power of Turbo Pascal may be used to manipulate, print, store, and analyze the data read from
the IEEE 488 bus. For example, the following statements print the average of ten readings from the
195:

VAR
sum: REAL;
i: INTEGER;
sum:=0.;
FOR i:=1 TO 10 DO BEGIN
Writeln(IeeeOut,’ENTER 16’);
Readln(IeeeIn,Reading);
Val(Copy(Reading,5,255),voltage,code);
sum:=sum+voltage;
END;
Writeln(‘The average of 10 readings is ‘,sum/10);

Buffer Transfers
Instead of using a Readln(IeeeIn_) statement to receive the data from a device, we can direct
Driver488/DRV to place the response directly into a data buffer of our choice. For example, each
reading from the 195 consists of 17 bytes: a four-byte prefix and an eleven-byte reading followed by
the two-byte command terminator. So, we can collect 100 readings in a 1700 byte array.

To do this we must first allocate the required space in an array:

VAR r: ARRAY[0..1699] of CHAR;

II. SOFTWARE GUIDES - 8. Driver488/DRV 8I. Turbo Pascal

Personal488 User’s Manual, Rev. 3.0 II-87

Now that we have allocated a place for the readings, we can direct Driver488/DRV to put readings
directly into the r array with the ENTER #count BUFFER command:

Writeln(IeeeOut,’ENTER 16 #1700 BUFFER’,
Seg(r[0]),’:’,Ofs(r[0]));

This command consists of the keyword ENTER, followed by the bus device address (16), a number sign
(#), the number of bytes to transfer (1700), and the keyword BUFFER, followed by the memory address
of the buffer. The buffer address is specified as segment:offset where segment and offset are
each 16-bit numbers and the colon (:) is required to separate them. The segment value we need, is the
value returned by the Turbo Pascal Seg function. The offset is the offset of the array in that data
segment, which is the value returned by Ofs(r[0]).

Once the data has been received, we can print it out:

FOR i:=0 TO 1699 DO Write(r[i]);

The program could process the previous set of data while collecting a new set into a different buffer.
To allow the program to continue, specify CONTINUE in the command:

Writeln(IeeeOut,’ENTER 16 #1700 BUFFER ‘,
Seg(r[0]),’:’,Ofs(r[0]),’ CONTINUE’);

Once we have started the transfer, we can check the status:

Writeln(IeeeOut,’STATUS’);
Readln(IeeeIn,Response);
Writeln(Response);

The status that is returned is typically:

CS21 1 L100 000 T0 C0 P1 OK

Notice P1 which states a transfer is in progress, and L which shows we are still a listener. If the bus
device is so fast that the transfer completes before the program can check status, the response is P0
showing that the transfer is no longer in progress. We can also WAIT for the transfer to complete and
check the status again:

Writeln(IeeeOut,’WAIT’);
Writeln(IeeeOut,’STATUS’);
Readln(IeeeIn,Response);
Writeln(Response);

This time the status must be P0 as the WAIT command waits until the transfer has completed. Now that
we know the transfer is complete, we are ready to print out the received data as shown above.

Interrupt Handling
The IEEE 488 bus is designed to be able to attend to asynchronous (unpredictable) events or
conditions. When such an event occurs, the bus device needing attention can assert the Service
Request (SRQ) line to signal that condition to the controller. Once the controller notices the SRQ, it can
interrogate the bus devices, using Parallel Poll (PPOLL) and/or Serial Poll (SPOLL) to determine the
source and cause of the SRQ, and take the appropriate action.

Parallel Poll is the fastest method of determining which device requires service. Parallel Poll is a very
short, simple IEEE 488 bus transaction that quickly returns the status from many devices. Each of the
eight IEEE 488 bus data bits can contain the Parallel Poll response from one or more devices. So, if
there are eight or fewer devices on the bus, then just the single Parallel Poll can determine which
requires service. Even if the bus is occupied by the full complement of 15 devices, then Parallel Poll
can narrow the possibilities down to a choice of no more than two.

Unfortunately, the utility of Parallel Poll is limited when working with actual devices. Some have no
Parallel Poll response capability. Others must be configured in hardware, usually with switches or
jumpers, to set their Parallel Poll response. If Parallel Poll is not available, or several devices share the
same Parallel Poll response bit, then Serial Polling is still required to determine which device is
requesting service.

8I. Turbo Pascal II. SOFTWARE GUIDES - 8. Driver488/DRV

II-88 Personal488 User’s Manual, Rev. 3.0

Serial Poll, though it is not as fast as Parallel Poll, does offer three major advantages: it gives an
unambiguous response from a single bus device; it returns additional status information beyond the
simple request/no-request for service; and, most importantly, it is implemented on virtually all bus
devices.

The SRQ line can be monitored in two ways: it can be periodically polled using the STATUS command,
or it can be used to cause an external interrupt when asserted.

BASIC provides a method for detecting and servicing external interrupts: the ON PEN statement. The
ON PEN statement tells BASIC that, when an external interrupt is detected, a specific subroutine,
known as the interrupt service routine (ISR), is to be executed. Normally, the interrupt detected by
ON PEN is the light pen interrupt. However, Driver488/DRV redefines this “light pen interrupt” to
signal when an IEEE 488 bus related interrupt (such as SRQ) has occurred.

Unlike BASIC, Turbo Pascal does not provide an automatic method of checking for light pen status.
Therefore, a procedure is needed to check for the interrupt. The procedure could use the STATUS
command, but it is much faster to check the interrupt status directly, using a BIOS interrupt:

PROCEDURE CheckInt(Signal:integer);
BEGIN
Regs.AX=$0400;
{Function 4, check light pen status}
Intr($10,Regs); {BIOS interrupt $10}
WHILE Registers.AH 0 DO BEGIN
{A Driver488/DRV interrupt has occurred}

{Take the appropriate action}

Regs.AX=$0400;
{Check if another interrupt has occurred}
Intr($10,Regs);
END
END; {of procedure CheckInt}

Inside the WHILE loop, where Registers.AH is not zero, we know that a Driver488/DRV interrupt
has occurred. The ARM command is used to specify which conditions should cause that interrupt. In
this example we want the interrupt to occur on the detection of a Service Request:

Writeln(IeeeOut,’ARM SRQ’);

The 195 can be set to request service on any of several different internal conditions. In particular, the
M2 command causes an SRQ upon the detection of any invalid command or command option by the
195:

Writeln(IeeeOut,’OUTPUT 16;M2X’);

This OUTPUT command is placed early in the program so that all subsequent commands to the 195
cause an SRQ, if they are invalid.

Now we can check for interrupts by calling CheckInt at appropriate places in the program. The only
place CheckInt should not be used, is between a command that requests a response, such as STATUS
or ENTER, and the statement(s) that reads the response. The CheckInt parameter, Signal, can be
used to identify where the interrupt was detected. A typical sequence might be the following:

Writeln(IeeeOut,’STATUS’);
Readln(IeeeIn,Response); CheckInt(10);
Writeln(IeeeOut,’ENTER 16’);
Readln(IeeeIn,Reading); CheckInt(20);

Each time CheckInt is called, Driver488/DRV interrupts are checked. Now we must specify what
action should be taken when an interrupt is detected.

Upon detecting an interrupt, we first display a message indicating that an interrupt was found, and then
check the Driver488/DRV Serial Poll Status to determine if an SRQ actually caused the interrupt:

II. SOFTWARE GUIDES - 8. Driver488/DRV 8I. Turbo Pascal

Personal488 User’s Manual, Rev. 3.0 II-89

VAR sp: INTEGER;
Writeln(‘Interrupt detected at signal ‘,Signal);
Writeln(IeeeOut,’SPOLL’);
Readln(IeeeIn,sp);
IF sp=0 THEN BEGIN
Writeln(‘Non-SRQ Interrupt!’); Halt
END;

Next we Serial Poll the 195 to determine its status. If there were other devices on the bus that could be
generating the SRQ, each of them would be have to be checked in turn.

VAR st195: INTEGER;
Writeln(IeeeOut,’SPOLL 16’);
Readln(IeeeIn,st195);
IF (st195 and 64)=0 THEN BEGIN
Writeln(‘Non-195 SRQ!’); Halt
END;

Bit DIO7, with a value of 64, is returned as true (1) in the Serial Poll response of those devices
requesting service. In our simple example, we expect that the 195 is the only possible cause of an SRQ,
and if not, there must be some error.

Now that we have identified the device that is requesting service, we can further examine the Serial
Poll status to classify the request:

IF (st195 and 32)=0 THEN BEGIN {
ERROR is not set}
IF (st195 and 1) 0 THEN Writeln(‘Overflow’);
IF (st195 and 2) 0 THEN Writeln(‘Buffer Full’);
IF (st195 and 4) 0 THEN Writeln(‘Buffer 1/2 Full’);
IF (st195 and 8) 0 THEN Writeln(‘Reading Done’);
IF (st195 and 16) 0 THEN Writeln(‘Busy’)
END ELSE BEGIN {ERROR is set}IF (st195 and 1) 0 THEN
Writeln(‘Illegal Command Option’);
IF (st195 and 2) 0 THEN Writeln(‘Illegal Command’);
IF (st195 and 4) 0 THEN Writeln(‘No Remote’);
IF (st195 and 8) 0 THEN Writeln(‘Trigger Overrun’);
IF (st195 and 16) 0 THEN Writeln(‘Failed Selftest’)
END;

The action taken depends, of course, on the design of the system, but in this example, simply displaying
a message is adequate.

Sample Program
BEGIN
VAR IeeeOut, IeeeIn: TEXT;
VAR Response: STRING;
VAR Reading: STRING;
VAR
voltage: REAL;
code: INTEGER;
VAR
sum: REAL;
i: INTEGER;
VAR r: ARRAY[0..1699] of CHAR;
Assign(IeeeOut,’IeeeOut’); Rewrite(IeeeOut);
Assign(IeeeIn,’IeeeIn’); Reset(IeeeIn);
RawMode(IeeeOut);
RawMode(IeeeIn);
IOCTL; {Invoke IOCTL procedure}
Writeln(IeeeOut,’RESET’);
Writeln(IeeeOut,’FILL ERROR’);
Writeln(IeeeOut,’HELLO’);
Readln(IeeeIn,Response);
Writeln(Response);
Writeln(IeeeOut,’STATUS’);

8I. Turbo Pascal II. SOFTWARE GUIDES - 8. Driver488/DRV

II-90 Personal488 User’s Manual, Rev. 3.0

Readln(IeeeIn,Response);
Writeln(Response);
Writeln(IeeeOut,’OUTPUT 16;F0R0X’);
Writeln(IeeeOut,’ENTER 16’);
Readln(IeeeIn,Reading);
Writeln(Reading);
Reading:=Copy(Reading,5,255);
Val(Reading,voltage,code);
Writeln(‘The read value is ‘,voltage);
Val(Copy(Reading,5,255),voltage,code);
Writeln(‘The read value is ‘,voltage);
sum:=0.;
FOR i:=1 TO 10 DO BEGIN
Writeln(IeeeOut,’ENTER 16’);
Readln(IeeeIn,Reading);
Val(Copy(Reading,5,255),voltage,code);
sum:=sum+voltage;
END;
Writeln(‘The average of 10 readings is ‘,sum/10);

Writeln(IeeeOut,’ENTER 16 #1700 BUFFER ‘,
Seg(r[0]),’:’,Ofs(r[0]));
FOR i:=0 TO 1699 DO Write(r[i]);
Writeln(IeeeOut,’ENTER 16 #1700 BUFFER ‘,
Seg(r[0]),’:’,Ofs(r[0]),’ CONTINUE’);
Writeln(IeeeOut,’STATUS’);
Readln(IeeeIn,Response);
Writeln(Response);
Writeln(IeeeOut,’WAIT’);
Writeln(IeeeOut,’STATUS’);
Readln(IeeeIn,Response);
Writeln(Response);
PROCEDURE CheckInt(Signal:integer);
BEGIN
VAR sp: INTEGER;
VAR st195: INTEGER;
Regs.AX=$0400;
{Function 4, check light pen status}
Intr($10,Regs); {BIOS interrupt $10}
WHILE Registers.AH 0 DO BEGIN
{A Driver488/DRV interrupt has occurred}

{Take the appropriate action}

Regs.AX=$0400;
{Check if another interrupt has occurred}
Intr($10,Regs);
END
Writeln(IeeeOut,’ARM SRQ’);
Writeln(IeeeOut,’OUTPUT 16;M2X’);
Writeln(IeeeOut,’STATUS’);
Readln(IeeeIn,Response); CheckInt(10);
Writeln(IeeeOut,’ENTER 16’);
Readln(IeeeIn,Reading); CheckInt(20);
Writeln(‘Interrupt detected at signal ‘,Signal);
Writeln(IeeeOut,’SPOLL’);
Readln(IeeeIn,sp);
IF sp=0 THEN BEGIN
Writeln(‘Non-SRQ Interrupt!’); Halt
END;
Writeln(IeeeOut,’SPOLL 16’);
Readln(IeeeIn,st195);
IF (st195 and 64)=0 THEN BEGIN
Writeln(‘Non-195 SRQ!’); Halt
END;
IF (st195 and 32)=0 THEN BEGIN {
ERROR is not set}

II. SOFTWARE GUIDES - 8. Driver488/DRV 8I. Turbo Pascal

Personal488 User’s Manual, Rev. 3.0 II-91

IF (st195 and 1) 0 THEN Writeln(‘Overflow’);
IF (st195 and 2) 0 THEN Writeln(‘Buffer Full’);
IF (st195 and 4) 0 THEN Writeln(‘Buffer 1/2 Full’);
IF (st195 and 8) 0 THEN Writeln(‘Reading Done’);
IF (st195 and 16) 0 THEN Writeln(‘Busy’)
END ELSE BEGIN {ERROR is set}IF (st195 and 1) 0 THEN
Writeln(‘Illegal Command Option’);
IF (st195 and 2) 0 THEN Writeln(‘Illegal Command’);
IF (st195 and 4) 0 THEN Writeln(‘No Remote’);
IF (st195 and 8) 0 THEN Writeln(‘Trigger Overrun’);
IF (st195 and 16) 0 THEN Writeln(‘Failed Selftest’)
END;
END; {of procedure CheckInt}

Use of Direct DOS I/O Devices
Once Driver488/DRV has been installed in your system, it is ready to begin controlling IEEE 488 bus
devices. To show how this is done, we develop a short program, in the Lotus 1-2-3 macro language, to
control a Keithley Instruments Model 195 digital multimeter. This program should also be compatible
with Symphony, and a very similar Quattro program is also included on the Driver488/DRV program
disk. The techniques used in this program are quite general, and apply to the control of most
instruments.

Initialization of the System
Any program using Driver488/DRV must first establish communications with the Driver488/DRV
software driver. In Lotus 1-2-3 and most other languages this is accomplished using an OPEN
command:

{OPEN IEEE,W}

Once the file is opened, we can send commands and receive responses from Driver488/DRV. First,
completely reset the Driver488/DRV with the RESET command:

{WRITELN RESET}

which resets the operating parameters of the Driver488/DRV back to their normal values (those that
were set during system boot by the DRVR488 DOS command).

When Lotus 1-2-3 reads from Driver488/DRV it expects that the responses are terminated by a single
carriage return character. As Driver488/DRV normally appends both carriage return and line feed to
its responses, it must be configured to use the correct terminator:

{WRITELN EOL IN CR}

Next, we can enable SEQUENCE - NO DATA AVAILABLE error detection by setting the FILL mode to
ERROR:

{WRITELN FILL ERROR}

 8J. Spreadsheets

Topics

• Use of Direct DOS I/O Devices... II-90
• Initialization of the System.. II-90
• Configuration of the 195 DMM.. II-91
• Taking Readings... II-92
• Interrupt Handling .. II-92

8J. Spreadsheets II. SOFTWARE GUIDES - 8. Driver488/DRV

II-92 Personal488 User’s Manual, Rev. 3.0

All of the commands discussed so far: OPEN, RESET, EOL IN CR, and FILL ERROR are placed in a
separate subroutine called IeeeInit. Thus, to accomplish all of the above steps, use IeeeInit:

{IeeeInit}

Once everything is reset, we can test the communications and read the Driver488/DRV revision number
with the HELLO command:

{WRITELN “HELLO”}
{READLN Hello}

We first WRITELN the HELLO command, then READLN the response into the cell named Hello (lower
case). Notice the quotation marks (“ ”) around the word HELLO (upper case) in the WRITELN
command. These force Lotus to write the word HELLO (upper case) rather than the contents of the cell
named Hello (lower case). Otherwise, since upper-case and lower-case letters are considered
identical, both HELLO and Hello would refer to the same cell.

It is not necessary to perform the HELLO command, but it is included here as a simple example of
normal communication with Driver488/DRV. Its response is the revision identification of the
Driver488/DRV software: Driver488 Revision X.X ©199X IOtech, Inc.

We can also interrogate Driver488/DRV for its status:

{WRITELN “STATUS”}
{READLN Status}

Subsequently, the printed response is similar to the following:

CS21 1 I000 000 T0 C0 P0 OK

Configuration of the 195 DMM
Once the system is initialized we are ready to start issuing bus commands. The IEEE 488 bus has
already been cleared by the Interface Clear (IFC) sent by the RESET command, so we know that all bus
devices are waiting for the controller to take some action. To control an IEEE 488 bus device, we
output an appropriate device-dependent command to that device. For example, the F0R0X command
line below sets the 195 to read DC volts with automatic range selection:

{WRITELN “OUTPUT 16;F0R0X”}

The OUTPUT command takes a bus device address (16 in this case) and data (F0R0X) and sends the data
to the specified device. The address can be just a primary address, such as 12, or 05, or it can include
a secondary address: 1201. Note that both the primary address and, if present, the secondary address
are two-digit decimal numbers. A leading zero must be used, if necessary to make a two-digit address.

Notice that the entire OUTPUT command is enclosed in quotation marks (“ ”). This is necessary
because the command includes a semicolon character (;) which would interfere with the WRITELN
command if it were not enclosed in quotes.

The following indicators describe each component of the Driver488/DRV status:

Indicator Driver488/DRV Status
C It is in the Controller state.
S It is the System Controller.
21 The value of its IEEE 488 bus address.
1 An Address Change has occurred.
I It is idle (neither a talker nor a listener).
0 There is no ByteIn available.
0 It is not ready to send a ByteOut.
0 Service Request (SRQ) is not asserted.
000 There is no outstanding error.
T0 It has not received a bus device TRIGGER command (only applies in Peripheral mode).
C0 It has not received a CLEAR command (only applicable in the Peripheral mode).
P0 No CONTINUE transfer is in progress.
OK The error message is “OK”.

II. SOFTWARE GUIDES - 8. Driver488/DRV 8J. Spreadsheets

Personal488 User’s Manual, Rev. 3.0 II-93

Taking Readings
Once we have set the 195’s operating mode, we can take a reading:

{WRITELN ENTER 16}
{READLN Reading}

The ENTER command takes a bus address (with an optional secondary address) and configures that bus
device so that it is able to send data (addressed to talk). No data is actually transferred, however, until
the READLN statement requests the result from Driver488/DRV at which time data is transferred to the
program into the cell Reading.

Once the result has been received, any Lotus 1-2-3 functions or statements can be used to modify or
interpret it. In this example, the result is in the form NDCV+1.23456E-2 showing the range (NDCV)
and the numeric value of the reading (+1.23456E-2). The Lotus 1-2-3 @MID function can be used to
strip off the range characters and keep only the numeric part (the fifth character and beyond), and the
@VALUE function can be used to convert this string to a number:

{LET Voltage,@VALUE(@MID(Reading,4,11))}

All the power of Lotus 1-2-3 may be used to manipulate, print, store, and analyze the data read from
the IEEE 488 bus. For example, the following statements compute the average of ten readings from the
195:

{FOR Index,0,9,1,Sum1}
Sum1:
{WRITELN ENTER 16}
{READLN Reading}
{PUT Voltages,0,Index,@VALUE(@MID(Reading,4,11))}
{RETURN}

The FOR statement sets Index to each of the successive values from 0 to 9, calling the Sum1 subroutine
for each value of Index. Sum1 takes a reading from the 195, converts it to a numeric value, and places
it into a row of the range Voltages. The ten readings in Voltages are finally averaged by a formula
in the cell named Average which can be seen in the example spreadsheet.

Interrupt Handling
The IEEE 488 bus is designed to be able to attend to asynchronous (unpredictable) events or
conditions. When such an event occurs, the bus device needing attention can assert the Service
Request (SRQ) line to signal that condition to the controller. Once the controller notices the SRQ, it can
interrogate the bus devices, using Parallel Poll (PPOLL) and/or Serial Poll (SPOLL) to determine the
source and cause of the SRQ, and take the appropriate action.

Parallel Poll is the fastest method of determining which device requires service. Parallel Poll is a very
short, simple IEEE 488 bus transaction that quickly returns the status from many devices. Each of the
eight IEEE 488 bus data bits can contain the Parallel Poll response from one or more devices. So, if
there are eight or fewer devices on the bus, then just the single Parallel Poll can determine which
requires service. Even if the bus is occupied by the full complement of 15 devices, then Parallel Poll
can narrow the possibilities down to a choice of at most two.

Unfortunately, the utility of Parallel Poll is limited when working with actual devices. Some have no
Parallel Poll response capability. Others must be configured in hardware, usually with switches or
jumpers, to set their Parallel Poll response. If Parallel Poll is not available, or several devices share the
same Parallel Poll response bit, then Serial Polling is still required to determine which device is
requesting service.

Serial Poll, though it is not as fast as Parallel Poll, does offer two major advantages: it returns
additional status information beyond the simple request/no-request for service, and it is implemented on
virtually all bus devices.

The SRQ line can be monitored in two ways: it can be periodically polled using the STATUS command,
or it can be used to cause an external interrupt when asserted.

8J. Spreadsheets II. SOFTWARE GUIDES - 8. Driver488/DRV

II-94 Personal488 User’s Manual, Rev. 3.0

BASIC provides a method for detecting and servicing external interrupts: the ON PEN statement. The
ON PEN statement tells BASIC that, when an external interrupt is detected, a specific subroutine,
known as the interrupt service routine (ISR), is to be executed. Normally, the interrupt detected by
ON PEN is the light pen interrupt. However, Driver488/DRV redefines this “light pen interrupt” to
signal when an IEEE 488 bus related interrupt (such as SRQ) has occurred.

Unlike BASIC, Lotus 1-2-3 does not provide an automatic method of checking for light pen status.
Therefore, a subroutine is needed to check for the interrupt. This subroutine uses the SPOLL command
to check for SRQ:

CheckSRQ:
{DEFINE Signal:VALUE}
{WRITELN SPOLL}
{READLN SP}
{LET SP,@VALUE(@MID(SP,0,@LENGTH(SP)-1))}
{IF SP=0}{BLANK ST195}{RETURN}

The CheckSRQ takes a numeric parameter, Signal, which can be used to note where in the program
the interrupt occurred. The subroutine begins by reading the response to the SPOLL command and
converting that response to a numeric value, SP. If SP is zero (0), then no SRQ is pending and we clear
the 195 status cell, ST195, and then return. If SP is non-zero, we know that an SRQ is pending.

The 195 can be set to request service on any of several different internal conditions. In particular, the
M2 command causes an SRQ upon the detection of any invalid command or command option by the
195:

{WRITELN “OUTPUT 16;M2X”}

This OUTPUT command is placed early in the program so that all subsequent commands to the 195
cause an SRQ, if they are invalid.

Now check for service requests by calling CheckSRQ at appropriate places in the program. The only
place CheckSRQ should not be used, is between a command that requests a response, such as STATUS
or ENTER, and the statement(s) that read that response. The CheckSRQ parameter, Signal can be used
to identify where the interrupt was detected. A typical sequence might be:

{WRITELN “STATUS”}
{READLN Status}
{CheckSRQ 10}
{WRITELN ENTER 16}
{READLN Reading}
{CHECKSRQ 20}

Once CheckSRQ has determined, with a Serial Poll, that a service request is indeed pending, it then
checks the 195 to determine if it is the source of the interrupt. If there were other devices on the bus
that could be generating the SRQ, each of them would be have to be checked in turn.

{WRITELN SPOLL 16}
{READLN ST195}
{LET ST195,@VALUE(@MID(ST195,0,@LENGTH(ST195)-1))}~

The tilde (~) at the end of the LET statement forces evaluation of the spreadsheet. In particular, it
causes the values of the cells DIO8 through DIO1 to be set to the values of the bits of ST195. These
cells can then be examined to inspect the 195’s status:

{IF DIO7}{BRANCH 195SRQ}
{BEEP}{GETLABEL “Non-195 SRQ detected! Press Return.”,TypeHere}
{RESTART}{RETURN}

Bit DIO7, is returned as true (1) in the Serial Poll response of those devices requesting service. In our
simple example, we expect that the 195 is the only possible cause of an SRQ, and if it is not, there must
be some error. If DIO7 is set, we BRANCH to 195SRQ and continue with the subroutine. Otherwise we
BEEP, display an error message, and terminate macro execution. TypeHere is a blank cell that holds
anything that is typed by the user before the return <Enter> is pressed.

II. SOFTWARE GUIDES - 8. Driver488/DRV 8J. Spreadsheets

Personal488 User’s Manual, Rev. 3.0 II-95

Now that we have identified the device that is requesting service, we can further examine the Serial
Poll status to classify the request. If DIO6 is set, then the 195 is signaling an error condition. If that bit
is clear, then some non-error condition caused the SRQ:

195SRQ:
{IF DIO6}{BRANCH 195ERR}
{IF DIO5}{BEEP}
{GETLABEL “195 Status: BUSY. Press Return.”,TypeHere}
{IF DIO4}{BEEP}
{GETLABEL “195 Status: READING DONE. Press Return.”,TypeHere}
{IF DIO3}{BEEP}
{GETLABEL “195 Status: BUFFER 1/2 FULL. Press Return.” TypeHere}
{IF DIO2}{BEEP}
{GETLABEL “195 Status: BUFFER FULL. Press Return.”,TypeHere}
{IF DIO1}{BEEP}
{GETLABEL “195 Status: OVERFLOW. Press Return.”,TypeHere}
{RETURN}
195ERR:
{IF DIO5}{BEEP}
{GETLABEL “195 Status: FAILED SELFTEST. Press Return.”,TypeHere}
{IF DIO4}{BEEP}
{GETLABEL “195 Status: TRIGGER OVERRUN. Press Return.”,TypeHere}
{IF DIO3}{BEEP}
{GETLABEL “195 Status: NO REMOTE. Press Return.”,TypeHere}
{IF DIO2}{BEEP}
{GETLABEL “195 Status: ILLEGAL COMMAND. Press Return.”,TypeHere}
{IF DIO1}{BEEP}
{GETLABEL “195 Status: ILLEGAL COMMAND OPTION. Press
Return.”,TypeHere}

Finally, once we have diagnosed the service request, we are ready to return to the main program:

{RETURN}
Sample Program
{OPEN IEEE,W}
{WRITELN RESET}
{WRITELN EOL IN CR}
{WRITELN FILL ERROR}
{IeeeInit}
{WRITELN “HELLO”}
{READLN Hello}
{WRITELN “STATUS”}
{READLN Status}
{WRITELN “OUTPUT 16;F0R0X”}
{WRITELN ENTER 16}
{READLN Reading}
{LET Voltage,@VALUE(@MID(Reading,4,11))}
{FOR Index,0,9,1,Sum1}
Sum1:
WRITELN ENTER 16}
{READLN Reading}
{PUT Voltages,0,Index,@VALUE(@MID(Reading,4,11))}
{RETURN}
CheckSRQ:
{DEFINE Signal:VALUE}
{WRITELN SPOLL}
{READLN SP}
{LET SP,@VALUE(@MID(SP,0,@LENGTH(SP)-1))}
{IF SP=0}{BLANK ST195}{RETURN}
{WRITELN “OUTPUT 16;M2X”}
{WRITELN “STATUS”}
{READLN Status}
{CheckSRQ 10}
{WRITELN ENTER 16}
{READLN Reading}
{CHECKSRQ 20}
{WRITELN SPOLL 16}

8J. Spreadsheets II. SOFTWARE GUIDES - 8. Driver488/DRV

II-96 Personal488 User’s Manual, Rev. 3.0

{READLN ST195}
{LET ST195,@VALUE(@MID(ST195,0,@LENGTH(ST195)-1))}~
{IF DIO7}{BRANCH 195SRQ}
{BEEP}{GETLABEL “Non-195 SRQ detected! Press Return.”,TypeHere}
{RESTART}{RETURN}
195SRQ:
{IF DIO6}{BRANCH 195ERR}
{IF DIO5}{BEEP}
{GETLABEL “195 Status: BUSY. Press Return.”,TypeHere}
{IF DIO4}{BEEP}
{GETLABEL “195 Status: READING DONE. Press Return.”,TypeHere}
{IF DIO3}{BEEP}
{GETLABEL “195 Status: BUFFER 1/2 FULL. Press Return.” TypeHere}
{IF DIO2}{BEEP}
{GETLABEL “195 Status: BUFFER FULL. Press Return.”,TypeHere}
{IF DIO1}{BEEP}
{GETLABEL “195 Status: OVERFLOW. Press Return.”,TypeHere}
{RETURN}
195ERR:
{IF DIO5}{BEEP}
{GETLABEL “195 Status: FAILED SELFTEST. Press Return.”,TypeHere}
{IF DIO4}{BEEP}
{GETLABEL “195 Status: TRIGGER OVERRUN. Press Return.”,TypeHere}
{IF DIO3}{BEEP}
{GETLABEL “195 Status: NO REMOTE. Press Return.”,TypeHere}
{IF DIO2}{BEEP}
{GETLABEL “195 Status: ILLEGAL COMMAND. Press Return.”,TypeHere}
IF DIO1}{BEEP}
{GETLABEL “195 Status: ILLEGAL COMMAND OPTION. Press
Return.”,TypeHere}
{RETURN}

Introduction
Driver488/DRV is compatible with virtually every MS-DOS programming language. If you wish to
use Driver488/DRV with a language that is not covered in this chapter, try the following:

 8K. Other Languages

Topics

• Introduction... 95
• Finding Addresses .. 96

Garbage Collection ..97
Memory Models..97
Calling Protocols..98

• Opening & Closing the Driver ... 99
• I/O Control (IOCTL) Communication... 100

IOCTL Get & Set Device Data...100
IOCTL Read & Write ..100

• Data & Command Communication... 101
• ARM Condition Detection... 102
• Sample Program ... 102

II. SOFTWARE GUIDES - 8. Driver488/DRV 8K. Other Languages

Personal488 User’s Manual, Rev. 3.0 II-97

• Check the Driver488/DRV disk. Support for languages not described in this manual may be
included in the Driver488/DRV program disk.

• Try the examples given for a language that is similar to the one you wish to use. Different varieties
of BASIC, Pascal, or other languages may be similar enough in their implementation that they can
be used identically to control Driver488/DRV. The DDAEMON.EXE (driver daemon) program that
is provided on the Driver488/DRV disk can help in determining just how a language
communicates with Driver488/DRV.

• Call your service representative for technical support. New language support examples will be
available to you as they are developed.

If no support is available or appropriate for your language, it is still practical to control
Driver488/DRV so long as your language supports system interrupt calls. A system interrupt is a
special type of subroutine call that is used to gain access to the MS-DOS and BIOS internal procedures.
They are used by the I/O library of every language to control the disk, keyboard, screen, printer, and
other hardware in the system. The same system interrupts are used to control Driver488/DRV.

Most programming languages have subroutines that allow interrupts to be invoked. The often have
names such as Int86, SysInt, or DOSInt. If you are not sure that your language has such a
subroutine, then check with the language manufacturer.

To control Driver488/DRV you need to be able to do the following:

• Find the segment and offset addresses of variables (or arrays) in your program

• Open and close the IEEE file that is used to communicate with Driver488/DRV

• Configure the IEEE file for binary communication

• Send and receive commands and data to and from the IEEE file, and

• Perform IOCTL“BREAK” and IOCTL$ functions as described in “Section III: Command
References.”

The examples throughout this Sub-Chapter are in assembly language to demonstrate the low-level
commands that communicate with DOS and Driver488/DRV. However, it is likely that your
programming language has the ability to perform all these functions without directly using assembly
language.

Finding Addresses
The system interrupts that transfer command and data to and from Driver488/DRV need to be told
where in memory the data is to be transferred. Addresses in an MS-DOS computer are composed of
two 16-bit numbers: a segment and an offset. The actual memory address of an object is computed
during memory access by multiplying the segment value by 16 and adding the offset to the result. This
forms a 20-bit address that covers the address range available in MS-DOS. All MS-DOS addresses are
specified in this segment:offset form.

A segment of memory is a region of memory in which all data elements have the same segment value.
Each segment is 64K bytes long, with locations within the segment determined by the offset
address. Segments can and often do overlap. For example, all of the following segment:offset
pairs refer to the same address (2CF89 hex): 2CF8:0009, 2CF0:0089, 2C00:0F89, 2000:CF90,
1E32:EC69 (1E320 + EC69 = 2CF89).

There is no universal way of determining the segment and offset address of a data object in a
programming language. Some languages, such as interpreted GW-BASIC or BASICA, keep all their
variables in a single segment known as the data segment. However, they do not provide a convenient
method of determining the segment address of that data segment. A special assembly-language
subroutine, must be used to find the data segment address. Once the data segment address is found, it
is fixed. All variables reside in this single, fixed data segment. These BASICs do provide a function,
VARPTR, that returns a variable’s offset address within the data segment.

8K. Other Languages II. SOFTWARE GUIDES - 8. Driver488/DRV

II-98 Personal488 User’s Manual, Rev. 3.0

Other types of BASICs include a function called VARSEG that returns the segment address of a variable.
This eliminates the need for a special assembly-language routine, but, in these languages, the segment
address may be different for each variable or array. VARSEG may need to be called for each variable
whose address is required.

Note that the address (segment and offset) of a variable or array may not be the address of the
portion of that variable that holds the data. The address may instead be the address of a variable
descriptor, a data structure that describes the structure of the variable or array. The descriptor usually
includes the current length of the variable as well as its actual address. The descriptor of an array may
include the number of elements in the array, the number of subscripts used to refer to the array
elements, and the ranges of the subscripts. You should check with the language manufacturer to
determine just what VARPTR (or its equivalent) points to. When trying to determine addresses you may
have to consider garbage collection, memory models, and calling protocols.

Garbage Collection
Garbage collection is a process whereby a language with variable-length data structures, such as strings
in BASIC or lists in LISP, can reuse the memory that is no longer being used by any variables. When a
program is running, it can move variables around to consolidate this unused space and reclaim it for
new variables. Garbage collection can occur at almost any time and invalidate any stored values of
variable addresses. Thus, in languages that use garbage collection, addresses should be “fresh” and
recalculated whenever they might have changed.

Memory Models
Some languages, most notably C, allow a choice of memory models. These are known by various
names such as: “tiny,” “small,” “medium,” “compact,” “large,” or even “huge.” The exact meaning of
these names may vary between different languages, but they typically have the following interpretation:

When using the Tiny, Small, or Medium memory models, all data elements are in the same segment.
Once the segment address of one is known, it can be used to refer to any address. In the Compact,
Large, and Huge memory models, data elements have a 32-bit address composed of a segment and an
offset. The segment values may be different for each data element.

Many languages do not offer the same flexibility of memory models as does C, but addressing methods
used by other languages may often be viewed as one of the standard C models.

The following program fragment, taken from the Microsoft C support file IEEEIO.C shows how
segment and offset addresses are computed in the various memory models:

Memory
Model

Total
Code/Data

Largest Data
Structure

Typical Interpretation

Tiny ≤ 64K bytes ≤ 64K bytes Code and data fit together within a single 64K segment.
Might be in the format necessary to convert to a
.COM file.

Small ≤ 64K bytes ≤ 64K bytes Both code and data each reside within their own 64K
segment. Near (16-bit, offset only) references to
code and data elements are possible.

Medium > 64K bytes
(for code only)
≤ 64K bytes
(for data only)

≤ 64K bytes More than 64K of code, in multiple segments, while
data fits within a single 64K segment. No
subprogram may exceed 64K.

Compact ≤ 64K bytes
(for code only)
> 64K bytes
(for data only)

≤ 64K bytes Code fits within a single 64K segment, while data may
occupy more than one segment. Explicit segment
addresses are required to address data elements. No
single data structure, such as an array or record,
may be more than 64K.

Large > 64K bytes ≤ 64K bytes More than 64K of both code and data. Still, no single
subprogram or data structure may exceed 64K.

Huge > 64K bytes > 64K bytes More than 64K of both code and data. Data structures
may be larger than 64K.

II. SOFTWARE GUIDES - 8. Driver488/DRV 8K. Other Languages

Personal488 User’s Manual, Rev. 3.0 II-99

#if defined(M_I86SM) || defined(M_I86MM)
int segment(ptr)
void near *ptr;
{ static struct SREGS segs = { 0, 0, 0, 0, };
if (segs.ds==0) segread(&segs);
return segs.ds;
}
#define offset(ptr) (int)ptr
#else
#define offset(ptr) ((unsigned)(fp))
#define segment(ptr) ((unsigned)((unsigned long)(fp) > 16))
#endif

The #IF statement checks if we are using the Small (M_I86SM) or Medium (M_I86MM) models
(Microsoft C does not support the Tiny model) and, if we are, defines a function segment that returns
the (constant) segment value that can be used for all data elements. The segment function takes a
pointer (ptr) as an argument, but does not use it. Instead, the first time it is called, it calls the
segread library function to read the ds segment register and returns that value. Each subsequent time
segment is called, it returns the saved ds register value. In these small-data models, the pointer to a
data object is just the offset address of that object, and so we define offset(ptr) as (int)ptr,
which is just an integer with the same value as the pointer.

If we are using a large-data model, data pointers are 32 bits, and the segment and offset must be
extracted from the 32-bit far pointer (fp). The offset, which is the least-significant word of the
pointer, is extracted by converting the pointer to unsigned. This discards the upper 16-bit of the
pointer, leaving the segment value. The segment is extracted by interpreting (casting) the pointer as
an unsigned long (32-bit) integer, shifting the result right 16 places, and then taking the least
significant word of the result. In this way, the offset and segment are extracted from the 32-bit
far pointer.

Calling Protocols
If the programming language we are using does not provide functions that return the segment or
offset of an object, we must write our own. The data object whose address we desire is passed as an
argument to this function. The calling protocols for that language specify just how information about
the arguments is passed to the function.

There are two popular methods of passing arguments: call-by-value and call-by-reference. Other
methods, such as call-by-name which is used in Algol 60, are possible, but are not used in common
microcomputer languages.

Call-By-Value

In call-by-value, which is the only method used by C, the actual arguments are copied, and these copies
are passed to the subprogram. If the address of a variable is needed by the subprogram then that
address must be explicitly passed to the subprogram. For example:

int i; Declare and integer variable i.
i=5; Set i to 5
fun1(i); Call fun1 with an argument of 5.
fun2(&i); Call fun2 with an argument equal to the address of i.

Notice that if fun1 tries to change the value of i, it only changes its own copy of i, not the calling
program’s variable. In contrast, fun2 has the address of i and can get access to the calling program’s
variable and change its value. In call-by-value, the entire data element must be duplicated and passed
to the subprogram. This is not a problem for simple variables, but can be quite awkward if a large
array must be copied to be passed to the subprogram. Large data structures are rarely passed using
call-by-value. Instead, the address of the data structure is passed in what is, in effect, call-by-reference.

Call-By-Reference

Call-by-reference is the most common form of argument passing in languages other than C. In call-by-
reference, the address of the argument is passed to the subprogram. The size of this address may be 16
or 32 bits depending on the language and its memory model.

8K. Other Languages II. SOFTWARE GUIDES - 8. Driver488/DRV

II-100 Personal488 User’s Manual, Rev. 3.0

If the argument is a data object, then the subprogram can modify that data object because it has that
object’s memory address. If an expression is passed using call-by-reference, the expression is
evaluated and stored in a temporary location. The address of this temporary is then passed to the
subprogram. The subprogram usually can change this value but it has no effect on the variables of the
calling program.

Call-by-reference can be used to give the same effect as call-by-value. To do this, the arguments are
first copied into temporary locations, then the addresses of these temporaries are passed using call-by-
reference. The calling protocol is call-by-reference because the addresses of the data objects are
passed to the subprogram. However, because these addresses are the addresses of copies of the
arguments and not the actual arguments, the subprogram cannot know the actual addresses of the
arguments, nor can it change their values. This type of call-by-reference is always used for
expressions. When expressions are passed using call-by-reference, they are first evaluated and their
results stored in temporary locations. Then the addresses of these temporaries are passed to the
subprogram.

By forcing the data object to be treated as an expression, call-by-reference can be used with the same
effect as call-by-value as described above. In BASIC, this is accomplished by surrounding the variable
in parentheses:

CALL SUB(A)

calls SUB and passes the address of A, while:

CALL SUB((A))

calls SUB and passes the address of a temporary variable that contains the same value as A.

Differences

It is important to note the difference between call-by-value and call-by-reference. In call-by-value, the
subprogram does not know the actual addresses of the arguments and cannot change their values, while
in call-by-reference, the subprogram knows the addresses of its arguments and can change them. This
can have important ramifications. For example, in True Basic, functions are always call-by-value. The
arguments are copied and the addresses of these copies are passed to functions. In contrast, subroutines
are call-by-reference and are passed the addresses of the actual arguments. Thus, if one tries to write a
function that returns the address of a string variable, it does not work! The address returned is the
address of the copy of the string, not the desired address of the actual string variable. Instead, a
subroutine with two parameters must be used, the first being the string whose address is desired, and
the second being set to that address when the subroutine is called.

Opening & Closing the Driver
Any program using Driver488/DRV must first establish communications with the Driver488/DRV
software driver. This is accomplished using the MS-DOS OPEN function. In assembly language, this
might appear as follows:

name DB” IEEE”,0 ;Driver488/DRV device name
ieee DW0 ;Place to hold Driver488/DRV file handle

mov AH, 3Dh ;Open function
mov AL, 02 ;Access code = read/write
mov DX,offset

name
;DS:DX - name

int 21h ;Execute DOS function
jc error ;Error if carry set
mov ieee, AX ;Save file handle

Once the file is opened, we can communicate with it to perform almost all the functions of
Driver488/DRV. When the program is done, it should close the Driver488/DRV file:

mov AH,3Eh ;Close function
mov BX,ieee ;File handle
int 21h ;Execute DOS function
jc error ;Check for error
or DL,20h :Set “don’t check for control characters” bit

II. SOFTWARE GUIDES - 8. Driver488/DRV 8K. Other Languages

Personal488 User’s Manual, Rev. 3.0 II-101

I/O Control (IOCTL) Communication
DOS provides several I/O Control (IOCTL) functions that are useful with Driver488/DRV. Two of
these: IOCTL GetDeviceData and IOCTL SetDeviceData allow Driver488/DRV to be configured
for faster “Raw Mode” communication, while the other two: IOCTL Read and IOCTL Write, perform
the functions of the BASIC IOCTL$ function and IOCTL#1 command, respectively.

IOCTL Get & Set Device Data
When communicating with character devices, DOS normally checks the transferred data for control
characters such as X-ON, X-OFF and control-Z. However when communicating with
Driver488/DRV, this is not desirable. First of all, it might interfere with control characters that are
supposed to be transferred to or from Driver488/DRV. Second, and more importantly, while DOS is
checking for control characters, it only transfers one character at a time to or from Driver488/DRV.
This is much less efficient than transferring large blocks of data. Thus, whenever possible, DOS should
be configured to not check for control characters when communicating with Driver488/DRV. This is
typically accomplished by a function called RawMode in the language-specific support files (such as
IEEEIO.C) provided with Driver488/DRV. The DOS IOCTL Get and SetDeviceData functions
are used together to configure Driver488/DRV for RawMode (binary) communication as:

mov AX,4400h ;DOS Get Device Data Function
mov BX,ieee ;File handle for Driver488/DRV
int 21h ;Execute DOS function
mov DH,0 ;Must clear DH
or DL,20h :Set “don’t check for control characters” bit
mov AX,4401h ;DOS Set Device Data Function
mov BX,ieee ;File handle
int 21h ;Execute DOS function

The first part of this code fragment reads the current device control settings from DOS. These are
returned in the DX register which is then modified to tell DOS not to check for control characters.
Finally, DOS is again called to implement the new control settings. Once the ieee file has been
opened and configured for RawMode, we are ready to communicate with Driver488/DRV.

IOCTL Read & Write
IOCTL Read and IOCTL Write provide a “back-door” communication channel to Driver488/DRV.
This alternate method of communication is normally used to send special commands (Write) and
request status (Read) from Driver488/DRV.

Driver488/DRV recognizes only one IOCTL Write command: BREAK. When IOCTL Write is used
to send BREAK to Driver488/DRV, it forces Driver488/DRV into a quiescent, ready state in which it is
waiting for a new command. The BREAK command also forces the EOL OUT terminators to their
default values. Thus Driver488/DRV is reset so that it is ready and able to receive new commands,
regardless of what it was previously doing.

It is recommended that the BREAK command be sent before any other Driver488/DRV commands. In
assembly language, BREAK may be sent as indicated in the table.

brk DB “BREAK” ;BREAK command text
brklen EQU $-brk ;Length of BREAK command

mov AX, 4403h ;IOCTL Write function
mov BX, ieee ;File handle
mov CX, brklen ;# chars to send
mov DX, offset

brk
;DS:DX -> command

int 21h ;Execute DOS function
jc error ;Check for error

This is identical to the BASIC command IOCTL described in “Section III: Command References” of
this manual.

The IOCTL Read command is used to receive status from Driver488/DRV. It receives a single ASCII
character, either 0, 1, 2, or 3. The meaning of each response is:

8K. Other Languages II. SOFTWARE GUIDES - 8. Driver488/DRV

II-102 Personal488 User’s Manual, Rev. 3.0

• 0: A response of 0 indicates that Driver488/DRV is ready to receive a command. It has no data to
read, nor is it expecting data for output to the IEEE 488 bus. Driver488/DRV is forced into this
state by the IOCTL BREAK command.

• 1: A response of 1 indicates that Driver488/DRV has a response ready to be read by the user’s
program. The program must read the response before sending a new command (except
IOCTL BREAK) or a SEQUENCE - DATA HAS NOT BEEN READ error occurs.

• 2: A response of 2 indicates that Driver488/DRV is waiting for data to OUTPUT to the IEEE 488
bus. The user’s program must send the appropriate data with terminators as needed to
Driver488/DRV. Attempting to read from Driver488/DRV while it is waiting for data causes a
SEQUENCE - NO DATA AVAILABLE error.

• 3: A response of 3 indicates that Driver488/DRV is waiting for the completion of a command.
This is similar to a response of 2 except that Driver488/DRV is waiting for a command, rather than
for data to OUTPUT.

The IOCTL Read response can be read from Driver488/DRV as:

ioctlbufDB 0 ;IOCTL Read response buffer
ioctllenEQU $-ioctllen ;Length of buffer
mov AX,4402h ;IOCTL Read
mov BX,ieee ;File handle
mov CX,ioctllen ;# chars to read
mov DX,offset

ioctlbuf
;DS:DX - buffer

int 21h ;Execute DOS function
jc error ;Check for error

Data & Command Communication
Once Driver488/DRV has been opened, configured for RawMode communication, and reset with the
IOCTL Write command BREAK, we are ready to communicate with Driver488/DRV and control the
IEEE 488 bus. The BASIC commands:

PRINT#1,"HELLO"
LINE INPUT#1,A$

might be implemented in assembly language as:

cr EQU 0Dh ;Carriage-return
lf EQU 0Ah ;Line-feed
hello DB “HELLO”,,cr,,lf ;HELLO command with terminators
hellolen EQU $-hello ;HELLO command length
response DB 256 DUP (?) ;Place to put Driver488/DRV response
responselen EQ $-response ;Length of response buffer
recvdlen DW ? ;Place to keep # chars in response
mov AH, 40h ;DOS Write function
mov BX, ieee ;File handle
mov CX, hellolen ;Command length
mov DX, offset hello ;DS:DX - command
int 21h ;Execute DOS function
jc error ;Check for error
mov AH, 3Fh ;DOS Read function
mov BX, ieee ;File handle
mov CX, responselen ;Buffer length
mov DX, offset

response
;DS:DX - buffer

int 21h ;Execute DOS function
jc error ;Check for error
mov recvdlen, AX ;Save # of characters received

In this way, data and commands can be transferred to or from Driver488/DRV.

II. SOFTWARE GUIDES - 8. Driver488/DRV 8K. Other Languages

Personal488 User’s Manual, Rev. 3.0 II-103

ARM Condition Detection
It is sometimes desirable to be able to easily check for asynchronous bus conditions, such as Service
Request (SRQ), without having to use the Driver488/DRV STATUS command. This can be
accomplished by using the light pen interrupt emulation feature of Driver488/DRV. When this feature
is enabled, Driver488/DRV preempts the normal function of the light pen BIOS status request interrupt.
Instead of returning the light pen switch status, this interrupt returns an indicator that is non-zero if any
of the ARM conditions are true. See the ARM command in “Section III: Command References” for more
details about the conditions that can be checked.

There are two items to notice about this routine: it uses the BIOS video interrupt 10h rather than the
DOS function call interrupt 21h, and it checks twice to see if a condition has been detected. The test
must be repeated if IOCTL Read is used to check the Driver488/DRV status. IOCTL Read causes the
light pen interrupt emulation to return no interrupt status on the next status read, regardless of the
actual ARM condition status. This allows the BASIC function ON PEN to operate properly, but requires
the status to be checked twice in other languages.

Sample Program
name DB” IEEE”, 0 ;Driver488/DRV device name
ieee DWO ;Place to hold Driver488/DRV file

handle

ioctlbufDB 0 ;IOCTL Read response buffer
ioctllenEQU $-ioctllen ;Length of buffer

cr EQU 0Dh ;Carriage-return
lf EQU 0Ah ;Line-feed

hello DB “HELLO”,,cr,,lf ;HELLO command with terminators
hellolen EQU $-hello ;HELLO command length

response DB 256 DUP (?) ;Place to put Driver488 response
responselen EQ $-response ;Length of response buffer

;
recvdlen DW ? ;Place to keep # chars in response

start mov Ah, 3Dh ;Open function
mov AL, 02 ;Access code = read/write
mov DX, offset name ;DS:DX-name
int 21h ;Execute DOS function
jc error ;Error if carry set
mov ieee,AX ;Save file handle
mov AH, 3Eh ;Close function
mov BX, ieee ;File handle
int 21h ;Execute DOS function
jc error ;Check for error
mov AX, 4400h ;DOS GetDeviceData Function
mov BX, ieee ;File handle for Driver488/DRV
int 21h ;Execute DOS function
mov DH, 0 ;Must clear
or DL, 20h ;Set “don’t check for control

characters” bit
mov AX, 4401h ;DOS SetDeviceData Function
mov BX, ieee ;File handle
int 21h ;Execute DOS function

Checking the Driver488/DRV light pen emulation status is straight forward, as illustrated by the
following table.

mov AX,0400h ;Test light pen function
int 10h ;BIOS video interrupt
or AH,AH ;Check AH
jnz GotInt ;Non-zero means interrupt
mov AX,0400h ;Repeat the test
int 10h
or AH,AH
jnz GotInt

8K. Other Languages II. SOFTWARE GUIDES - 8. Driver488/DRV

II-104 Personal488 User’s Manual, Rev. 3.0

brk DB “BREAK” ;BREAK command text
brklen EQU $-brk ;Length of break command

mov AX, 4403h ;IOCTL Write function
mov BX, ieee ;File handle
mov CX, brklen ;# chars to send
mov DX, offset brk ;DS:DX -> command
int 21h ;Execute DOS function
jc error ;Check for error

mov AX, 4402h ;IOCTL Read function
mov BX, ieee ;File handle
mov CX, ioctllen ;# chars to read
mov DX, offset

ioctlbuf
;DS:DX - buffer

int 21h ;Execute DOS function
jc error ;Check for error

mov AH, 40h ;DOS Write function
mov BX, ieee ;File handle
mov CX, hellolen ;Command length
mov DX, offset hello ;DS:DX - command
int 21h ;Execute DOS function
jc error ;Check for error

mov AH, 3Fh ;DOS Read function
mov BX, ieee ;File handle
mov CX, responselen ;Buffer length
mov DX, offset

response
;DS:DX - buffer

int 21h ;Execute DOS function
jc error ;Check for error
mov recvdlen, AX ;Save # of characters received

mov AX, 0400h ;Test light pen function
int 10h ;Video BIOS interrupt
or AH, AH ;Check AH
jnz GotInt ;Non-zero means interrupt detected

mov AX, 0400h ;Repeat the test
int 10h
or AH, AH
jnz GotInt

II. SOFTWARE GUIDES - 8. Driver488/DRV 8L. Language-Specific Information

Personal488 User’s Manual, Rev. 3.0 II-105

Aztec C

Use of Character Command Language
In order to simplify programming Driver488/DRV with C, the following files are provided on the
Driver488/DRV program disk:

• IEEEIO.C: Communications routines for Driver488/DRV

• IEEEIO.H: Header file, contains declarations from IEEEIO.C

• CRITERR.C: Critical error handler routines (included with Aztec C, only)

• CRITERR.H: Header file, contains declarations for using CRITERR

The actual demonstration program is contained in 195DEMO.C. All files for Aztec C are in the
\AZTECC directory.

To execute the demonstration program, the files must be compiled and then linked. The following
DOS commands perform these steps:

C> cc 195demo
C> cc ieeeio
C> ln 195demo ieeeio -lm -lc

Finally, the demonstration program is run by typing 195demo <Enter>. Note that the critical error
handler (CRITERR.C) is not required for the demonstration program.

CRITERR.C (for Aztec C)
Normally, when Driver488/DRV detects an error, perhaps due to a syntax error in a command, or due
to an IEEE 488 bus error (such as time out on data transfer), it responds with an I/O error to DOS.
When this happens, DOS normally issues an ABORT, RETRY or IGNORE message and waits for a
response from the keyboard. There is no way for the user’s program to detect such an error, determine

 8L. Language-Specific Information

 Topics

• Aztec C .. II-104
Use of Character Command Language...II-104
CRITERR.C (for Aztec C) ..II-104

• GW-BASIC (for GW-BASIC or Interpreted BASIC).............. II-105
Use of Direct DOS I/O Devices ..II-105
BASIC VARPTR & SADDR ...II-105
GET & PUT (for GW-BASIC only) ..II-105

• JPI TopSpeed Modula-2.. II-106
Use of Direct DOS I/O Devices ..II-106

• Logitech Modula-2.. II-106
Use of Direct DOS I/O Devices ..II-106

• True Basic .. II-107
Use of Character Command Language...II-107
IEEEIO.TRU..II-107
TOOLKIT.LIB..II-107

• Turbo Basic.. II-107
Use of Character Command Language...II-107

8L. Language-Specific Information II. SOFTWARE GUIDES - 8. Driver488/DRV

II-106 Personal488 User’s Manual, Rev. 3.0

the cause, and take appropriate action. However, DOS does provide a method of redefining the action
to be taken on such a “critical error”. CRITERR.ASM contains a critical error handler that, when
invoked, makes it appear to the calling program that some less-critical error has occurred. The critical
error handler is installed by CRIT_ON() and removed by CRIT_OFF(). The critical error handler is
also automatically removed by DOS when the program exits.

The following program fragment demonstrates the use of the critical error handler:

#include “criterr.h”
crit_on(ieee);
if (ieeewt(“output 16;F0X”) == -1) {
printf(“Error writing F0X to device 16, \n”);
crit_off();
ioctl_wt(ieee,"break",5);
ieeewt(“eol out lf\r\n”);
ieeewt(“status\n”);
ieeerd(response);
printf(“status = %s\n”,response);
crit_on(ieee);
}

We must first #include the header file with the definitions of the critical error routines. We then
enable critical error trapping with CRIT_ON which takes as a parameter the handle of the file for which
critical error trapping is to be enabled. Only read and write commands to that handle are trapped.
Errors caused by other actions, or associated with other files are not trapped. Error trapping may only
be enabled for one file at a time.

Now, if IEEEWT signals an error by returning a -1, we can check what happened. We first PRINTF an
error message, then we turn critical error trapping off with CRIT_OFF so that, if another critical error
occurs, we get the ABORT, RETRY or IGNORE message and know a catastrophic double error has
occurred. We then IOCTL_WT(_BREAK_) to force Driver488/DRV to listen to our next command.
The IOCTL_WT also resets the EOL OUT terminator so we can be sure that Driver488/DRV detects the
end of our commands. We next reset the EOL OUT terminator to our preferred line feed only and ask
Driver488/DRV for its status. On receiving the response, we could interpret the status and take
whatever action is appropriate. However, in this example, we just display the status. Finally, we re-
enable the critical error handler and continue with the program.

GW-BASIC (for GW-BASIC or Interpreted BASIC)

Use of Direct DOS I/O Devices
Once Driver488/DRV has been installed in your system, it is ready to begin controlling IEEE 488 bus
devices. To show how this is done, we develop a short program in BASIC to control a Keithley
Instruments Model 195 digital multimeter. The complete sample program is provided on the
Driver488/DRV disk as 195DEMO.BAS in the \MSBASIC directory.

BASIC VARPTR & SADDR
The BASIC VARPTR and SADDR functions must be used with caution. The first time a variable such as
I or ST$ is encountered, or an array such as R%() is dimensioned, space is made for it in BASIC’s data
space. The other variable or arrays may be moved to make room for the new item. If the memory
location of an item must be fixed, then BASIC cannot be allowed to encounter any new variables or
arrays. For example, in the ENTER statement shown above, Driver488/DRV is told the memory address
of R$ (for GW-BASIC, R%(0)). Then, while the transfer is going on, the Driver488/DRV status is read
into the string variable ST$. If ST$ has not been used previously then BASIC would have to create a
new ST$ and might move R$. Of course, Driver488/DRV would have no way of knowing that R$ has
been moved, and the data would not be placed correctly into R$.

II. SOFTWARE GUIDES - 8. Driver488/DRV 8L. Language-Specific Information

Personal488 User’s Manual, Rev. 3.0 II-107

GET & PUT (for GW-BASIC only)
Users of GW-BASIC and/or Interpreted BASIC can also manipulate two commands not available in
QuickBASIC: GET and PUT, as detailed in the following paragraphs.

The BASIC INPUT and PRINT statements communicate with Driver488/DRV one character at a time.
That is, the PRINT statement breaks up each command into single characters and transfers those
characters separately to Driver488/DRV, and the INPUT statement reads one character at a time from
Driver488/DRV until it detects the carriage-return and line-feed that marks the end of the line. It is
more efficient, especially for long transfers, to read and write blocks of characters. The GET and PUT
statements can be used to gain this improved efficiency.

GET and PUT are normally used to communicate with fixed-length random access files.
Driver488/DRV can be accessed as a random access file:

100 OPEN “\DEV\IEEE” FOR RANDOM AS #3

This opens the third Driver488/DRV name, IEEE, for I/O as a random access file with 128-byte
records. (The other two names: IEEEOUT and IEEEIN, are used for PRINT and INPUT).

BASIC normally limits the number of opened files to 3. Opening additional files can cause a
TOO MANY FILES error. If you should get such an error, you might need to save your program, leave
BASIC (with the SYSTEM command), and reenter BASIC specifying a /F:n parameter. See your
BASIC reference manual for more details.

JPI TopSpeed Modula-2
Use of Direct DOS I/O Devices

Once Driver488/DRV has been installed in your system, it is ready to begin controlling IEEE 488 bus
devices. To show how this is done, we develop a short program, in JPI TopSpeed Modula-2 and
Logitech Modula-2, to control a Keithley Instruments Model 195 digital multimeter. The techniques
used in this program are quite general, and apply to the control of most instruments.

In order to simplify programming Driver488/DRV with Modula-2, the following files are provided on
the Driver488/DRV program disk:

• IEEEIO.MOD: Communication routines for Driver488/DRV.

• IEEEIO.DEF: Declaration file for IEEEIO.MOD.

The actual demonstration program is contained in K195DEMO.MOD. A Modula-2 version of the
keyboard controller program is also included.

Logitech Modula-2
Use of Direct DOS I/O Devices

Once Driver488/DRV has been installed in your system, it is ready to begin controlling IEEE 488 bus
devices. To show how this is done, we develop a short program, in JPI TopSpeed Modula-2 and
Logitech Modula-2, to control a Keithley Instruments Model 195 digital multimeter. The techniques
used in this program are quite general, and apply to the control of most instruments.

In order to simplify programming Driver488/DRV with Modula-2, the following files are provided on
the Driver488/DRV Program disk:

• CHARDEV.MOD: General purpose character device I/O routines.

• CHARDEV.DEF: Declaration file for CHARDEV.MOD.

• IEEEIO.MOD: Communication routines for Driver488/DRV.

• IEEEIO.DEF: Declaration file for IEEEIO.MOD.

The actual demonstration program is contained in K195DEMO.MOD. A Modula-2 version of the
keyboard controller program is also included.

8L. Language-Specific Information II. SOFTWARE GUIDES - 8. Driver488/DRV

II-108 Personal488 User’s Manual, Rev. 3.0

True Basic

Use of Character Command Language
In order to simplify programming Driver488/DRV with True Basic, the following files are provided on
the Driver488/DRV program disk in the TRUEBAS directory:

• IEEEIO.TRU: Communications routines for Driver488/DRV.

• IEEEIO.TRC: Compiled version of IEEEIO.TRU.

• TOOLKIT.LIB: Utility routines from the True Basic Developer’s Toolkit.

• KYBDCTRL.TRU: True Basic version of the Keyboard Controller Program.

IEEEIO.TRU
The IEEEIO.TRU file contains several useful declarations and functions, many of which have been
used in the 195DEMO example program. It is divided into two modules: DosIO and IeeeIO.

• DosIO includes interfaces to several MS-DOS (or PC-DOS) function requests. It requires the
functions from the True Basic Developer’s Toolkit that are included in ToolKit.Lib. They are:

Def Read(handle,bufseg,buflen)
Def Write(handle,bufseg,buflen)
Def IoctlRead(handle,bufseg,buflen)
Def IoctlWrite(handle,bufseg,buflen)

These routines read and write to a character device such as Driver488/DRV. They each take the
following file handle returned by OPEN, as the arguments handle: bufseg, the segment address of
the data buffer to read or write, and buflen, the length of the data buffer.

• IeeeIO includes routines for the convenient control of Driver488/DRV.

TOOLKIT.LIB
TOOLKIT.LIB contains four routines from the True Basic Developer’s Toolkit: Convert, Interrupt,
Signal_e_, and String_ptr .

• Convert (from HEXLIB.TRC) is used to convert hexadecimal string constants such as H3D02 into
numeric form.

• Interrupt (from DOSLIB.TRC) is used to call low-level DOS and BIOS functions.

• Signal_e_ (from DOSLIB.TRC) interprets any error codes returned by Interrupt.

• String_ptr (from DOSLIB.TRC) returns the segment address of a string variable. The text of the
string is located at an offset of 8 from the segment address.

More information about these routines, as well as other useful routines are included in the True Basic
Developer’s Toolkit, available from True Basic.

If you already have the Developer’s Toolkit, you can substitute HEXLIB.TRC or DOSLIB.TRC library
statements for the TOOLKIT.LIB library statements in these routines.

Turbo Basic

Use of Character Command Language
In order to simplify programming Driver488/DRV with Turbo Basic, the following files are provided
on the Driver488/DRV program disk in the \TURBOBAS directory:

II. SOFTWARE GUIDES - 8. Driver488/DRV 8M. Data Transfers

Personal488 User’s Manual, Rev. 3.0 II-109

• IEEEIO.BAS: Communications routines for Driver488/DRV.

• IEEEIO.ASM: Assembly language file for direct DOS access without Turbo Basic interference.

• IEEEIO.COM: Executable version of IEEEIO.ASM.

• KYBDCTRL.BAS: Turbo Basic version of the Keyboard Controller Program.

The actual demonstration program is contained in 195DEMO.BAS. These examples also require the file
REGNAMES.INC which is included with Turbo Basic.

Terminators
Every transfer of data, between a program and Driver488/DRV, or between Driver488/DRV and a bus
device, must have a definite end. This is a common requirement in most systems. For example, most
printers do not print a line until they receive the carriage return that ends that line. Similarly, a BASIC
INPUT statement waits for the <Enter> key to be pressed before returning the entered data to the
program. The only time that some terminator is not required is when the number of characters that
compose the data is known in advance or is transferred along with the data. This is the case, for
example, when fixed-length records are read from a random access disk file.

Driver488/DRV actually uses four terminators:

• The end-of-line (EOL) terminator for output from the program to Driver488/DRV.

• The end-of-line (EOL) terminator for input to the program from Driver488/DRV.

• The data terminator (TERM) for output to bus devices from Driver488/DRV.

• The data terminator (TERM) to input from bus device into Driver488/DRV.

End-Of-Line (EOL) Terminators
The EOL terminators mark the end of character strings transferred between the user’s program and
Driver488/DRV. The EOL output terminator marks the end of strings transferred from the user’s
program to Driver488/DRV, and the EOL input terminator marks the end of strings transferred into the
user’s program from Driver488/DRV.

The EOL terminators normally consist of one or two ASCII characters. The characters do not need to
be printable. In fact they are usually special characters such as carriage return and line feed. Also,
input and output terminators need not be the same.

It is possible to specify that no characters are to be used as EOL terminators. If the EOL output
terminator is set to NONE, then Driver488/DRV assumes that it receives an entire command in each

 8M. Data Transfers

Topics

• Terminators ... II-108
End-Of-Line (EOL) Terminators..II-108
TERM Terminators ..II-112

• Direct I/O & Buffered I/O.. II-113
Direct Bus OUTPUT...II-113
Direct Bus ENTER ...II-113
Buffered I/O...II-114

• Asynchronous Transfers... II-115

8M. Data Transfers II. SOFTWARE GUIDES - 8. Driver488/DRV

II-110 Personal488 User’s Manual, Rev. 3.0

transfer, and when the EOL input terminator is set to NONE, Driver488/DRV does not append any
characters to the returned data.

Driver488/DRV senses the EOL output terminator to detect the end of a command or, in the case of the
OUTPUT data command, to detect the end of the data. Most commands have many different variations.
It is the EOL output terminator that lets Driver488/DRV know when the command has been completely
received and is ready for execution. Without the EOL output terminator, there would be no way of
determining when one command ends and the next begins.

Driver488/DRV provides the EOL input terminator to the user’s program so that the program is able to
detect the end of a response. For example, BASIC needs to receive a carriage-return and line-feed
combination when using the INPUT statement to receive a response from Driver488/DRV.
Driver488/DRV automatically provides this EOL input terminator to the program.

For most programming languages, in most situations, both input and output EOL terminators should be
carriage-return line-feed (CR LF). These are the default values set up by INSTALL, but they can be
changed by using the INSTALL program. The EOL output terminator should be set to whatever is
conventionally sent at the end of a PRINT or equivalent statement to Driver488/DRV, and the EOL
input terminator should be set to whatever is required at the end of a line of input from
Driver488/DRV.

As mentioned previously, the EOL output terminator is used to delimit the data portion of an OUTPUT
command. If, in the OUTPUT command, no character count is specified, the EOL output terminator does
delimit data. However, if a character count is specified, Driver488/DRV will accept exactly that
number of characters from the program for output to the bus, even if the EOL output terminator is
among those characters. Furthermore, if a character count is not specified, the TERM output terminator
will be sent to the bus devices after the data. If a character count is specified, nothing will be sent to
the bus except the exact characters that were sent from the program. For example:

PRINT#1,"OUTPUT10;ABC"

sends ABC <TERM output terminator> to device 10, while

PRINT#1,"OUTPUT10#5;DEF"

sends DEF <CR><LF> to device 10 because BASIC will send a carriage return and line feed
(<CR><LF>) at the end of the command, and a character count of 5 was specified.

The EOL input terminator delimits character strings returned to the program by Driver488/DRV.
However, if the character count is specified in an ENTER command, then exactly that number of
characters, without the EOL input terminator appended, will be returned to the program. In this case,
the normal INPUT statement will not be able to read the data from Driver488/DRV. Instead, a function
like INPUT$(count,file) that reads a specific number of characters, must be used. For example,
the following statements :

PRINT#1,"ENTER 16"
INPUT#2,A$

read a line of data from device 16, while the following :

PRINT#1,"ENTER 16#10"
A$=INPUT$(10,2)

statements read exactly 10 characters from device 16. Finally, the EOL terminators are not used in
BUFFERED transfers, either ENTER or OUTPUT.

EOL IN NONE

As mentioned above, the input or output EOL terminators may be set to NONE. To understand how
communication with Driver488/DRV is possible without terminators, it is necessary to understand in
more detail how programs communicate with Driver488/DRV.

When a program sends information to Driver488/DRV, it uses an MS-DOS Write Data command. It
tells DOS where to send the data (to Driver488/DRV), the number of characters to send (from 1 to

II. SOFTWARE GUIDES - 8. Driver488/DRV 8M. Data Transfers

Personal488 User’s Manual, Rev. 3.0 II-111

65,535 characters), and where the data is to be found in memory (the address of the data buffer). For
example, in C:

ieeewt(“HELLO\r\n”);

calls Write Data, telling it to send 7 characters to Driver488/DRV. In contrast, the BASIC command

PRINT#1,"HELLO"

causes the DOS Write Data command to be called 7 times, once for each character of the command,
and once for each carriage return and line feed that terminate the command. Each time Write Data is
called it is told to write just one character to Driver488/DRV from a specified location in memory.
Whether written all at once, or one character at a time, the command is transferred to DOS to be passed
to Driver488/DRV.

Once DOS has been told to write some data to Driver488/DRV, it calls Driver488/DRV with
essentially the same information that the program had told DOS: a command code that specifies Write
Data, a character count, and the location of the data. Driver488/DRV responds to DOS by processing
the data and returning the number of characters that have been accepted along with any error indicators.

When a program requests information from Driver488/DRV, it uses an MS-DOS Read Data
command. It tells DOS where to get the data (from Driver488/DRV), the size of the data buffer (from
1 to 65,535 characters), and where the data is to be put in memory (the address of the data buffer). In
BASIC, for example, the command:

LINE INPUT#1,A$

causes the DOS Read Data command to be called repeatedly, reading one character at a time into A$
until the carriage-return and line-feed combination that marks the end of the line, is read. Conversely,
in C:

ieeerd(response);

calls Read Data only once, requesting as many characters as there are in the array response.

When DOS has been told to read some data from Driver488/DRV, it calls Driver488/DRV with
essentially the same information that the program has told DOS: a command code that specifies Read
Data, a character count, and the location of the data buffer. Driver488/DRV responds to DOS by
filling some or all of the data buffer, and returning the number of characters that have been read along
with any error indicators. DOS then returns the number of characters read to the calling program.

If EOL IN NONE is specified, Driver488/DRV never appends terminators to data being read by the
program. This means that the program cannot search for a specified character or combination of
characters to know when to stop reading. Hence, EOL IN NONE cannot be used in languages such as
BASIC or Turbo Pascal which require carriage return and line feed at the end of input lines.
Languages such as C or True Basic, that use MS-DOS calls to communicate with Driver488/DRV, can
use EOL IN NONE by using the following procedure:

1. Read data from Driver488/DRV into a buffer of reasonable size (typically 64 to 1024 bytes long).
DOS returns to the program the number of bytes read.

2. If the number of bytes read is less than the length of the buffer, then the reading is done.
Otherwise, go on with step 3.

3. Use the IOCTL function to check if Driver488/DRV has more information available. If it does
(IOCTL returned a 1, ASCII 31h), then go to step 1 to read more data into a new buffer.
Otherwise, the reading is done.

8M. Data Transfers II. SOFTWARE GUIDES - 8. Driver488/DRV

II-112 Personal488 User’s Manual, Rev. 3.0

Notice that the ability to use EOL IN NONE requires the ability to use the character count returned by
the DOS Read Data command, and the ability to check Driver488/DRV status using IOCTL. The
advantage of using EOL IN NONE is that only data is returned to the program. Driver488/DRV does
not have to add terminators to the data, and the program does not need to search for terminators to
know the amount of data it received.

RawMode Communication

When communicating with character devices, DOS normally checks the transferred data for control
characters such as X-ON, X-OFF and control-Z. However, when communicating with
Driver488/DRV, this is not desirable. First, it might interfere with control characters that are supposed
to be transferred to or from Driver488/DRV. Second, and more importantly, when DOS is checking
for control characters, it only transfers one character at a time to or from Driver488/DRV. This is
much less efficient than transferring large blocks of data. Therefore, whenever possible DOS should be
configured not to check for control characters when communicating with Driver488/DRV. This is
typically accomplished by a function called RawMode in the language-specific support files (such as
IEEEIO.C) provided with Driver488/DRV. The assembly-language fragment, provided in the
following table, performs this function.

mov AX,4400h ;DOS Get Device Data Function
mov BX,ieee ;File handle for Driver488/DRV
int 21h ;Execute DOS function
mov DH,0 ;Must clear DH
or DL,20h :Set “don’t check for control characters” bit
mov AX,4401h ;DOS Set Device Data Function
mov BX,ieee ;File handle
int 21h ;Execute DOS function

The first part of this code fragment reads the current device control settings from DOS. These are
returned in the DX register which is then modified to tell DOS not to check for control characters.
Finally, DOS is again called to implement the new control settings.

RawMode can greatly improve the efficiency of communication with Driver488/DRV, and should be
used whenever possible, but it is not required unless EOL OUT NONE is to be used.

EOL OUT NONE

Once DOS has been told not to check for control characters, and we have chosen a programming
language (such as C or True Basic, but not BASIC) that can send an entire command in one DOS
Write Data call, we can use EOL OUT NONE so that we do not have to append termination characters
to Driver488/DRV commands.

If EOL OUT NONE is specified, Driver488/DRV assumes that the data it receives from DOS is the
complete command. Obviously, EOL OUT NONE cannot be used with the BASIC PRINT# statement
because PRINT# transfers characters one at a time to DOS, which passes them along individually to
Driver488/DRV. Commands are not given to Driver488/DRV in a single transfer. Even when the
language does pass the command to DOS in a single transfer, DOS does not pass the command to
Driver488/DRV in one transfer unless we have configured DOS to use RawMode as described above.

The following C code fragment reads data using the above procedure:

#define bufsize 256
char response[bufsize], /* holds read data */

ioctlbuf[1]; /* holds IOCTL status */
int len, /* number received this time */

total=0; /* total received */
do {len=ieeerd(response); /* read some data */

if (len==-1) {...error...} /* check for error */
total += len; /* add len to total */
/* process len characters at this point */
if (len<bufsize) break; /* done if partial */
ioctl_rd(ieee,ioctlbuf,1); /* repeat while more */

} while (ioctlbuf==’1’);

II. SOFTWARE GUIDES - 8. Driver488/DRV 8M. Data Transfers

Personal488 User’s Manual, Rev. 3.0 II-113

EOL OUT NONE does eliminate the inconvenience of appending terminators to Driver488/DRV
commands, but it does require that the entire command be contained in one transfer. Without EOL OUT
NONE it is possible to split a long Driver488/DRV command into several, smaller phrases:

ieeewt(“ENTER 16 #1000 ”);
ieeewt(“BUFFER &HB800:0 ”);
ieeewt(“CONTINUE\n”);

which would have to be combined into a single transfer with EOL OUT NONE :

ieeewt(“ENTER 16 #1000 BUFFER &HB800:0 CONTINUE”);

TERM Terminators
Just as the EOL terminators delimit the end of strings transferred between the user’s program and
Driver488/DRV, the TERM terminators delimit the end of strings transferred between Driver488/DRV
and bus devices. The TERM output terminator marks the end of strings transferred from
Driver488/DRV to bus devices, and the TERM input terminator marks the end of strings transferred into
Driver488/DRV from bus devices.

The TERM terminators differ from the EOL terminators in one important aspect. While the EOL
terminators are composed of one or two characters, the TERM terminators can include the IEEE 488 bus
end-or-identify (EOI) signal. The EOI signal, when asserted during a character transfer, marks that
character as the last of the transfer. This allows the detection of the end of data regardless of which
characters comprise the data. This feature is very useful in binary data transfers which might contain
any ASCII values from 0 to 255.

To support the EOI signal, the TERM input and output terminators can be composed of just EOI, one or
two characters, or one or two characters with EOI. If EOI is specified, it has a slightly different
meaning on input than on output.

When EOI alone is specified as the TERM output terminator, the EOI bus signal is asserted during the
last data character transmitted. If EOI is specified with one or two characters, then EOI is asserted on
the last of the characters. In this way, EOI is asserted on the last character transmitted to the bus
device.

When EOI alone is specified as the TERM input terminator, then all the characters received from the bus
device, including the one on which EOI was asserted are returned to the user’s program. When one or
two characters are specified, without EOI, all the characters up to, but not including, the TERM input
terminator characters, are returned to the program. However, if both EOI and characters are specified,
the following considerations apply:

• If EOI is received, and the complete terminator character sequence has not been received (even if
the first of the two characters has been received), then all the received characters are returned to
the program.

• If the complete terminator character sequence has been received, with or without EOI asserted on
the last character, then only the characters up to but not including the terminator characters are
returned.

• If only one character is specified for input termination, the complete terminator character sequence
consists of just that one character, but if two characters are specified, then it consists of both
characters, received consecutively.

During normal OUTPUT, without a specified character count or buffer, the EOL output terminator
received by Driver488/DRV is replaced by the TERM output terminator before sending the data to the
bus devices. During normal ENTER, the TERM input terminator received by Driver488/DRV is replaced
with the EOL input terminator before being returned to the program. In this way, the program
communicates with Driver488/DRV using the EOL terminators, and Driver488/DRV communicates
with bus devices using the TERM terminators.

See the ENTER and OUTPUT command descriptions in the following text, and in “Section III: Command
References” for more information.

8M. Data Transfers II. SOFTWARE GUIDES - 8. Driver488/DRV

II-114 Personal488 User’s Manual, Rev. 3.0

Direct I/O & Buffered I/O
Direct I/O is communication through the use of the PRINT and INPUT statements, or their equivalent.
Direct I/O is the simplest method of communicating with Driver488/DRV and, through it, with bus
devices. However, direct I/O has a relatively large overhead and so, for large data transfers, buffered
I/O is preferable. In buffered I/O, the program tells Driver488/DRV where in memory to find or put
the data and Driver488/DRV takes care of the actual transfer.

Direct Bus OUTPUT
The OUTPUT command sends data to bus devices. For example, the statement

PRINT#1,"OUTPUT 05;SP1;"

sends the characters SP1; to device 5. This is an example of direct I/O as the data is communicated
directly to Driver488/DRV through the PRINT statement. As discussed above, Driver488/DRV
recognizes the EOL output terminator as the end of the data and sends the TERM output terminator in its
place after sending the data. Binary direct output is also possible. For example, the following
statements send all 256 ASCII characters:

PRINT#1,"OUTPUT 05 #256;";
FOR I=0 TO 255
PRINT#1,CHR$(I);
NEXT I

The first statement tells Driver488/DRV to expect 256 characters to follow that are to be sent to device
5. Notice the semicolon (;)just after the #256. This marks the end of the actual OUTPUT command
and the start of the data. The semicolon at the end of the line tells BASIC not to send anything else,
such as the normal carriage-return and line-feed combination, after sending the quoted characters. The
next three lines send the 256 ASCII characters from 0 to 255 in order, to Driver488/DRV for transfer
to device 5. The semicolon at the end of the third line has the same function as the semicolon at the
end of the first line: it prevents BASIC from sending any extra characters. In this example, we are
performing a binary transfer. Driver488/DRV knows how many characters are to be transferred and
neither requires EOL output terminators to end the command, nor sends TERM output terminators to the
bus device. The data is transferred to the bus device exactly as sent from the program.

Direct Bus ENTER
The ENTER command is used to read data from bus devices. For example, the statements:

PRINT#1,"ENTER 16"
INPUT#2,A$

read data from device 16 and store the returned data in the A$ variable. This is an example of direct
ENTER input since the data received from the bus is read into the program via the INPUT statement that
reads the result directly from Driver488/DRV. As discussed above, Driver488/DRV accepts data from
device 16 until it detects the TERM input terminator. It replaces the TERM input terminator with the EOL
output terminator and returns the result to the program. BASIC accepts the data just as it accepts
character data from any file. This allows us to use the varieties of BASIC input statements to control
how the data is received. For example, if the data read form the device is in the form of a valid number
then we can read it as a number:

PRINT#1,"ENTER 16"
INPUT#2,N

Or, if the data consists of several values separated by commas, we can read it as several values:

PRINT#1,"ENTER 16"
INPUT#2,A$,N,B$,I

Or, if we want to read the entire input, even if it includes commas or other special characters, we can
use LINE INPUT:

PRINT#1,"ENTER 16"
LINE INPUT#2,L$

II. SOFTWARE GUIDES - 8. Driver488/DRV 8M. Data Transfers

Personal488 User’s Manual, Rev. 3.0 II-115

When performing a binary ENTER, Driver488/DRV does not check for TERM input terminators when
reading from the bus, nor does it provide EOL input terminators to the program. The data is returned to
the program just as it is received from the bus device. The INPUT$ function which is designed to read
a specific number of characters from a file or device, is ideal for reading the result from
Driver488/DRV. Note that a normal INPUT statement does not work, as Driver488/DRV does not
provide the EOL input terminators on binary ENTERs.

Buffered I/O
In buffered I/O, the program does not transfer data to or from Driver488/DRV. All it does is send the
address and quantity of data to be transferred, and Driver488/DRV takes care of the details of the
transfer. The program must be able to tell Driver488/DRV when in memory to find the data. In other
words, it must be able to provide Driver488/DRV with the actual memory address of the buffer. In
BASIC, the capability is partially provided by the VARPTR function. VARPTR returns a number from 0
to 65,535 giving the address of its argument. For example:

PRINT VARPTR(A%(0))

prints the address of the first byte of the A% array. This address, however, is relative to the start of
BASIC’s data segment.

The first three statements ask Driver488/DRV for the location of its callable subroutines, and configure
BASIC (via the DEF SEG statement) to be able to call them. The offset of GET.SEGMENT, which is
0, from the start of the IEEESEG area must be specified, and then GET.SEGMENT can be called. The
VARSEG function is used in a similar manner to determine the value of the BASIC data segment. This
data segment value remains fixed during program execution, and so these statements need only be
performed once to set the value of the data segment.

With the data segment value determined, and the VARPTR function able to find the offsets into that
segment, we are able to completely specify the memory address of any BASIC variable or array.
However, character string variables, such as A$, are not stored in the same manner as numeric variables
and are not recommended for BUFFERED I/O.

The following is a typical BUFFERED ENTER command:

DIM W%(10)
PRINT#1,"ENTER 12 #20 BUFFER"; VARSEG(W%(1)); “:”; VARPTR(W%(1))

The PRINT statement in this example sends to Driver488/DRV the command (ENTER), the bus device
address (12) and number of bytes to transfer (20), the BUFFER keyword, the segment
(VARSEG(W%(1)), a colon character (:) that lets Driver488/DRV know that the memory address is
given as a segment followed by an offset, and the offset (VARPTR(W%(1)). If BASIC’s segment
and offset to W%(1) are 2540 and 1320, respectively, then the PRINT statement would send:

“ENTER 12 #20 BUFFER 2450:1320”

to Driver488/DRV. This gives Driver488/DRV all the information it needs to be able to transfer the
received data directly into the W% array.

BUFFERED OUTPUT is also possible. For example, say we wanted to send the data just received in the
example above to a device 17. We would use the following command:

PRINT#1,"OUTPUT17 #20 BUFFER"; VARSEG(W%(1)); “:”; VARPTR(W%(1))

Normally, BUFFERED I/O is performed without any terminator detection. However, it is possible to
explicitly specify that the ENTER should stop on detection of EOI, or on detection of EOI or some
single character. For example, if we want to terminate on EOI:

PRINT#1,"ENTER 12#20 BUFFER"; VARSEG(W%(1));“:”; VARPTR(W%(1));“EOI”

Finally, just as we can perform direct binary OUTPUT, we can also perform direct binary ENTER:

PRINT#1,"ENTER 16#128"
A$=INPUT$(128,2)

8M. Data Transfers II. SOFTWARE GUIDES - 8. Driver488/DRV

II-116 Personal488 User’s Manual, Rev. 3.0

This reads data into W% until either 20 characters have been received, or EOI has been detected.
However, if EOI causes the transfer to stop, we can discover how much data has been received by using
the BUFFERED command:

PRINT#1,"BUFFERED"
INPUT#2,N

The number of bytes transferred is read into N. Now we can use this value to send the read data out to
device 17:

PRINT#1,"OUTPUT17#";N;"BUFFER";VARSEG(W%(1));":";VARPTR(W%(1));"EOI"

Note that the variable N has been used in place of the literal 20 to specify how many bytes to transmit.

Clearly, BUFFERED I/O is more complex than simple direct I/O. However, it can be very useful.
BUFFERED I/O is normally much faster than direct I/O because the characters go directly from memory
to the bus under the control of Driver488/DRV without the intervention of BASIC or DOS. Also,
BUFFERED I/O is not limited by the 255-character limit on INPUT$ that can hinder binary ENTERs.

Asynchronous Transfers
Driver488/DRV can return to the user’s program while a transfer is in progress. This is useful
whenever the transfer takes a substantial amount of time, and other processing could proceed while
waiting. For example, suppose a certain bus device can transfer only 1000 bytes per second. If there
are 10,000 bytes to transfer, it takes 10 seconds to complete the transfer. The following statements
might be used to receive this data:

DIM R%(5000)
PRINT#1,"ENTER 09 #10000 BUFFER"; DS%;
“:”; VARPTR(R%(1)); “CONTINUE”

Now do other work while
the transfer is continuing

PRINT#1,"WAIT"

The CONTINUE keyword tells Driver488/DRV to return to the program after setting up the transfer.
The program is then free to do other processing, as long as it does not need access to the IEEE 488 bus.
Finally, when the program is ready to process the received data it performs a WAIT to check that the
data has been completely received. In this way, CONTINUE transfers overlap IEEE 488 bus data
transfers with program execution.

The use of DMA and interrupts requires proper hardware and software configuration. For more
information, refer to the Sub-Chapter “Installation & Configuration” early in this Chapter.

 8N. Operating Modes

Topics

• Introduction... II-116
• Operating Mode Transitions.. II-116
• System Controller Mode.. II-117
• System Controller, Not Active Controller Mode.................... II-117
• Not System Controller Mode.. II-119
• Active Controller, Not System Controller Mode.................... II-119

II. SOFTWARE GUIDES - 8. Driver488/DRV 8N. Operating Modes

Personal488 User’s Manual, Rev. 3.0 II-117

Introduction
There are four types of IEEE 488 bus devices: Active Controllers, Peripherals, Talk-Only devices, and
Listen-Always devices:

• In simple systems, Talk-Only and Listen-Always devices are usually used together, such as a Talk-
Only digitizer sending results to a Listen-Always plotter. In these systems, no Controller is needed
because the Talker assumes it is the only Talker on the bus, and the Listener(s) assume they are all
supposed to receive all data sent over the bus. This is a simple and effective method of
transferring data from one device to another, but is not adequate for more complex systems where,
for example, one computer is controlling many different bus devices.

• In more complex systems, the Active Controller sends commands to the various bus Peripherals,
telling them what to do. The controller sends bus commands such as: Unlisten, Listen
Address Group, Untalk, and Talk Address Group to specify which device(s) send data, and
which receive it.

When an IEEE 488 bus system is first turned on, some device must be the Active Controller. This
device is the System Controller and always keeps some control of the bus. In particular, the System
Controller controls the Interface Clear (IFC) and Remote Enable (REN) bus management lines. By
asserting Interface Clear, the System Controller forces all other bus devices to stop their bus operations,
and regains control as the Active Controller.

Operating Mode Transitions
The System Controller is initially the Active Controller. It can, if desired, Pass Control to another
device and thereby make that device the Active Controller. Notice that the System Controller remains
the System Controller even when it is not the Active Controller. Of course, the device to which control
is passed must be capable of taking the role of Active Controller. It would make no sense to try to pass
control to a printer. Control should only be passed to other computers that are capable, and ready, to
become the Active Controller. Note further that there must be exactly one System Controller on the
IEEE 488 bus. All other potential controllers must be configured as Peripherals when they power up.

The state diagram which follows, shows the relationships between the various operating modes. The
top half of the state diagram shows the two operating states of a System Controller. At power on, it is
the active controller. It directs the bus transfers by sending the bus commands mentioned previously.
It also has control of the Interface Clear and Remote Enable bus lines. The System Controller can
pulse Interface Clear to reset all of the other bus devices.

Furthermore, the System Controller can pass control to some other bus device and thereby become a
Peripheral to the new Active Controller. If the System Controller receives control from the new Active
Controller, then it once again becomes the Active Controller. The System Controller can also force the
Active Controller to relinquish control by asserting the Interface Clear signal.

8N. Operating Modes II. SOFTWARE GUIDES - 8. Driver488/DRV

II-118 Personal488 User’s Manual, Rev. 3.0

The bottom half of the state diagram shows the two operating states of a Not System Controller device.
At power on, it is a Peripheral to the System Controller which is the Active Controller. If it receives
control from the Active Controller, it becomes the new Active Controller. Even though it is the Active
Controller, it is still not the System Controller. The System Controller can force the Active Controller
to give up control by asserting Interface Clear. The Active Controller can also give up control by
passing control to another device, which may or may not be the System Controller.

In summary, a bus device is set in hardware as either the sole System Controller in the system, or as a
non-System Controller. At power on, the System Controller is the Active Controller, and the other
devices are Peripherals. The System Controller can give up control by Passing Control, and can regain
control by asserting Interface Clear, or by receiving control. A Peripheral can become the Active
Controller by receiving control, and can give up control by passing control, or on detecting Interface
Clear.

System Controller Mode
The most common Driver488/DRV configuration is as the System Controller, controlling several IEEE
488 bus instruments. In this mode, Driver488/DRV can perform all the various IEEE 488 bus
protocols necessary to control and communicate with any IEEE 488 bus devices. As the System
Controller in the Active Controller mode, Driver488/DRV can use all the commands available for the
Active Controller state, plus control the Interface Clear and Remote Enable lines. The available bus
commands and their actions are:

Command Action
ABORT Pulse Interface Clear.
LOCAL Unassert Remote Enable, or send Go To Local to selected devices.
REMOTE Assert Remote Enable, optionally setting devices to Remote.
LOCAL LOCKOUT Prevent local (front-panel) control of bus devices.
CLEAR Clear all or selected devices.
TRIGGER Trigger selected devices.
ENTER Receive data from a bus device.
OUTPUT Send data to bus devices.
PASS CONTROL Give up control to another device which becomes the Active Controller.
SPOLL Serial Poll a bus device, or check the Service Request state.
PPOLL Parallel Poll the bus.
PPOLL CONFIG Configure Parallel Poll responses.
PPOLL DISABLE Disable the Parallel Poll response of selected bus devices.
PPOLL UNCONFIG Disable the Parallel Poll response of all bus devices
SEND Send low-level bus sequences.
RESUME Unassert Attention. Use to allow Peripheral-to-Peripheral transfers.

System Controller, Not Active Controller Mode
After passing control to another device, the System Controller is no longer the Active Controller. It
acts as a Peripheral to the new Active Controller, and the allowed bus commands and their actions are
modified accordingly. However, it still maintains control of the Interface Clear and Remote Enable
lines. The available bus commands and their actions are:

Command Action
ABORT Pulse Interface Clear.
LOCAL Unassert Remote Enable.
REMOTE Assert Remote Enable.
ENTER Receive data from a bus device as directed by the Active Controller.
OUTPUT Send data to bus devices as directed by the Active Controller.
REQUEST Set own Serial Poll request (including Service Request) status.
SPOLL Get own Serial Poll request status.

As a bus Peripheral, Driver488/DRV must respond to the commands issued by the Active Controller.
The controller, for example, can address Driver488/DRV to Listen in preparation for sending data.

II. SOFTWARE GUIDES - 8. Driver488/DRV 8N. Operating Modes

Personal488 User’s Manual, Rev. 3.0 II-119

There are two ways to detect our being addressed to Listen: through the STATUS command, or by
detecting an interrupt with the ARM command.

The STATUS command can be used to watch for commands from the Active Controller. The Operating
Mode, which is a “P” while Driver488/DRV is a Peripheral, changes to a “C” if the Active Controller
passes control to Driver488/DRV. The Addressed State goes from Idle “I” to Listen “L” or Talk
“T” if Driver488/DRV is addressed to Listen or to Talk, and goes back to IDLE “I” when the Active
Controller issues Unlisten (UNL), Untalk (UNT), or specifies another Talker Address Group
(TAG). The TRIGGER “T1” and CLEAR “C1” indicators are set when Driver488/DRV is triggered or
cleared, and reset when STATUS is read. The Address Change indicator is set to CHANGE “G1” when
the Addressed State changes. These indicators allow the program to sense the commands issued to
Driver488/DRV by the Active Controller.

The various STATUS indicators and their descriptions are provided in the following table:

STATUS Indicator Description
“P” (Peripheral) Driver488/DRV is in the Peripheral (*CA) operating mode.
“C” (Controller) Driver488/DRV is the Active Controller (CA).
“T1” (Trigger) Driver488/DRV, as a Peripheral, has received a TRIGGER bus command.
“C1” (Clear) Driver488/DRV, as a Peripheral, has received a CLEAR bus command.
“T” (Talk) Driver488/DRV is in the Talk state and can OUTPUT to the bus.
“L” (Listen) Driver488/DRV is in the Listen state and can ENTER from the bus.
“I” (Idle) Driver488/DRV is in neither the Talk nor Listen state.
“G1” (Change) An Address Change has occurred, that is, a change between Peripheral

and Controller, or among Talk, Listen, and Idle has occurred.
This is, perhaps, the most useful interrupt in the Peripheral mode.

The following BASIC program fragment illustrates the use of the Address Change and Addressed State
indicators to communicate with the Active Controller.

First, check STATUS until it indicates there has been an Address Change:

200 PRINT#1,"STATUS"
210 INPUT#2 ST$
220 ‘Has there been no Address Change?
230 IF MID$(ST$,7,1)="0" THEN 200
240 ‘Are we still in the idle state?
250 STATE$=MID$(ST$,9,1)
260 IF STATE$="I" THEN 200
270 ‘Are we addressed to listen?
280 IF STATE$="L" THEN 400
290 ‘Are we addressed to talk?
300 IF STATE$="T" THEN 500
310 PRINT “BAD ADDRESSED STATE VALUE: ”;ST$: STOP

If addressed to Listen, then ENTER a line from the controller and PRINT it out:

400 ‘Listen state
410 PRINT#1,"ENTER"
420 LINE INPUT#2,A$
430 PRINT A$
440 GOTO 200

If addressed to Talk, then INPUT a line from the keyboard and OUTPUT it to the controller:

500 ‘Talk state
510 LINE INPUT A$
520 PRINT#1,"OUTPUT;";A$
530 GOTO 200

It is also possible to detect these conditions with the ARM command and handle them in an Interrupt
Service Routine (ISR). The Peripheral, Controller, Talk, Listen, and Idle conditions cause
interrupts only when the Address Change indicator “G1” in the STATUS response is set. The Change,
Trigger, and Clear indicators are all reset by the STATUS command. Thus, the STATUS command

8N. Operating Modes II. SOFTWARE GUIDES - 8. Driver488/DRV

II-120 Personal488 User’s Manual, Rev. 3.0

should be used in the Interrupt Service Routine to prevent re-interruption by an indicator which has not
been reset.

Not System Controller Mode
If Driver488/DRV is not configured as the System Controller, then at power on, it is a bus Peripheral.
It might use a program like the one previously described to communicate with the Active Controller.
When Driver488/DRV is not the System Controller and not the Active Controller (*SC*CA), the
available bus commands and their actions are:

Command Action
ENTER Receive data from a bus device as directed by the Active Controller.
OUTPUT Send data to bus devices as directed by the Active Controller.
REQUEST Set own Serial Poll request (including Service Request) status.
SPOLL Get own Serial Poll request status.

Active Controller, Not System Controller Mode
If the Active Controller passes control to the Driver488/DRV, then it becomes the new Active
Controller. This can be detected by the STATUS command or as an ARMed interrupt. As an Active
Controller, but not the System Controller, the available bus commands and their actions are:

The various ARM conditions and their descriptions are provided in the following table:

ARM Condition Description
SRQ The internal Service Request state is set. See the SPOLL command in

“Section III: Command References” for more information.
Peripheral Driver488/DRV is in the Peripheral (*CA) operating mode.
Controller Driver488/DRV is the Active Controller (CA).
Trigger Driver488/DRV, as a Peripheral, has received a TRIGGER bus command.
Clear Driver488/DRV, as a Peripheral, has received a CLEAR bus command.
Talk Driver488/DRV is in the Talk state and can OUTPUT to the bus.
Listen Driver488/DRV is in the Listen state and can ENTER from the bus.
Idle Driver488/DRV is in neither the Talk nor Listen state.
Bytein Driver488/DRV has been received a byte from the IEEE 488 bus.
Byteout Driver488/DRV can output a byte to the IEEE 488 bus.
Error Driver488/DRV has detected an error condition.
Change An Address Change has occurred, that is, a change between Peripheral

and Controller, or among Talk, Listen, and Idle has occurred.
This is, perhaps, the most useful interrupt in the Peripheral mode.

Command Action
ABORT Assert Attention and send My Talk Address to stop any bus transfers.
LOCAL Send Go To Local to selected devices.
LOCAL LOCKOUT Prevent local (front-panel) control of bus devices.
CLEAR Clear all or selected devices.
TRIGGER Trigger selected devices.
ENTER Receive data from a bus device.
OUTPUT Send data to bus devices.
PASS CONTROL Give up control to another device which becomes the Active Controller.
SPOLL Serial Poll a bus device, or check the Service Request state.
PPOLL Parallel Poll the bus.
PPOLL CONFIG Configure Parallel Poll responses.
PPOLL DISABLE Disable the Parallel Poll response of selected bus devices.
PPOLL UNCONFIG Disable the Parallel Poll response of all bus devices.
SEND Send low-level bus sequences.
RESUME Unassert Attention. Used to allow Peripheral-to-Peripheral transfers.

II. SOFTWARE GUIDES - 8. Driver488/DRV 8O. Utility Programs

Personal488 User’s Manual, Rev. 3.0 II-121

 8O. Utility Programs

Topics

• Printer & Serial Redirection ... II-120
• Removal & Reinstallation... II-122

MARKDRVR & REMDRVR..II-122
• Moving Files from an IEEE 488 (HP-IB) Controller to a PCII-123

PRNTEMUL Files ...II-123
Configuration of the IEEE Interface for PRNTEMUL............................II-123
Running PRNTEMUL..II-124
Data Transfer ...II-124

Printer & Serial Redirection
IEEELPT and IEEECOM are stand-alone utilities (Driver488/DRV need not be installed to use them)
that allow programs which are unaware of the IEEE 488 bus to control IEEE 488 bus devices as if they
were printer (IEEELPT) or serial (IEEECOM) devices. They automatically redirect communications
destined for printer or serial ports to specified IEEE 488 bus devices. For example, the command:

C> IEEELPT IEEE05

will configure IEEE 488 bus device 5 to appear as the first parallel printer port (LPT1:). Any text that
is destined for LPT1: will, instead be send to bus device 5. For example, the COPY command:

C> COPY TEXTFILE.DOC LPT1:

will copy the contents of TEXTFILE.DOC to the IEEE 488 bus. Any software which prints to LPT1:
will now send its data to IEEE 488 bus device 5.

will redirect communications to and from the COM1: serial port to IEEE 488 bus device 12. Thus, a
plotting program which expects a serial plotter can communicate with an IEEE 488 plotter using
Power488.

Serial port redirection is often less effective than printer port redirection because many programs
control the serial port hardware directly and bypass the redirection program. It is still possible to
redirect output from such a program to an IEEE device if that program can be configured to send its
output to a disk file rather than directly to the printer or plotter. If a file such as \DEV\COM1 is
specified, the program will act as though the data were being written to an actual disk file, while the
output will be sent to the IEEE 488 bus device to which COM1 was redirected. The program may even
issue a warning message that the specified file exists and will be overwritten. If it does, then the user
may tell it that it may delete or overwrite the file. No harm can result from trying to delete a device.

To understand how these programs are used, it is necessary to keep in mind the difference between
logical and physical devices. When the computer first boots up, it takes an inventory of the installed
hardware. It might, for example, find two parallel printer ports, and one serial communications port.
These are the physical devices. The physical device, LPT1 (note the absence of the colon) is the printer
port first identified by the computer. The logical device LPT1: (with the colon) refers to the device
which is currently configured to receive data to be printed. The computer maintains two tables of four
entries each to keep track of physical devices by logical device name. In the case of two printer and
one serial port, these tables initially appear as:

Similarly, the command:

C> IEEECOM IEEE12

8O. Utility Programs II. SOFTWARE GUIDES - 8. Driver488/DRV

II-122 Personal488 User’s Manual, Rev. 3.0

Printer Port Assignments Serial Port Assignments
LPT1: LPT2: LPT3: LPT4: COM1: COM2: COM3: COM4:

LPT1 LPT2 (none) (none) COM1 (none) (none) (none)

The IEEELPT command takes up to four optional device arguments. Each argument is of the form
IEEEpp, IEEEppss or LPTn, where pp is an IEEE 488 bus primary address from 00 to 30, ppss is a
bus address composed of a primary address from 00 to 30 followed by a secondary address from 00 to
31, and n is a physical printer port device number, from 1 to 4.

If IEEELPT is executed with no arguments, then it just displays the current logical printer port
assignments. If one or more arguments are provided, then the first logical printer port (LPT1:) is
redirected to the physical device specified by the first argument, the next logical port (LPT2:) is
redirected to the next specified physical device, and so on. If fewer than four devices are specified,
then the remaining logical printers are directed to any unused physical parallel printer ports. For
example, on a machine with two physical parallel printer ports these commands have the effects
indicated in the following table:

Command Printer Port Assignments
LPT1: LPT2: LPT3: LPT4:

(Boot-Up) LPT1 LPT2 (none) (none)

IEEELPT (No change) LPT1 LPT2 (none) (none)

IEEELPT IEEE05 IEEE05 LPT1 LPT2 (none)

IEEELPT IEEE05 IEEE1201 IEEE05 IEEE1201 LPT1 LPT2

IEEELPT IEEE05 IEEE1201 IEEE17 IEEE05 IEEE1201 IEEE17 LPT1

IEEELPT IEEE05 IEEE1201 IEEE17 IEEE29 IEEE05 IEEE1201 IEEE17 IEEE29

IEEELPT LPT1 IEEE05 LPT1 IEEE05 LPT2 (none)

IEEELPT LPT2 LPT1 IEEE1201 LPT2 LPT1 IEEE1201 (none)

Note that the port assignments are flexible, any order may be used. Also note how the physical printer
ports are added to the assignments if there is room for them and if they have not already been specified.

Serial port redirection is accomplished by IEEECOM. IEEECOM is used identically to IEEELPT except
that the physical port names (without colons) are COM1 through COM4 rather than LPT1 through LPT4.
For example, the IEEECOM command:

IEEECOM IEEE12 COM2 COM1

will redirect communications from COM1: to IEEE 488 bus device 12, COM2: to COM2, and COM3: to
COM1.

In addition to the port specifications, both IEEELPT and IEEECOM allow two optional parameters. The
/Aioaddr parameter is used to specify the I/O base address of the IEEE 488 interface board and the
/Baddr parameter sets its IEEE 488 bus address.

The I/O base address must be specified when the associated IEEE 488 interface board is not at the
default I/O address of 02E1 (hex). The I/O base address is usually given as a hexadecimal number.
For example, to use the default I/O address, the parameter would be /A&H02E1. If the hexadecimal I/O
address ends in a 0 or an 8 then consecutive I/O addresses will be used. If the address ends in a 1 then
I/O addresses will be separated by &H400. I/O addresses ending in other than 0, 1, or 8 are not
allowed. For example, the command:

IEEELPT IEEE05 /A&H22E1

would configure LPT1: for output to IEEE 488 bus address 05 on a second interface card located at
22E1 (hex). The I/O base address is usually set by switches or jumpers on the interface card. Refer
to the manufacturer’s instructions for your IEEE 488 board to determine its I/O address. The default
I/O port base address for IEEELPT and IEEECOM is /A&H02E1.

II. SOFTWARE GUIDES - 8. Driver488/DRV 8O. Utility Programs

Personal488 User’s Manual, Rev. 3.0 II-123

The /B sets the primary IEEE 488 bus address of IEEE 488 interface card. Every IEEE 488 bus
device, including the controller must have a unique IEEE 488 address in the range of 00 to 30
(decimal). The default address for the interface card is 21, but must be changed if any IEEE
Peripheral uses the same address. For example, the command:

IEEECOM IEEE21 /B00

sets the interface card bus address to 00 so that COM1: may be redirected to an IEEE 488 bus device
with an address of 21.

Removal & Reinstallation
Driver488/DRV is a special type of terminate-and-stay-resident (TSR) program that controls
Power488, Personal488, and LAN488. When DRVR488.COM is executed, it installs itself permanently
into memory and connects itself into DOS so that it appears to be a standard device driver that can be
used to control IEEE 488 devices. Normally, Driver488/DRV is present in memory whenever the
computer is operating, even if it is not being used. Most computers have enough memory so that the
amount taken by Driver488/DRV is not critical, but some very large programs need so much memory
that they cannot operate if Driver488/DRV is installed.

It is possible to temporarily remove Driver488/DRV by editing the AUTOEXEC.BAT file. Once
Driver488/DRV is installed, the AUTOEXEC.BAT file will contain one or more lines similar to the
following:

C:\IEEE488\DRVR488

These are the commands that install Driver488/DRV. They can be disabled by adding the word REM,
followed by a space, to convert them to remarks:

REM C:\IEEE488\DRVR488

When the computer is rebooted, these lines will be ignored, Driver488/DRV will not be loaded, and the
memory that would have been used for Driver488/DRV will now be available for other programs. If
Driver488/DRV is needed later, the AUTOEXEC.BAT file must be re-edited to remove the REMs and to
re-enable Driver488/DRV, and then the computer must be rebooted.

A more practical method involves the creation of a separate batch file that holds the DRVR488
commands. When Driver488/DRV is installed, the DRVR488 commands are placed in the
AUTOEXEC.BAT file. By moving these commands to a separate batch file, it is possible to avoid
installing Driver488/DRV before it is needed. To create a separate batch file, first copy
AUTOEXEC.BAT to a new file, perhaps DRIVER.BAT. Then edit the AUTOEXEC.BAT file, deleting the
DRVR488 commands, and edit DRIVER.BAT, leaving only the DRVR488 commands. When the system
is rebooted, Driver488/DRV will no longer be installed because the AUTOEXEC.BAT file no longer
contains the DRVR488 commands. However, whenever Driver488/DRV is needed, it can be installed
by typing DRIVER which will execute the DRVR488 commands in the DRIVER.BAT file. Once
Driver488/DRV has been installed, it will remain installed until the system is rebooted.

MARKDRVR & REMDRVR
Using the techniques described above, it is possible to install Driver488/DRV only when it is needed.
However, it is still necessary to reboot the computer to remove Driver488/DRV. The MARKDRVR and
REMDRVR utilities allow Driver488/DRV and other TSR programs, such as Sidekick and Superkey,
to be installed and removed at will, without rebooting.

Before installing the TSR program, the MARKDRVR command should be used to “snapshot” the system
state:

C:> MARKDRVR comment
C:> C:\IEEE488\DRVR488

The MARKDRVR command is followed by an optional comment of up to 119 character that is normally
used to note which TSR programs are about to be installed. When the above command is executed it

8O. Utility Programs II. SOFTWARE GUIDES - 8. Driver488/DRV

II-124 Personal488 User’s Manual, Rev. 3.0

saves internal system information including the interrupt vectors, the device driver chain, and the free
memory pointer. This information, along with the specified comment, is saved for use by REMDRVR.

The MARKDRVR command is then followed by the commands needed to install the TSR programs.
When using Driver488/DRV, these would be the DRVR488 commands. When these commands have
completed, Driver488/DRV is installed and ready for use.

When Driver488/DRV is no longer needed, it can be removed by using the REMDRVR command:

C: >REMDRVR

REMDRVR prints out the comment that was saved by MARKDRVR and then uses the information that
MARKDRVR saved to restore the system to the state it had before MARKDRVR had been executed. This
removes Driver488/DRV and any other TSR programs that had been loaded in the interim and recovers
their memory for reuse.

If several different TSR programs are being used, then it might be appropriate to use MARKDRVR more
than once. Then, when REMDRVR is used, it will only remove the TSR programs that were installed
after the last MARKDRVR command. Each time REMDRVR is used, it will remove one more “layer” of
TSR programs. The comment saved by MARKDRVR can help keep track of which TSR programs are
removed at each step.

Note that the most recently installed programs are always removed first. It is not possible to remove a
program until all the more recently installed programs have been removed.

When working with Power488, it is good practice to create a DRIVER.BAT file that includes the
DRVR488 commands as described above. Then a MARKDRVR command, such as MARKDRVR
Driver488 can be added to the beginning of the DRIVER.BAT file. Then, Driver488/DRV can be
installed by typing DRIVER and removed by typing REMDRVR. Driver488/DRV can thus be installed
and removed as desired, without rebooting the computer.

Moving Files from an IEEE 488 (HP-IB) Controller to a PC
Included on the Driver488/DRV release disk is a utility program that allows files to be transferred from
any IEEE controller to the PC in which Driver488/DRV resides. This utility program configures the
PC as a Peripheral on the IEEE network, much like a standard IEEE 488 printer. Any controller
capable of sending information to an IEEE 488 printer, including controllers like the HP 9000 series
computers, can send any type of data to the PC.

Once launched to the PC, the file transfer utility allows the operator to redirect the incoming data either
to the PC screen, a PC disk file, or a printer attached to the PC.

PRNTEMUL Files
In the \UTILS subdirectory of the Driver488/DRV diskette, there are 2 files:

• PRNTEMUL.EXE: This file is the MS-DOS executable version of the program. This is all that you
will need to emulate an IEEE 488 printer on a PC/AT or PS/2 computer.

• PRNTEMUL.C: This is the C source code of the PRNTEMUL.EXE program. It uses a C subroutine
interface of Driver488/DRV, which is located in the \SUBAPI directory of the main
Driver488/DRV directory.

Configuration of the IEEE Interface for PRNTEMUL
The PRNTEMUL program requires the Driver488/DRV to be configured as a Peripheral (same as an
IEEE printer). Make sure that the IEEE interface is configured at a unique IEEE address.

Once Driver488/DRV is configured properly, reboot the computer and connect your PC/AT to your
IEEE controller.

II. SOFTWARE GUIDES - 8. Driver488/DRV 8P. Command Descriptions

Personal488 User’s Manual, Rev. 3.0 II-125

Running PRNTEMUL
After the IEEE interfaces of each computer has been configured and connected, run the PRNTEMUL
program from the \UTILS directory by typing one of the following commands at the DOS prompt:

Command Description
PRNTEMUL <ENTER> Prints information received from the IEEE 488 bus

to the screen.
PRNTEMUL > MYPROG.BAS <ENTER> Redirects information to a file called MYPROG.BAS
PRNTEMUL > LPT1 <ENTER> Redirects information to the printer port (LPT1).

Once the PRNTEMUL program is started, it will continue to send any information received from the
IEEE bus to the specified destination until any key is pressed. Once a key is pressed, the PRNTEMUL
program will return to DOS at which time it can be run again, with a different destination specified, if
so desired.

Data Transfer
Data is transferred to the computer running PRNTEMUL the same way information is sent to an IEEE
printer. For a description of how to print information out, refer to the documentation of your IEEE
controller.

For example, the following commands might be used on an HP 9000 computer running HP BASIC:

Command Description
LOAD “MYPROG.BAS” Load a program to print out.
PRINTER IS 710 Set the current printer to address 10 of the IEEE bus.
LIST List the current program to the selected printer (computer

running PRNTEMUL).

The output of the PRNTEMUL program could be redirected to a datafile to transfer source files from the
IEEE controller to a PC/AT or PS/2.

Introduction
There are two types of commands: Bus commands and system commands. Bus commands
communicate with the IEEE 488 bus. System commands configure or request information from
Driver488/DRV. This Sub-Chapter contains a detailed description of the bus and system command

 8P. Command Descriptions

Topics

• Introduction .. II-124
• Format .. II-125

Syntax ..II-125
Response ..II-127
Mode ...II-127
Bus States..II-127
Examples ...II-131

• Data Types ... II-131
• CCL Reserved Words ... II-131

List of Reserved Words..II-132

8P. Command Descriptions II. SOFTWARE GUIDES - 8. Driver488/DRV

II-126 Personal488 User’s Manual, Rev. 3.0

formats available for Driver488/DRV. For more detail on the individual system commands, see
“Section III: Command References.”

Format
The format for the Driver488/DRV command descriptions consists of several sections which together
define the command. Using the QuickBASIC language, this format is implemented for the system
commands found in Sub-Chapter 15A: “Driver488/DRV Commands” of the “Section III: Command
References” in this manual.

Syntax
The Syntax section of the system command description describes the proper command syntax that must
be sent to Driver488/DRV. The following conventions for syntax descriptions, use the QuickBASIC
language:

• No command may be more than 255 characters long. The data part of the OUTPUT command does
not count in this length and so the OUTPUT data may be as long as necessary.

• Items in upper case, such as ENTER or OUTPUT must be used exactly as stated except that command
keywords are not case sensitive: Enter, enter, ENTER, and eNtEr are all equivalent.

• Items in lower case, such as addr or count, represent parameters that must be substituted with an
appropriate value.

• Blank spaces in commands are generally ignored. Thus, LOCAL LOCKOUT is the same as
LOCALLOCKOUT. Spaces are not ignored when: in the data part of an OUTPUT command, within
quoted strings in a SEND command, after an apostrophe (‘) in a terminator specification (term), at
the end of a device name, or within a number.

• Items enclosed in square brackets ([item]) are optional. Multiple items enclosed in square
brackets separated by vertical lines ([item1|item2|item3]) are optional, any one or none may
be chosen. No more than one item may be selected.

• Ellipses within square brackets ([...])mean that the items in the brackets may be repeated as
many times as desired. For example [,addr...] means that any number of address separator-
address combinations may be used.

• Braces, or curly brackets, ({item1|item2}) mean that exactly one of the enclosed items is
required.

• Combinations of brackets are possible. For example, {term[term][EOI]|EOI} allows the
choice of term, term term, term term EOI, term EOI, or just EOI, but does not allow the
choice of “nothing.”

• Numeric parameters (those that are given as numbers) are decimal unless preceded by &H or 0X, in
which case they are hexadecimal. Thus, 100 is decimal 100, &H64 is hexadecimal 64 which
equals decimal 100, 0XFF is decimal 255, and 0ff is invalid because F is not a valid decimal
digit. The only exception to this rule is that bus addresses, both primary and secondary, must be
specified as decimal numbers. Hexadecimal bus addresses are not allowed.

Several of the commands are accompanied by required or optional syntax parameters. These are
further described with each command, but the more common ones are discussed below, using
QuickBASIC:

Bus Addressing

• pri-addr : A primary device address in the range 0 to 30.

• sec-addr : An optional two-digit secondary device address in the range 00 to 31.

• name : A one- to eight-character device name composed of letters, numbers, and underscores
(_) used to represent the address of a particular bus device.

II. SOFTWARE GUIDES - 8. Driver488/DRV 8P. Command Descriptions

Personal488 User’s Manual, Rev. 3.0 II-127

• addr : An IEEE 488 bus address. A numeric primary address optionally followed by a
secondary address, or a device name. Thus, addr is of the form {name|pri-addr[sec-addr]}
where name is a device name, pri-addr is a primary address, and sec-addr is a two-digit
secondary address.

• [,addr...] : An optional list of bus addresses, each one preceded by an address separator;
either a comma (,) or a blank.

No more than 50 bus addresses are allowed in any single command.

Character Count

• #count : The number of characters to be transferred, using a pound sign (#) followed by an
integer in the range 1 to 4,294,967,295 (or 232 - 1). It may be specified in hexadecimal by
preceding it with &H or 0X. The hexadecimal range is &H1 to &HFFFFFFFF. A character count of
zero is invalid.

ASCII Characters

• $char : A single character whose ASCII value is the number char, a decimal number in the
range 0 to 255 or a hexadecimal number in the range $H0 to $HFF, or &H0 to &HFF. For example,
65 is the letter A, as is $41 or &H41.

• CR : The carriage return character ($13, $0D or &H0D).

• LF : The line feed character ($10, $0A or &H0A).

• ‘X : Any (usually) printable character. The apostrophe is immediately followed, without any
intervening spaces, by a single character that is taken as the character specified.

For a complete description of ASCII control codes and character sets, refer to the tables in “Section V:
Appendix” of this manual.

ASCII Character Strings

• data : An arbitrary string of characters. None of the special forms given above ($char, CR, LF,
or ‘X) are used. For example, CRLF as data is taken as the letters: C, R, L, and F, not as carriage
return line feed CR LF.

• ‘data’ : An arbitrary string of characters enclosed in apostrophes.

Terminators

• term : Any single character, specified as CR, LF, ‘X, or $char as described above
({CR|LF|’X|$char}). Part of terminator sequence used to mark the end of lines of data and
commands.

• [term] : An optional term character. For example, term[term] means that one or two
terminators may be specified.

• EOI : The IEEE 488 bus end-or-identify signal. When asserted during the transfer of a character,
EOI signals that that character is the last in the transfer. On input, ΕΟΙ, if specified, causes the
input to stop. On output, EOI causes the bus EOI signal to be asserted during transmission of the
last character transferred.

• NONE : The no end-of-line characters indicator. When EOL OUT NONE is specified,
Driver488/DRV assumes that entire, complete, commands are transferred with a single DOS-level
output command. When EOL IN NONE is specified, Driver488/DRV does not append any input
terminators to received data.

I/O Base Address

• ioaddr : The I/O base address for the interface card, in the range &H0 to &HFFFF, usually
specified in hexadecimal, though decimal is allowed.

8P. Command Descriptions II. SOFTWARE GUIDES - 8. Driver488/DRV

II-128 Personal488 User’s Manual, Rev. 3.0

Interrupts

• interrupt : One of the following: SRQ, ERROR, PERIPHERAL, CONTROLLER, TRIGGER, CLEAR,
TALK, LISTEN, IDLE, BYTEIN, BYTEOUT, CHANGE.

• [,interrupt...] : An optional list of interrupts, each preceded by a comma.

Memory Buffer Addresses

• segment : A segment address in the range -32768 to 65535 (&H0 to &HFFFF). An address of
the form segment:offset is converted into a real 20-bit address by multiplying the segment by
16 and adding the offset. As the segment is often stored in an integer variable, values greater
than 32767 (32768 to 65535) are printed as negative numbers (-32768 to -1, respectively).
Driver488/DRV automatically interprets negative segment values as their corresponding positive
values.

• offset : The offset part of a segment:offset address. An integer in the range -32768 to
65535. As with segment, negative offset values are interpreted as their corresponding positive
values.

• absolute : A real 20-bit address. An integer in the range 0 to 1,048,575 (&H0 to &HFFFFF).

• buf-addr : The memory address of the current data buffer. The buf-addr may be given either
as segment:offset (the colon is required), or as an absolute memory address.

Response
The Response section of the system command description describes the response that the user’s
program should read after sending the command. If a response is provided, it must be read. Errors
occur if another command is issued before reading the response.

Mode
This section of the command description format specifies the operating modes in which the command is
valid. Driver488/DRV may be configured as the System Controller in which case it is initially the
Active Controller, or as a Not System Controller in which case it is initially in the Peripheral state. The
Driver488/DRV configuration as System Controller or Not System Controller can be changed by the
INSTALL program.

Note: Even if Driver488/DRV is not configured as the System Controller, it can still become the
Active Controller if another controller on the IEEE 488 bus passes control to Driver488/DRV.

The modes are referred to by their names and states, as shown below:

Mode Name State Mode Name State
System Controller SC Not System Controller *SC

Active Controller CA Peripheral
(Not Active Controller)

*CA

Active System Controller SC•CA System Controller, Not Active SC•*CA
Not System Controller,
Active Controller

*SC•CA Not System Controller,
Not Active Controller

*SC•*CA

Bus States
This section of the command description format indicates the state of the bus device. The mnemonics
abbreviations for these bus states, as well as the relevant bus lines and bus commands, are listed in the
following two tables:

II. SOFTWARE GUIDES - 8. Driver488/DRV 8P. Command Descriptions

Personal488 User’s Manual, Rev. 3.0 II-129

If a command is preceded by an asterisk (*), that command is unasserted. For example, *REN states
that the remote enable line is unasserted. Conversely, REN without the asterisk states that the line
becomes asserted.

The bus states are further described, according to the following bus lines:

Bus State Bus Lines Data Transfer (DIO) Lines
8 7 6 5 4 3 2 1

Hex Value (QuickBASIC) &H80 &H40 &H20 &H10 &H08 &H04 &H02 &H01

Decimal Value 128 64 32 16 8 4 2 1

Bus Management Lines
IFC Interface Clear
REN Remote Enable

IEEE 488 Interface: Bus Management Lines
ATN Attention (&H04) 0 0 0 0 0 1 0 0
EOI End-Or-Identify (&H80) 1 0 0 0 0 0 0 0
SRQ Service Request (&H40) 0 1 0 0 0 0 0 0

IEEE 488 Interface: Handshake Lines
DAV Data Valid (&H08) 0 0 0 0 1 0 0 0
NDAC Not Data Accepted (&H10) 0 0 0 1 0 0 0 0
NRFD Not Ready For Data (&H20) 0 0 1 0 0 0 0 0

Serial Interface: Bus Management Lines
DTR Data Terminal Ready (&H02) 0 0 0 0 0 0 1 0
RI Ring Indicator (&H10) 0 0 0 1 0 0 0 0
RTS Request To Send (&H01) 0 0 0 0 0 0 0 1

Serial Interface: Handshake Lines
CTS Clear To Send (&H04) 0 0 0 0 0 1 0 0
DCD Data Carrier Detect (&H08) 0 0 0 0 1 0 0 0
DSR Data Set Ready (&H20) 0 0 1 0 0 0 0 0

Bus State Bus Commands Data Transfer (DIO) Lines
(IEEE 488) (ATN is asserted “1”) 8 7 6 5 4 3 2 1

Hex Value (QuickBASIC) &H80 &H40 &H20 &H10 &H08 &H04 &H02 &H01

Decimal Value 128 64 32 16 8 4 2 1
DCL Device Clear (&H14) x 0 0 1 0 1 0 0
GET Group Execute Trigger (&H08) x 0 0 0 1 0 0 0
GTL Go To Local (&H01) x 0 0 0 0 0 0 1
LAG Listen Address Group (&H20-3F) x 0 1 a d d r n
LLO Local Lock Out (&H11) x 0 0 1 0 0 0 1
MLA My Listen Address x 0 1 a d d r n
MTA My Talk Address x 1 0 a d d r n
PPC Parallel Poll Config x 1 1 0 S P2 P1 P0
PPD Parallel Poll Disable (&H07) x 0 0 0 0 1 1 1
PPU Parallel Poll Unconfig (&H15) x 0 0 1 0 1 0 1
SCG Second. Cmd. Group (&H60-7F) x 1 1 c o m m d
SDC Selected Device Clear (&H04) x 0 0 0 0 1 0 0
SPD Serial Poll Disable (&H19) x 0 0 1 1 0 0 1
SPE Serial Poll Enable (&H18) x 0 0 1 1 0 0 0
TAG Talker Address Group (&H40-5F) x 1 0 a d d r n
TCT Take Control (&H09) x 0 0 0 1 0 0 1
UNL Unlisten (&H3F) x 0 1 1 1 1 1 1
UNT Untalk (&H5F) x 1 0 1 1 1 1 1

(x = “don’t care”)

8P. Command Descriptions II. SOFTWARE GUIDES - 8. Driver488/DRV

II-130 Personal488 User’s Manual, Rev. 3.0

Bus Management Lines

For the general control and coordination of bus activities, five bus management lines are used by either
an IEEE 488 interface or a serial interface:

• Interface Clear (IFC): Employed by either IEEE 488 or serial interfaces, this line is used only by
the System Controller to place all bus devices in a known, quiescent state. Specifically, the IFC
places the devices in the Talk and Listen Idle states (neither Active Talker nor Active
Listener) and makes the System Controller the Active Controller.

• Remote Enable (REN): Employed by either IEEE 488 or serial interfaces, this line is used only by
the System Controller to allow bus devices to respond to remote (bus) commands. When REN is
asserted, all listeners capable of remote operation enter remote operation when addressed to Listen.
If REN is unasserted, then the bus devices may ignore the bus and remain in local operation.
Generally, the REN command should be issued before any bus programming is attempted.

• Attention (ATN): Employed by an IEEE 488 interface, this is one of the most important lines for
bus management, and can only be driven by the Active Controller. When ATN is asserted, the
information contained on the data lines is to be interpreted as a bus (multiline) command. When it
is unasserted, that information is to be interpreted as data for the Active Listeners.

• End-Or-Identify (EOI): Employed by an IEEE 488 interface, this line is used to signal the last
byte of a multibyte data transfer. The device that is sending the data asserts EOI during the
transfer of the last data type. The EOI signal is not always necessary, since the end of the data may
be indicated by some special character such as the carriage return. The Active Controller also uses
EOI to perform a Parallel Poll by simultaeously asserting EOI and ATN.

• Service Request (SRQ): Employed by an IEEE 488 interface, this line is asserted by any device to
attract the immediate attention of the Active Controller. Consequently, it can be used to interrupt
the current sequence of events. The device may be reporting that it has data to send, an error
condition to report or both. The Controller can determine which device requested service using
Serial Poll or Parallel Poll. The Serial Poll will clear the SRQ line unless some other device is
requesting service.

• Data Terminal Ready (DTR): Employed by a serial interface, this line is specified to indicate the
presence and readiness of data terminal and data communication equipment (DEC). The DTR is
asserted by the terminal equipment when terminal power is on, indicating to the modem or other
DCE that the terminal is ready.

• Ring Indicator (RI): Employed by a serial interface, this line indicates that a ringing signal is
being received on the communication equipment.

• Request To Send (RTS): Employed by a serial interface, this line is specified to assist half-duplex
communication equipment in transmitting and receiving data. Before a transmission, the sender’s
RTS signal is asserted, requesting the receiver to switch its circuitry to the receive mode.

Handshake Lines

To “handshake” the transfer of information across the data lines, three lines are used by either an
IEEE 488 interface or a serial interface:

• Data Valid (DAV): Employed by an IEEE 488 interface, this line is controlled by the Active
Talker. Before sending any data, the Talker verifies that NDAC (see below) is asserted, which
indicates that all Listeners have accepted the previous data byte. The Talker then places a byte
onto the data lines and waits until NRFD (see below) is unasserted, indicating that all Addressed
Listeners are ready to accept the information. When NRFD and NDAC are in the proper state, the
Talker asserts DAV to indicate that the data on the bus is valid.

• Not Ready For Data (NRFD): Employed by an IEEE 488 interface, this line is used by the
Listeners to inform the Talker that they are ready to accept new data. The Talker must wait for
each Listener to unasserted this line, which they do at their own rates, when they are ready for
more data. This assures that all devices accepting the information are ready to receive it.

II. SOFTWARE GUIDES - 8. Driver488/DRV 8P. Command Descriptions

Personal488 User’s Manual, Rev. 3.0 II-131

• Not Data Accepted (NDAC): Employed by an IEEE 488 interface, this line is also controlled by
the Listeners, and indicates to the Talker that each device addressed to listen has accepted the
information. Each device releases NDAC at its own rate, but NDAC does not do so until the slowest
Listener has accepted the data byte. This type of handshaking permits multiple devices to receive
data from a single data transmitter on the bus. All active receiving devices will participate in the
data handshaking on a byte-by-byte basis and operate the NDAC and NRFD lines in a “wired-or”
scheme so that the slowest active device will determine the rate at which the data transfers take
place. In other words, data transfers are asynchronous and occur at the rate of the slowest
participating device.

• Clear To Send (CTS): Employed by a serial interface, this line is specified to assist half-duplex
communication equipment in transmitting and receiving data. When ready to receive, the receiver
asserts its CTS line, allowing transmission to begin.

• Data Carrier Detect (DCD): Employed by a serial interface, this line is asserted by the modem or
other data communication equipment (DCE) to indicate that it has established a communication
link with the modem or DCE at the other end of the communication link (e.g., phone line). It must
be asserted for the terminal to go on-line and receive data.

• Data Set Ready (DSR): Employed by a serial interface, this line is specified to indicate the
presence and readiness of data terminal and data communication equipment (DCE). The DSR is
asserted by the modem or other DCE to allow the terminal to go on-line and receive data.

Data Transfer Lines

To transfer information between devices on the bus, eight lines (DIO1 through DIO8) are used by the
IEEE 488 interface. As previously discussed, when ATN is unasserted, the information contained on
the data lines is to be interpreted as data for the Active Listeners. However, when ATN is asserted, that
information is to be interpreted as a bus (multiline) command.

Bus Command Groups

Bus commands are bytes sent by the Active Controller over the data bus with Attention (ATN) asserted.
These commands are sent to all devices and are divided into the following 5 groups:

• Addressed Command Group (ACG): These commands affect only those devices which have
previously been addressed to be a Listener. There are 5 bus line addressed commands: GET, GTL,
PPD, SDC and TCT.

• Universal Command Group (UCG): These commands cause every instrument on the bus to carry
out the bus function specified (if the instrument is capable of it). There are 5 bus line universal
commands: DCL, LLO, PPU, SPD, and SPE.

• Listen Address Group (LAG): These commands address to Listen specified bus devices. The
addressed device then becomes a Listener. There are 31 (0 to 30) listen addresses associated with
this group. The 3 most significant bits of the data bus are set to 001 while the 5 least significant
bits are the address of the device being told to Listen. The last command in this group is UNL.

• Talk Address Group (TAG): These commands address to Talk specified bus devices. The
addressed device then becomes a Talker. There are 31 (0 to 30) talk addresses associated with this
group. The 3 most significant bits of the data bus are set to 010 while the 5 least significant bits
are the address of the device being told to Talk. The last command in this group is UNT.

• Secondary Command Group (SCG): These commands are used to specify a subaddress or
subfunction within a given bus device. There are 32 (0 to 31) possible secondary commands used
to specify a subaddress of subfunction within a given bus device. They are also used in the
Parallel Poll Configure (PPC)sequence.

• Three bus commands not found in the above groups are: MLA, MTA, and PPC.

All of the IEEE 488 bus commands are further described individually, as follows:

8P. Command Descriptions II. SOFTWARE GUIDES - 8. Driver488/DRV

II-132 Personal488 User’s Manual, Rev. 3.0

Bus Commands

• Device Clear (DCL): This UCG command causes all bus devices to be initialized to a pre-defined or
power-up state.

• Group Execute Trigger (GET): This ACG command usually signals all bus devices to begin
executing a triggered action. This allows actions of different devices to begin simultaneously.

• Go To Local (GTL): This ACG command allows the selected devices to be manually controlled.

• Local Lock Out (LLO): This UCG command prevents manual control of the instrument’s functions.

• My Listen Address (MLA): This command addresses a device to Listen. The device accepts data
from the Active Talker and outputs this data through the serial interface. It substitutes the selected
serial terminators for the received IEEE 488 bus terminators.

• My Talk Address (MTA): This command addresses a device to Talk. The device retrieves data
from the serial input buffer and outputs it to the IEEE 488 bus. It substitutes the selected IEEE
488 bus terminators for the received serial terminators. The device will continue to output serial
input buffer data as long as the IEEE 488 controller allows.

• Parallel Poll Configure (PPC): This command configures devices capable of performing a
Parallel Poll via the data bit they are to assert in response to a Parallel Poll.

• Parallel Poll Disable (PPD): This ACG command disables the Parallel Poll response of selected
devices.

• Parallel Poll Unconfigure (PPU): This UCG command disables all devices from responding to a
Parallel Poll.

• Selected Device Clear (SDC): This ACG command causes a single device to be initialized to pre-
defined or power-up state.

• Serial Poll Disable (SPD): This UCG command disables a device from sending its Serial Poll status
byte.

• Serial Poll Enable (SPE): This UCG command, when ATN is unasserted, will cause a device that is
addressed to talk, to output its Serial Poll status byte.

• Take Control (TCT): This ACG command passes bus control responsibilities from the current
Controller to another device which has the ability to control.

• Unlisten (UNL): This LAG command places the device in the Listen Idle state.

• Untalk (UNT): This TAG command places the device in the Talk Idle state.

For more detailed information, many of these commands appear in Chapter 15 “Command References”
of “Section III: Command References” in this manual. Also, for information on the relationship
between bus messages and ASCII character codes, turn to “Section V: Appendix” in this manual.

Examples
The Examples section of the command description format lists one or more short examples of the
command’s normal use. These and additional programs can be found in language or example
subdirectories of the Driver488/DRV installation directory.

Data Types
For information on the Driver488/DRV data bit masks, data constants, and data structures, turn to the
topic “Data Types” found in the Sub-Chapter 9K “Command Descriptions” of Chapter 9
“Driver488/SUB.”

II. SOFTWARE GUIDES - 8. Driver488/DRV 8P. Command Descriptions

Personal488 User’s Manual, Rev. 3.0 II-133

CCL Reserved Words
The following alphabetized list contains words reserved for use by the Character Command Language
(CCL) interface. These words may not appear as a device name nor as the first characters of a device
name. Upper and lower cases are insignificant. Some examples of this are:

• all : This is a reserved word, therefore alloy, Alloy, or ALLOY are all invalid External Device
names.

• cr : This is a reserved word, therefore crane, Crane, or CRANE cannot be used as the name of an
External Device if the Character Command Language is to be used.

• in : This is a reserved word, so input, Input, or INPUT are all invalid External Device names.

List of Reserved Words
• all • dma • mla • out
• buffer • eoi • monitor • talk
• cmd • error • mta • unl
• continue • in • none • unt
• cr • lf • off • until_rsv
• data • listen • on • while_srq

 8Q. Command Reference
To obtain a detailed description of the command references for Driver488/DRV, turn to Section III in
this manual entitled “Command References.” The commands are presented in alphabetical order for
ease of use.

9A. Introduction II. SOFTWARE GUIDES - 9. Driver488/SUB

II-134 Personal488 User’s Manual, Rev. 3.0

 9. Driver488/SUB

Sub-Chapters

9A. Introduction ... II-133
9B. Installation & Configuration .. II-134
9C. External Device Interfacing ... II-141
9D. Getting Started .. II-145
9E. C Languages .. II-150
9F. QuickBASIC.. II-159
9G. Pascal ... II-166
9H. Data Transfers *... II-175
9I. Operating Modes * .. II-177
9J. Utility Programs.. II-182
9K. Command Descriptions *... II-186
9L. Command Reference *.. II-190

 * For Driver488/SUB, W31, W95, & WNT

 9A. Introduction
Driver488/SUB is similar to Driver488/DRV in that it uses HP (Hewlett-Packard) style commands, has
COM port support, offers asynchronous I/O capability, provides automatic event vectoring and error
checking, and transfers data at the maximum DMA rate of the board being controlled.

Like Driver488/DRV, Driver488/SUB supports the Power488 series boards’ additional input/output
functions with SCPI (Standard Command for Programmable Instruments).

Driver488/SUB differs from Driver488/DRV in programming style and performance. You can access
the memory-resident Driver488/SUB via a library of function calls, allowing for faster input/output
operations. You can use Driver488/SUB with any of the languages for which function call libraries are
offered, including: C, Pascal, and QuickBASIC.

The following example of programming a digital multimeter highlights the programming style
differences between Driver488/DRV and Driver488/SUB:

Driver488/DRV, using C Language Driver488/SUB, using C Language

main ()
{
 ieeeinit ();
 ieeewt (Output dmm; R0T1X”);
 Ieeewt (“Enter dmm”);
 ieeerd (val);
}

main ()
{
 OpenName (dmm. “DMM”);
 Output (dmm, “R0T1X)
 Enter (dmm, val);
}

Driver488/SUB lets you obtain optimal use of your PC’s conventional 640K byte memory by
automatically detaching and loading itself into high memory (when used with a test system employing
DOS 5.0 or higher). If sufficient high memory is available, Driver488/SUB will not consume any
conventional memory. This makes the driver particularly useful for applications executing long
programs demanding large amounts of memory.

II. SOFTWARE GUIDES - 9. Driver488/SUB 9B. Installation & Configuration

Personal488 User’s Manual, Rev. 3.0 II-135

Driver488/SUB supports up to four IEEE 488 interfaces. Each interface can support multiple external
devices up to the limits imposed by electrical loading (14 devices), or with a product such as
Extender488, to the limits of the IEEE 488 addressing protocols.

Driver488/SUB supports the GP488B (not PCIIA, NI), AT488, MP488, MP488CT, and NB488 series
of IEEE 488.2 interface hardware. There is no Character Command Language (CCL) support
contained in Driver488/SUB. All interaction between the application and the driver takes place via
normal subroutine.

 9B. Installation & Configuration

Topics

• Before You Get Started ... II-134
• Making Backup Disk Copies.. II-135
• Driver Installation ... II-135
• Configuration Utility... II-135

Interfaces...II-136
External Devices...II-136
Opening the Configuration Utility ..II-136

• Configuration of IEEE 488 Interfaces II-136
• Configuration of Serial Interfaces ... II-139
• Configuration of IEEE 488 External Devices......................... II-140

Before You Get Started
Prior to Driver488/SUB software installation, configure your interface board by setting the appropriate
jumpers and switches as detailed in the “Section I: Hardware Guides.” Note the configuration settings
used, as they must match those used within the Driver488/SUB software installation.

Once the IEEE 488 interface hardware is installed, you are ready to proceed with the steps outlined
within this Sub-Chapter to install and configure the Driver488/SUB software. The Driver488/SUB
software disk(s) include the driver files themselves, installation tools, example programs, and various
additional utility programs. A file called README.TXT, if present, is a text file containing new material
that was not available when this manual went to press.

NOTICE

1. The Driver488/SUB software, including all files and data, and the diskette on which it is
contained (the “Licensed Software”), is licensed to you, the end user, for your own internal use.
You do not obtain title to the licensed software. You may not sublicense, rent, lease, convey,
modify, translate, convert to another programming language, decompile, or disassemble the
licensed software for any purpose.

2. You may:

• only use the software on one single machine;

• copy the software into any machine-readable or printed form for backup in support
of your use of the program on the single machine; and,

• transfer the programs and license to use to another party if the other party agrees to
accept the terms and conditions of the licensing agreement. If you transfer the
programs, you must at the same time either transfer all copies whether in printed or
in machine-readable form to the same party and destroy any copies not transferred.

9B. Installation & Configuration II. SOFTWARE GUIDES - 9. Driver488/SUB

II-136 Personal488 User’s Manual, Rev. 3.0

The first thing to do, before installing the software, is to make a backup copy of the Driver488/SUB
software disks onto blank disks. To make the backup copy, follow the instructions given below.

Making Backup Disk Copies
1. Boot up the system according to the manufacturer’s instructions.

2. Type the command CD\ to go back to your system’s root directory.

3. Place the first Driver488/SUB software disk into drive A:.

4. Type DISKCOPY A:A: and follow the instructions given by the DISKCOPY program. (You may
need to swap the original (source) and blank (target) disks in drive A: several times to complete
the DISKCOPY. If your blank disk is unformatted, the DISKCOPY program allows you to format it
before copying.)

5. When the copy is complete, remove the backup (target) disk from drive A: and label it to match
the original (source) Driver488/SUB software disk just copied.

6. Store the original Driver488/SUB software disk in a safe place.

7. Place the next Driver488/SUB software disk into drive A: and repeat steps 4-6 for each original
(source) disk included in the Driver488/SUB package.

8. Place the backup copy of the installation disk into drive A:, type A:INSTALL, then follow the
instructions on the screen.

Driver Installation
There are two steps involved in installing Driver488/SUB onto your working disk. The required files
must first be copied from the distribution disk to your working disk, and then the configuration must be
established by modifying the supplied Windows-style initialization file.

Driver488/SUB should normally be installed on a hard disk. Installing Driver488/SUB on a floppy
disk, while possible, is not recommended. Assuming that the Driver488/SUB disk is in drive A:, start
the installation procedure by typing A:INSTALL at the prompt.

For a normal first installation, allow INSTALL to install all parts of Driver488/SUB. If hard disk space
is extremely limited, certain parts, such as language support and examples for languages not
immediately used, may be omitted. The distribution disks may be used to install or reinstall any or all
parts of Driver488/SUB at a later time.

Note if any error messages display when you are trying to load DRVR488.EXE in memory. If so, refer
to “Section IV: Troubleshooting” in this manual.

The CONFIG utility runs automatically upon calling installation and permits you to specify the system
configuration, add interfaces, define external devices, etc. You may also run CONFIG from the
command line at a later time to modify your configuration as required. The following text describes the
configuration of interface boards, external devices and serial external devices.

Configuration Utility
The Driver488/SUB startup configuration is specified in a Windows-style initialization file named
DRVR488.INI, which resides in the Driver488/SUB directory. The first screen of the CONFIG
program is used to enter the configuration settings so the Driver488/SUB software can be correctly
modified to reflect the state of the hardware.

The driver can be reconfigured at any time by running the CONFIG program. To start the CONFIG
program, type CONFIG while in the directory in which the configuration utility resides, typically
C:\IEEE488\UTILS.

II. SOFTWARE GUIDES - 9. Driver488/SUB 9B. Installation & Configuration

Personal488 User’s Manual, Rev. 3.0 II-137

Interfaces
The minimum requirement for configuring your system is to make certain that your IEEE 488.2
interface board or module is selected under “Device Type.” The default settings in all of the other
fields match those of the interface as shipped from the factory. If you are unsure of a setting, it is
recommended that you leave it as is.

External Devices
Within your IEEE 488.2 application program, devices on the bus are accessed by name. These names
must be created and configured within the CONFIG program. After configuring your interface
parameters, press <F5> to open the External Devices window. All configured devices will be
accessible in your application program via the OpenName command. For more details, refer to the
topic “Configuration of IEEE 488 External Devices” found later in this Sub-Chapter.

Opening the Configuration Utility
In general, all Driver488/SUB configuration utility screens have three main windows: the “name” of
the interfaces or devices on the left, the “configuration” window on the right, and the “instruction”
window at the bottom of the screen. Based on current cursor position, the valid keys for each window
will display in the Instructions box.

To begin the interface configuration, move the cursor in the name window to select an interface
description for modification. (Interfaces can be added or deleted using <F3> and <F4>.) Notice
moving the cursor up and down the list of interfaces or devices in the left window changes the
parameters in the configuration window. The configuration fields always correspond with the currently
selected interface and device type.

Once all modifications have been made to the configuration screen, <F10> must be pressed to accept
the changes made or <F9> can be pressed to exit without making any change. Additional function keys
allow the user to continue onto the configuration of external devices via <F5> or to view a graphic
representation of the interface card with the selected settings via <F7>.

Configuration of IEEE 488 Interfaces
The Driver488/SUB supports
two types of interfaces: IEEE
and Serial (COM). The
following Driver488/SUB
figure displays the
configuration screen of an
MP488CT IEEE 488.2
interface.

To add another IEEE interface,
select <F3>. For additional
information on using more than
one interface, refer to the final
topic “Multiple Interface
Management” in the Sub-
Chapter “Installation &
Configuration” of Chapter 8.

Once an interface is selected,
the fields and default entries
which display in the
configuration window depend
on the device type specified. The configuration parameters of the IEEE interface, shown in the figure,
are as follows:

9B. Installation & Configuration II. SOFTWARE GUIDES - 9. Driver488/SUB

II-138 Personal488 User’s Manual, Rev. 3.0

Configuration Parameters

• Name: This field is a descriptive instrument name which is manually assigned by the user. This
must be a unique name. Typically, IEEE or COM is used.

• IEEE Bus Address: This is the setting for the IEEE bus address of the board. It will be checked
against all the instruments on the bus for conflicts. It must be a valid address from 0 to 30.

• DMA: A direct memory access (DMA)
channel can be specified for use by the I/O
interface card. If DMA is to be used, select
a channel as per the hardware setting. If no
DMA is to be used, select NONE. The
NB488 does not support DMA, therefore the
DMA field will not display if this device
type is used. Valid settings are displayed in
the table.

• Interrupt: A hardware interrupt level can
be specified to improve the efficiency of the
I/O adapter control and communication
using Driver488/SUB. For DMA operation
or any use of OnEvent and Arm functions,
an interrupt level must be selected. Boards
may share the same interrupt level. If no
interrupt level is to be used, select NONE.
Valid interrupt levels depend on the type of interface. Possible settings are shown in the table.

• SysController: This field determines whether or not the IEEE 488 interface card is to be the
System Controller. The System Controller has ultimate control of the IEEE 488 bus, and the
ability of asserting the Interface Clear (IFC) and Remote Enable (REN) signals. Each IEEE 488
bus can have only one System Controller. If the board is a Peripheral, it may still take control of
the IEEE 488 bus if the Active Controller passes control to the board. The board may then control
the bus and, when it is done, pass control back to the System Controller or another computer,
which then becomes the active controller. If the board will be operating in Peripheral mode (not
System Controller), select NO in this field.

• LightPen: This field determines whether the LightPen command is to be used. If selected, it
will disable the detection of interrupts via setting the light pen status. The default is light pen
interrupt enabled.

• Timeout (ms): The time out period is the amount of time that data transfers wait before assuming
that the device does not transfer data. If the time out period elapses while waiting to transfer data,
an error signal occurs. This field is the default timeout for any bus request or action, measured in
milliseconds. If no timeout is desired, the value may be set to zero.

• Device Type: This field specifies the type of board or module (such as GP488, MP488CT or
NB488) represented by the IEEE device name selected.

I/O Address

• IEEE 488: This field is the I/O base address which sets the addresses used by the computer to
communicate with the IEEE interface hardware on the board. The address is specified in
hexadecimal and can be 02E1, 22E1, 42E1 or 62E1.

 Note: This field does not apply to the NB488. Instead, the NB488 uses the I/O address of the data
register (the first register) of the LPT port interface, typically 0x0378.

• Digital I/O: This field is the base address of the Digital I/O registers. It is only applicable for
MP488 and MP488CT boards. Note the Digital I/O SCPI communication parameters are
configured as an external device. Refer to the “Section I: Hardware Guides” for more information.

I/O Board Specified DMA Channel
GP488B 1, 2, 3 or none
AT488 1, 2, 3, 5, 6, 7 or none
MP488 1, 2, 3, 5, 6, 7 or none
MP488CT 1, 2, 3, 5, 6, 7 or none
NB488 Not applicable
CARD488 Not applicable

I/O Board Specified Interrupt Level
GP488B levels 2-7 or none
AT488 levels 3-7, 9-12, 14-15 or none
MP488 levels 3-7, 9-12, 14-15 or none
MP488CT levels 3-7, 9-12, 14-15 or none
NB488 level 7 for LPT1, level 5 for LPT2
CARD488 levels 3-7, 9-12, 14-15 or none

II. SOFTWARE GUIDES - 9. Driver488/SUB 9B. Installation & Configuration

Personal488 User’s Manual, Rev. 3.0 II-139

• Counter/Timer: This field is the base address of the Counter/Timer registers. It is only
applicable for MP488CT boards. Note the Counter/Timer SCPI communication parameters are
configured as an external device. Refer to the Hardware Guides and section for more information.

• Bus Terminators: The IEEE 488 bus terminators specify the characters and/or end-or-identify
(EOI) signal that is to be appended to data that is sent to the external device, or mark the end of
data that is received from the external device.

This second Driver488/SUB
configuration example displays
an IEEE interface with the
NB488 interface module
specified. This screen
resembles the previous IEEE
interface example with the
exception of 3 different
configuration parameters which
are described below.

Configuration Parameters

• LPT Port: The LPT port
is the external parallel port
to be connected to the
NB488. Valid selections
are: LPT1, LPT2 or LPT3.
This field takes the place
of the I/O Address field.

• Enable Printer Port:
Because most laptop and notebook PCs provide only one LPT port, the NB488 offers LPT pass-
through for simultaneous IEEE 488 instrument control and printer operation. If this option is
selected, a printer connected to the NB488 will operate as if it were connected directly to the LPT
port. If not enabled, then the printer will not operate when the NB488 is active. The disadvantage
of pass-through printer support is that it makes communications with the NB488 about 20%
slower.

• LPT Port Type: This field is used to specify whether the LPT port is a standard IBM
PC/XT/AT/PS/2 compatible port. Valid options are: Standard or 4-bit. The slower 4-bit option is
provided for those computers which do not fully implement the IBM standard printer port. These
computers can only read 4 bits at a time from the NB488 making communication with the NB488
up to 30% slower.

A test program has been provided with NB488 to help identify the user’s LPT port type. Once the
NB488 is installed, type: NBTEST.EXE. This program will determine if your computer can
communicate with the NB488 and what type of LPT port is installed (Standard or 4-bit).

It is important to note there are four different versions of the NB488 driver. The CONFIG utility
determines which is to be used based on the user-defined parameters. If both pass-through printer
support and the 4-bit LPT port support are selected, then the communication with the IEEE 488 bit
may be slowed as much as 40% compared with the fastest case in which neither option is selected.
The actual performance will vary depending on the exact type and speed of the computer used.

To save your changes to disk, press <F10>, or to exit without making any changes, press <F9>. All
changes will be saved in the directory where you installed Driver488/SUB. If at any time you wish to
alter your Driver488/SUB configuration, simply rerun CONFIG.

9B. Installation & Configuration II. SOFTWARE GUIDES - 9. Driver488/SUB

II-140 Personal488 User’s Manual, Rev. 3.0

Configuration of Serial Interfaces
The following Driver488/SUB
screen displays the
configuration of a serial (COM)
interface.

To add another serial interface,
select <F3>.

The following serial interface
parameters are available for
modification.

Configuration Parameters

• Name: This field is a
descriptive instrument
name which is manually
assigned. This must be a
unique name.

• Baud Rate: The
allowable Data Rates range
from 75 to 115.2K and all
standard rates therein. This includes: 75, 110, 150, 300, 600, 1200, 1800, 2400, 4800, 9600,
19.2K, 38.4K, 57.6K, and 115.2K. Slower processors may have difficulty at the higher data rates
because of the amount of processing required for terminator, end of buffer, and fill processing.

• Flow: X-ON/X-OFF is supported. With this configured, Driver488/SUB scans incoming
characters for an X-OFF character. Once it is received, no more characters are transmitted until an
X-ON character is received. The driver also issues an X-OFF to ask the attached device to stop
sending when its internal buffer becomes three-quarters full and issues an X-ON when its buffer has
emptied to one-quarter full.

• Interrupt: A hardware interrupt level can be
specified to improve the efficiency of the I/O
adapter control and communication using
Driver488/SUB. For any use of OnEvent
and Arm functions, an interrupt level must be
selected. If no interrupt level is to be used,
select NONE. Valid interrupt levels depend
on the device type:

• Input Buffer: This field is used to enter the buffer sizes for I/O.

• Output Buffer: This field is used to enter the buffer sizes for I/O.

• Parity: Parity can be EVEN, ODD, NONE, MARK, or SPACE.

• CTS Timeout: The driver supports 3 hardware handshake lines: Data Carrier Detect (DCD), Data
Set Ready (DSR), and Clear To Send (CTS). Each line can be individually designated to be
ignored, used with no specified timeout, or used with a selected timeout. The timeout is selected
by specifying the number of milliseconds to wait for the indicated condition to become satisfied.

• Data Bits: Data formats from 5 though 8 Data Bits are supported.

• DSR Timeout: The driver supports 3 hardware handshake lines: Data Carrier Detect (DCD), Data
Set Ready (DSR), and Clear To Send (CTS). Each line can be individually designated to be
ignored, used with no specified timeout, or used with a selected timeout. The timeout is selected
by specifying the number of milliseconds to wait for the indicated condition to become satisfied.

• Stop Bits: With 6, 7, or 8 Data Bits specified, either 1 or 2 Stop Bits are allowed. With 5 Data
Bits specified, 1 or 1.5 Stop Bits may be selected.

I/O Comm. Typical Interrupt Level
COM1 typically level 4
COM2 typically level 3
COM3 typically level 4 or 5
COM4 typically level 2 or 3

II. SOFTWARE GUIDES - 9. Driver488/SUB 9B. Installation & Configuration

Personal488 User’s Manual, Rev. 3.0 II-141

• DCD Timeout: The driver supports 3 hardware handshake lines: Data Carrier Detect (DCD), Data
Set Ready (DSR), and Clear To Send (CTS). Each line can be individually designated to be
ignored, used with no specified timeout, or used with a selected timeout. The timeout is selected
by specifying the number of milliseconds to wait for the indicated condition to become satisfied.

• Timeout (ms): The time out period is the amount of time that data transfers wait before assuming
that the device does not transfer data. If the time out period elapses while waiting to transfer data,
an error signal occurs. This field is the default timeout for any bus request or action, measured in
milliseconds. If no timeout is desired, the value may be set to zero.

• Device Type: This field specifies the type of device represented by the serial external device
name selected.

• I/O Address: The I/O Address is the
computer bus address for the board. It is set to
default values during the initial installation.
These values, as listed in the table, can be
changed. However, using the pre-selected
values is recommended. Any conflict will be
noted by a pop-up help screen.

• Bus Terminators: The bus terminators specify the characters to be appended to data that is sent
to the external device, or mark the end of data that is received from the external device.

Configuration of IEEE 488 External Devices
Configuration of IEEE 488 external devices under Driver488/SUB is done by editing an initialization
file that stores the specific configuration information about all of the configured external devices. The
configuration for each device is set when the Driver488/SUB loads itself into memory and is present at
the start of the application program.

Each external device requires a handle to communicate with Driver488/SUB. An external device
handle is a means of maintaining a record about 3 configurable items: its IEEE 488 bus address, its
IEEE 488 bus terminators, and its time out period. Any communication with the external device uses
these three items. The different configurable items are listed in the following figure. These items
define the external device. All external devices have either a default value or a user supplied value for
the different fields. All fields can be changed by Driver488/SUB commands during program
execution.

The following figure displays
the configuration screen of an
external device named DMM195.
When configuring an IEEE
interface, this screen can be
accessed by selecting <F5>:
Configure External

Devices.

To add additional devices, use
<F3>. Note this external
device screen is also used to
configure MP488CT Digital
I/O (DIGIO) and
Counter/Timers (TIMER).

The following parameters are
available for modification:

Configuration Parameters

• Name: External device
names are user defined names which are used to convey the configuration information about each

I/O Comm. Default Address Values
COM1 typically address 3F8
COM2 typically address 2F8
COM3 typically address 3E8
COM4 typically address 2E8

9C. External Device Interfacing II. SOFTWARE GUIDES - 9. Driver488/SUB

II-142 Personal488 User’s Manual, Rev. 3.0

device, from the initialization file to the application program. Each external device must have a
name to identify its configuration to Driver488/SUB. The name can then be used to obtain a
handle to that device which will be used by all of the Driver488/SUB commands. External device
names consist of 1 to 32 characters, and the first character must be a letter. The remaining
characters may be letters, numbers, or underscores (_). External device names are case
insensitive; upper and lower case letters are equivalent. ADC is the same device as adc.

• IEEE Bus Address: This is the setting for the IEEE 488 bus address of the board. It will be
checked against all the devices on the bus for conflicts. The IEEE 488 bus address consists of a
primary address from 00 to 30, and an optional secondary address from 00 to 30. Where required,
Driver488/SUB accepts a secondary address of -1 to indicate “NONE.”

• Timeout (ms): The time out period is the amount of time that data transfers wait before assuming
that the device does not transfer data. If the time out period elapses while waiting to transfer data,
an error signal occurs. This field is the default timeout for any bus request or action, measured in
milliseconds. If no timeout is desired, the value may be set to zero.

• Device Type: This field specifies the type of device represented by the external device name
selected.

• Bus Terminators: The IEEE 488 bus terminators specify the character(s) and/or end-or-identify
(EOI) signal that is to be appended to data that is sent to the external device, or mark the end of
data that is received from the external device.

Note: Because secondary addresses and bus terminators are specified by each handle, it may be
useful to have several different external devices defined for a single IEEE 488 bus device. For
example, separate device handles would be used to communicate with different secondary
addresses within a device. Also, different device handles might be used for communication of
command and status strings (terminated by carriage return/line feed) and for communication
of binary data (terminated by EOI).

Note: If installation or configuration problems exist, refer to “Section IV: Troubleshooting.”

To save your changes to disk, press <F10>. All changes will be saved in the directory where you
installed Driver488/SUB. If at any time you wish to alter your Driver488/SUB configuration, simply
rerun CONFIG..

 9C. External Device Interfacing

Topics

• Introduction... II-141
Subroutine Calls.. II-142

• Configuration of Named Devices .. II-142
• Use of External Devices... II-143
• Extensions for Multiple Interfaces... II-144

Duplicate Device Names... II-144
Access of Multiple Interfaces ... II-144
Example .. II-145

Introduction
This Sub-Chapter is a technical review of external device interfacing. It contains information on how
to use external devices and multiple interfaces.

Driver488/SUB controls I/O adapters and their attached external devices. In turn, Driver488/SUB is
controlled via subroutine calls.

II. SOFTWARE GUIDES - 9. Driver488/SUB 9C. External Device Interfacing

Personal488 User’s Manual, Rev. 3.0 II-143

Driver488/SUB communicates directly with I/O adapters such as an IEEE 488 interface board or a
serial (RS-232C) port. More than one I/O adapter may reside on a single plug-in board. For example,
an RS-232C board often contains two or four functionally separate I/O adapters, one for each port. The
IEEE 488 interface board contains the IEEE 488 I/O adapter.

I/O adapters connect to external devices such as digitizers, multimeters, plotters, and oscilloscopes
(IEEE 488 interface); and serial devices such as printers, plotters, and modems (serial RS-232C port).
Driver488/SUB allows direct control of both IEEE 488 external devices and other external devices
such as an RS-232C plotter.

Driver488/SUB is controlled by sending data and commands and receiving responses and status by
subroutine calls. This method is the only Application Program Interface, API, available to connect the
application (user’s) program to Driver488/SUB.

Subroutine Calls
The subroutine API is a library of subroutines linked to the application program that are invoked like
any other subroutines in that programming language. Once invoked, these routines can control
Driver488/SUB.

Configuration of Named Devices
Named devices provide a method to maintain a permanent record of an external device’s configuration
that does not change between application programs. Once the configuration of a particular external
device is established, its Driver488/SUB configuration for that device will remain the same until the
next time you reconfigure it or unload and reload the driver. The external devices supported by
Driver488/SUB are: IEEE 488 external devices and serial external devices.

External devices are most easily configured at installation. For Driver488/SUB, the device names,
terminators, timeout period, and bus addresses may be entered into a configuration file which contains
the device configuration information. This configuration file is automatically read during driver load to
install the configured named devices. The application program can then refer to the external device by
name and have all of the configuration information automatically set.

Every device to be accessed by Driver488/SUB must have a valid device name. Driver488/SUB comes
with several device and interface names preconfigured for use. Among those already configured for the
GP488B board, for example, are: IEEE and DEV. You can configure up to 32 external devices for each
IEEE 488 interface. DEV can be used to create other devices.

It is also possible to configure new named devices by using the Driver488/SUB command
MakeDevice. The MakeDevice command creates a temporary device that is an identical copy of an
already existing Driver488/SUB device. The new device has default configuration settings identical to
those of the existing device. The new device can then be reconfigured by calling the proper functions,
such as BusAddress, IntLevel, and TimeOut. When Driver488/SUB is closed, the new device is
forgotten unless the KeepDevice command is used to make it permanent.

The following code illustrates how the subroutine API version of the MakeDevice command could be
used to configure several new named devices. Using the C language subroutine interface, three named
devices can be configured as follows:

dev = OpenName (“dev”)
dmm = MakeDevice (dev, “DMM”);
if (dmm == -1) {process error . . .}
err = BusAddress (dmm, 16, NOADDRESS);
if (err == -1) {process error . . . }
term.EOI = TRUE;
term.nChars = 2;
term.termChar [0] = ‘\r’;
term.termChar [1] = ‘\n’;
err=Term (dmm, &term, BOTH);
if (err == -1 {process error . . . }

9C. External Device Interfacing II. SOFTWARE GUIDES - 9. Driver488/SUB

II-144 Personal488 User’s Manual, Rev. 3.0

scope = MakeDevice (dev,”SCOPE”);
if (scope == -1) {process error . . .}
err = BusAddress (scope,12,01);
if (err == -1) {process error . . .}
term.EOI = TRUE;
term.nChars = 0;
err = Term (scope,&term,BOTH);
if (err == -1) {process error. . .}

The above example defines the following: An external device named DMM (digital multimeter) as
device 16 with bus terminators of carriage return (\r), line feed (\n), and EOI; a second external
device named ADC (analog-to-digital converter) as device 14 with bus terminators of carriage return
and line feed (together as \n); and a third external device named SCOPE (oscilloscope) as device 12
with bus terminators of EOI only.

External devices defined in a configuration file are permanent. Their definitions last until they are
explicitly removed or until the configuration file is changed and Driver488/SUB is restarted. Devices
defined after installation are normally temporary. They are forgotten as soon as the program finishes.
The KeepDevice command can be used to make these devices permanent. The RemoveDevice
command removes the definitions of devices even if they are permanent. These commands are
described in further detail in the “Section III: Command Reference” of this manual.

Use of External Devices
When using subroutine Application Program Interface (API) functions, it is first necessary to obtain a
device handle for the device(s) with which you wish to interact.

When using Driver488/SUB, the OpenName function must be the first function called in the program.
It takes the name of the device to open and returns a handle for the specified interface board or device.
Every other function can then use that handle to access the device.

The following program illustrates how Driver488/SUB might communicate with an analog-to-digital
converter (adc) and an oscilloscope (scope):

DevHandleT ieee; // handle to access the interface board ieee
DevHandleT adc; // handle to access a ADC488
DevHandleT scope; // handle to acess the scope
DevHandleT deviceList [5]; // array containing a list of device handles;
int err;

Communication with a single device:

adc = OpenName (“ADC”);

If you use several devices, you must open each one:

ieee = OpenName (“IEEE”) ;
scope = OpenName (“SCOPE”) ;
deviceList [0] = adc; // Add adc to the list of devices
deviceList [1] = scope // Add oscilloscope to the list of devices
deviceList [2] = -1 ; // End of list marker

Abort(ieee) ; // Send Interface Clear (IFC)

Output(scope, “SYST:ERR:?”); // Read SCOPE error status
Enter(scope,data) ;
printf(data) ;

adc = MakeDevice (dev, “ADC”);
if (a == -1) {process error . . . }
err = BusAddress (adc,14,00);
if (err == -1) {process error . . .}
term,EOI = FALSE;
term.nChars = 1;
term.termChar [0] = ‘\n’;
err = Term (adc,&term,BOTH);
if (err == -1) {process error . . .}

II. SOFTWARE GUIDES - 9. Driver488/SUB 9C. External Device Interfacing

Personal488 User’s Manual, Rev. 3.0 II-145

Output(adc, “A0 C1 G0 R3 T0 X”) ; // Set up ADC488
Enter(adc,data) ;
printf (data) ;

ClearList (deviceList) ; // Send a Selected Device Clear (SDC) to a list
Close (adc) ; // Close ADC488. Handle is now unavailable for

// access.

If we tried to call Output by sending the handle adc without first opening the name ADC, an error
would result and Output would return a -1 as shown below:

result = Output (adc, “A0 C1 G0 R3 T0 X”);
printf (“Output returned: %d.\n”,result);

should print:

Output returned: -1.

As mentioned above, named devices have another advantage: they automatically use the correct bus
terminators and time out. When a named device is defined, it is assigned bus terminators and a time
out period. When communication with that named device occurs, Driver488/SUB uses these
terminators and time out period automatically. Thus Term commands are not needed to reconfigure the
bus terminators for devices that cannot use the default terminators (which are usually carriage-return
line-feed EOI). It is still possible to override the automatic bus terminators by explicitly specifying the
terminators in an Enter or Output command, or to change them semi-permanently via the Term
command. For more information, see the Enter, Output, and Term commands described in
“Section III: Command References.”

Extensions for Multiple Interfaces
Driver488/SUB allows the simultaneous control of multiple interfaces each with several attached
devices. To avoid confusion, external devices may be referred to by their “full name” which consists of
two parts. The “first name” is the hardware interface name, followed by a colon separator (:). The
“last name” is the external device name on that interface. For example, the “full name” of DMM might
be IEEE:DMM.

Duplicate Device Names
Duplicate device names are most often used in systems that consist of several identical sets of
equipment. For example, a test set might consist of a signal generator and an oscilloscope. If three test
sets were controlled by a single computer using three separate IEEE 488 interfaces, then each signal
generator and each oscilloscope might be given the same name and the program would specify which
test set to use by opening the correct interface (OpenName(“IEEE”) for one, OpenName(“IEEE2”)
for the other), or by using the interface names when opening the devices
(OpenName(“IEEE:GENERATOR”) for one and OpenName(“IEEE2:GENERATOR”) for the other).

Unique names are appropriate when the devices work together, even if more than one interface is used.
If two different oscilloscopes, on two different interfaces are used as part of the same system, then they
would each be given a name appropriate to its function. This avoids confusion and eliminates the need
to specify the interface when opening the devices.

Access of Multiple Interfaces
If the computer only has one IEEE 488 interface, then there is no confusion, for every external device
is known to be on that interface. As noted above, duplicate device names on one interface are not
recommended; if they exist, the most recently defined device with the requested name will be used.
When more than one interface is available and duplicate names appear on different interfaces, the
following rules apply:

1. If the external device name is specified without its interface name, then any external device with
that name may be used. If more than one external device has that name, then the choice of which
particular external device is not defined.

9D. Getting Started II. SOFTWARE GUIDES - 9. Driver488/SUB

II-146 Personal488 User’s Manual, Rev. 3.0

2. If the external device name is specified with its interface name prefixed, then that external device
on that hardware interface is used. If that external device is not attached to the specified hardware
interface, then an error occurs.

Example
Assume there are three IEEE 488 interfaces: IEEE, IEEE2, and IEEE3 controlling multiple devices:
SCOPE (on IEEE), DA (on IEEE2) and DA (on IEEE3). Since there are two external devices, both
named DA, their full name must be used to specify them.

We can communicate with the external devices, according to the two rules above.

scope = OpenName (“SCOPE”) ; // SCOPE on IEEE (Rule 1)
da = OpenName (“DA”) // DA on IEEE2 or IEEE3 (not specified)
da = OpenName (“IEEE2:DA”) ; // DA on IEEE2 (Rule 2)
scope = OpenName (“IEEE2:SCOPE”); // Error (not IEEE:SCOPE) (Rule 2)

 9D. Getting Started

Topics

• Introduction... II-145
• C Language .. II-145

Required Headers.. II-146
Required Libraries .. II-146

• QuickBASIC ... II-148
Required Definition File .. II-149
Required Libraries .. II-149

• Pascal .. II-149
Required Libraries .. II-149

Introduction
The following text outlines the steps necessary to produce an application program that communicates
with Driver488/SUB. The application is the simplest one possible, it merely requests the revision
number of the resident driver using the Hello command. Examples are provided in C, QuickBASIC
and Pascal. Each of these supported languages are described in more detail in each of the next three
Sub-Chapters “C Languages,” “QuickBASIC,” and “Pascal” of this Chapter. For further information
on the Hello command, see the “Section III: Command References” of this manual.

C Language
To successfully operate Driver488/SUB, several declarations must be included in the user’s application
program. These declarations are found in two headers which must be included in the main module of
your C program. The two required headers can be found in the language-specific subdirectory at the
end of the path \IEEE488\SUBAPI, if installed under the default conditions.

In the same directory as the headers, are the libraries for the different memory models. One of these
libraries must be linked with your C project to resolve Driver488/SUB external references.

II. SOFTWARE GUIDES - 9. Driver488/SUB 9D. Getting Started

Personal488 User’s Manual, Rev. 3.0 II-147

• These header files must be included in your test program. To do so, insert the following lines:

#include “iotmc60.h”
#include “iot_main.h”

These lines must be included at the top of your program before any calls to the Driver488/SUB
subroutine functions are made. Notice that the header file iot_main.h must be in the module
containing your main () function and may not appear in any other modules.

For Turbo C Users

• All programs must include the following header files to run with Driver488/SUB:

iottc20.h
iot_main.h

• These header files must be included in your test program. To do so, insert the following lines:

#include “iottc20.h”
#include “iot_main.h”

These lines must be included at the top of your program before any calls to the Driver488/SUB
subroutine functions are made. Notice that the header file iot_main.h must be in the module
containing your main () function and may not appear in any other modules.

For Turbo C++ and Borland C++ Users

• All Turbo C++ programs must include the following header files to run with Driver488/SUB:

iottx20.h
iot_main.h

• These header files must be included in your test program. To do so, insert the following lines:

#include “iottx10.h”
#include “iot_main.h”

These lines must be included at the top of your program before any calls to the Driver488/SUB
subroutine functions are made. Notice that the header file iot_main.h must be in the module
containing your main () function and may not appear in any other modules.

Required Libraries
For Microsoft C & Quick C Users

• Driver488/SUB supports four memory models: “small,” “medium,” “compact” and “large.”
Include the iotm60.h and iot_main.h header files in your program and link in the proper
Driver488/SUB library files, as shown below:

iotmc60s.lib for small memory model programs.
iotmc60m.lib for medium memory model programs.
iotmc60c.lib for compact memory model programs.
iotmc60l.lib for large memory model programs.

For more information on memory models, see the Sub-Chapter “Other Languages” in Chapter 8.

• Use the following command-line commands to compile and link your program. For example, the
following commands create a compact model executable file using Microsoft C:

cl/AC hello.c iotmc60c.lib;

Required Headers
For Microsoft C and Quick C Users

• All programs must include the following header files to run with Driver488/SUB:

iotmc60.h
iot_main.h

9D. Getting Started II. SOFTWARE GUIDES - 9. Driver488/SUB

II-148 Personal488 User’s Manual, Rev. 3.0

or

cl/c/AC hello.c
link hello.obj,,,iotmc60c.lib;

Similarly, the following commands create a compact model executable file, using Quick C:

qcl/c/AC hello.c
qlink hello.obj,,,iotmc60c.lib;

To run this program, Driver488/SUB must be installed and resident. Successful operation of this
program proves that the driver is installed and the Driver488/SUB subroutines were properly
linked to the application program. Errors in setting up board parameters like DMA channel and
interrupts will not be detected by this program.

For Turbo C Users

• Driver488/SUB supports four memory models: “small,” “medium,” “compact” and “large.” (See
the Sub-Chapter “Other Languages” in Chapter 8, for more information on memory models.)
Include the iottc20.h and iot_main.h header files in your program and link in the proper
Driver488/SUB library files, as shown below:

iottc20s.lib for small memory model programs.
iottc20m.lib for medium memory model programs.
iottc20c.lib for compact memory model programs.
iottc20l.lib for large memory model programs.

• Use the following command-line commands to compile and link your program. For example, the
following commands create a compact model executable file:

tcc -mc hello.c iottc20c.lib

or

tcc -c -mc hello.c
tlink hello.obj + c0c.obj,,,cc.lib iottc20c.lib

• Use the example test program to query Driver488/SUB for its Hello message:

#include “iottc20.h”
#include “iot_main.h”
main () {

DevHandleT ieee;
char response [100];

Hello (ieee, response);
printf (“--%s\n”,response);

}

Upon execution, the following response is printed on the screen:

-- Driver488 ver 4.0........

• Use the example test program to query Driver488/SUB for its Hello message:

#include “iotmc60.h”
#include “iot_main.h”
main () {

DevHandleT ieee;
char response [100] ;

Hello (ieee,response) ;
printf (“--%s\n,response) ;

}

Upon execution, the following response is printed on the screen:

-- Driver488 ver 4.0........

II. SOFTWARE GUIDES - 9. Driver488/SUB 9D. Getting Started

Personal488 User’s Manual, Rev. 3.0 II-149

To run this program, Driver488/SUB must be installed and resident. Successful operation of this
program proves that the driver is installed and the Driver488/SUB subroutines were properly
linked to the application program. Errors in setting up board parameters like DMA channel and
interrupts will not be detected by this program.

For Turbo C++ and Borland C++ Users

• Driver488/SUB supports four memory models: “small,” “medium,” “compact” and “large.” (See
the Sub-Chapter “Other Languages” in Chapter 8, for more information on memory models.)
Include the iottx10.h and iot_main.h header files in your program and link in proper
Driver488/SUB library files, as shown below:

iottx10s.lib for small memory model programs.
iottx10m.lib for medium memory model programs.
iottx10c.lib for compact memory model programs.
iottx10l.lib for large memory model programs.

• Use the following command-line command to compile and link your program. For example, the
following commands create a compact model executable file using Turbo C++:

tcc -mc hello.c iottx10c.lib

or

tcc -c -mc hello.c
tlink hello.obj + c0c.obj,,,cc.lib iottx10c.lib

Similarly, these commands create a compact model executable file, using Borland C++:

bcc -mc hello.c iottx10c.lib

or

bcc -c -mc hello.c
tlink hello.obj + c0c.obj,,,c.lib iottx10c.lib

• Use the example test program to query Driver488/SUB for its Hello message:

#include “iottx10.h”
#include “iot_main.h”
main () {

DevHandleT ieee;
char response [100];

Hello (ieee, response);
printf (“--%s\n”, response);

}

Upon execution, the following response is printed on the screen:

-- Driver488 ver 4.0........

To run this program, Driver488/SUB must be installed and resident. Successful operation of this
program proves that the driver is installed and the Driver488/SUB subroutines were properly
linked to the application program. Errors in setting up board parameters like DMA channel and
interrupts will not be detected by this program.

QuickBASIC
To successfully operate Driver488/SUB, a definition file must be included in the user’s application
program. This definition file can be found in the \IEEE488\SUBAPI\QB45 subdirectory, if installed
under the default conditions.

In the same directory as the definition file, are the libraries needed to access Driver488/SUB from
QuickBASIC.

9D. Getting Started II. SOFTWARE GUIDES - 9. Driver488/SUB

II-150 Personal488 User’s Manual, Rev. 3.0

Required Libraries
Driver488/SUB can be accessed from QuickBASIC using the integrated environment and the DOS
command line. If the QuickBASIC integrated environment is used, the iotmqb45.qlb quick library
must be loaded into QuickBASIC. To do so, start QuickBASIC with the following DOS command:

qb /liotmqb45.qlb

If the command line compiler is used, the iotmqb45.lib library must be linked with your program
with the following commands:

bc hello.bas;
link hello.obj,,,iotmqb45.libc:\qb45\brun45.lib;

Use the example test program to query Driver488/SUB for its Hello message:

‘$INCLUDE: ‘iotmqb45.def’
response$ = SPACE$ (100)
rv% = iohello%(ieee%,response$)
PRINT response$
END

Upon execution, the following response is printed on the screen:

-- Driver488 ver 4.0........

To run this program, Driver488/SUB must be installed and resident. Successful operation of this
program proves that the driver is installed and the Driver488/SUB subroutines were properly linked to
the application program. Errors in setting up board parameters like DMA channel and interrupts will
not be detected by this program.

Pascal
To successfully operate Driver488/SUB, a library file must be included in the user’s application
program. The required library can be found in the language-specific subdirectory at the end of the path
\IEEE488\SUBAPI\TPAS60, if installed under the default conditions.

Required Libraries
All programs need to include the following library file to run with Driver488/SUB:

iottp60.tpu

This library file must be included in your test program. To do so, insert the following line:

uses iottp60;

This line must be included at the top of your program before any calls to the Driver488/SUB subroutine
functions are made.

Use the following command-line commands to compile and link your program. For example, the
following command creates a compact model executable file:

tpc hello.c

Use the example test program to query Driver488/SUB for its Hello message:

Required Definition File
All programs must include the iotmqb45.def definition file to run with Driver488/SUB. To include
this program in your test program, insert the following line:

‘$INCLUDE: ‘iotmqb45.def’

This line should be included at the top of your program before any calls to the Driver488/SUB
subroutine functions are made.

II. SOFTWARE GUIDES - 9. Driver488/SUB 9E. C Languages

Personal488 User’s Manual, Rev. 3.0 II-151

program hello;
uses iottp60;
var
ieee : Integer; { Device handles }
response : string; { Text buffer for Driver488/SUB responses }
rv : Integer ; { General purpose return value }

begin
{ Query Driver488/SUB for its hello message }
rv:=ioHello (ieee, response) ;
Writeln (response) ;

end.

Upon execution, the following response is printed on the screen:

-- Driver488 ver 4.0........

To run this program, Driver488/SUB must be installed and resident. Successful operation of this
program proves that the driver is installed and the Driver488/SUB subroutines were properly linked to
the application program. Errors in setting up board parameters like DMA channel and interrupts will
not be detected by this program.

 9E. C Languages

Topics

• Accessing from a C Program.. II-150
• Establishing Communications .. II-151
• Confirming Communication .. II-152
• Setting Up Event Handling.. II-152
• Reading Driver Status... II-152
• External Device Initialization... II-153
• Interrupt Handling .. II-153
• Basic Data Acquisition.. II-154
• Block Data Acquisition ... II-154
• Sample Program ... II-155
• Command Summary .. II-158

Accessing from a C Program
Note: Subroutines may be used with all C languages except Aztec C.

Driver488/SUB provides support for Microsoft C, Turbo C and Borland C. To allow for ready access
to all Driver488/SUB functions and type definitions, an include file provides all required declarations.
In addition, one include file must be included in the main module to provide for automatic detection of
certain compiler options and enable the required adjustments within the driver. Note that the header
files (*.h) must be included in your program and linked to the proper Driver488/SUB library files, as
described in the previous Sub-Chapter “Getting Started.” The following #include directives should
appear near the beginning of the main module.

• For Borland C compilers:

#include “iot_main.h”
#include “iotbc20.h”

• For Microsoft compilers:

#include “iot_main.h”

9E. C Languages II. SOFTWARE GUIDES - 9. Driver488/SUB

II-152 Personal488 User’s Manual, Rev. 3.0

#include “iotmc60.h”

• For Turbo C++ and Borland C++ compilers:

#include “iottx10.h”
#include “iot_main.h”

Notice that the header file iot_main.h must be in the module containing your main () function and
may not appear in any other modules.

The following declarations are assumed through the remainder of this discussion:

DevHandleT adc,adc2,ieee,dev; /*Device handles*/
int hundred [100]; /*Driver488/SUB status structure*/
char response [256]; /*Text buffer for Driver488/SUB responses*/
int i; /*General purpose loop counter*/
float voltage; /*Single reading variable*/
float sum; /*Summation used to compute average*/
IeeeStatusT substat; /*Driver488/SUB status structure*/
int sp, stadc; /*Driver488/SUB and ADC488 spoll response*/
int errnum; /*ADC488 error number*/
char errtext [64]; /*ADC488 error response*/
TermT noterm; /*Driver488 terminator structure*/

Establishing Communications
For the sake of this discussion, assume that Driver488/SUB has been configured to start with a
configuration including the devices IEEE (IEEE 488 interface) and ADC (ADC488/8S connected to the
IEEE 488 interface). Additional interfaces and/or devices may also have been defined, as the driver
can support up to 4 interfaces and 56 devices simultaneously. To open the two devices of interest, we
use the following statements:

ieee = OpenName (“IEEE”) ;
adc = OpenName (“ADC”) ;

If the ADC was not configured within Driver488/SUB, it can be optionally created “on the fly.” First,
verify that opening the ADC failed, then use the GetError command to clear the error condition
generated by this failure. Next, use the handle of the device DEVIEEE, which is always available within
Driver488/SUB, to clone a new device called ADC using the MakeDevice command. Lastly, the IEEE
bus address 14 is assigned to the ADC:

if ((adc=OpenName (“ADC”))==-1) {
GetError (ieee,response);
dev=OpenName (“DEVIEEE”);
adc=MakeDevice (dev,”ADC”);
BusAddress (adc,14,-1);

}

If other devices were needed for the application at hand, they could either be defined in the startup
configuration for Driver488/SUB or they could be created “on the fly” from the application:

adc2=MakeDevice (adc,”ADC2”) ; / *Clone a new device */
BusAddress (adc2,10,-1) ; // Set the bus address

The new device ADC2 is configured to reside at a different bus address so that the two devices may be
distinguished. There is one other important difference between ADC and ADC2 at this point. ADC2 is a
temporary device; that is, as soon as the creating application closes, ADC2 ceases to exist. If our intent
was to create a device that could be accessed after this application ends, we must tell Driver488/SUB
this:

KeepDevice (adc2) ;

After executing the previous statement, ADC2 is marked as being permanent; that is, the device will not
be removed when the creating application exists. If we later wish to remove the device, however, we
can do so explicitly:

RemoveDevice (adc2) ;

II. SOFTWARE GUIDES - 9. Driver488/SUB 9E. C Languages

Personal488 User’s Manual, Rev. 3.0 II-153

Confirming Communication
With or without an open device handle, the application can, if desired, confirm communication with
Driver488/SUB via the Hello function:

Hello (ieee,response) ;
printf (“%s\n”,response) ;

The function also fills in a string, from which information can be extracted if it is desirable to display
facts about the driver in use.

Setting Up Event Handling
If the event notification mechanism of Driver488/SUB is to be used, it should normally be set up
during application initialization and left in place until application shutdown. No special action is
required if event notification is not needed for the particular application. First, the OnEvent function
establishes the notification path by specifying the function to be called, as follows:

OnEvent (ieee,isr, (OpaqueP)0) ;

Either during initialization or at some appropriate later point in the application, specific event types
may be Armed or Disarmed for use in the event system. Individual event types may be turned on and
off at will freely through the life of the application. In this case, we Arm to request notification of
IEEE 488 bus service requests:

Arm (ieee,acSRQ) ;

To cease recognizing bus service requests, we might Disarm just the one class of events:

Disarm (ieee,acSRQ) ;

Or, to completely disable event notifications:

Disarm (ieee,0) ;

Note that an external device handle is acceptable in this and other functions which actually refer to the
interface; the external device handle will simply be translated to the handle of the interface to which the
device is attached, prior to taking action. This translation is fully automatic within Driver488/SUB and
requires little overhead, so you need not and should not go to great lengths to pass an interface handle,
if your application structure makes the use of external device handles the more logical choice.

Reading Driver Status
Your application may interrogate Driver488/SUB at any time to determining its status and other
information. Status information is returned in a structure provided by the application and can be
displayed by the showstat function shown below:

Status (ieee,&substat) ;
showstat (&substat) ;

Another function to display the information contained in the Status structure could be:

void showstat (IeeeStatusT * substattt) {
printf (“SC : %d\t”,substat->SC) ;
printf (“CA : %d\t”,substat->CA) ;
printf (“Primaddr : %d\t”,substat->Primaddr) ;
printf (“Secaddr : %d\n”,substat->Secaddr) ;
printf (“SRQ : %d\t”,substat->SRQ) ;
printf (“addrChange : %d\t”,substat->addrChange) ;
printf (“talker : %d\t”,substat->talker) ;
printf (“listener : %d\n”,substat->listener) ;
printf (“triggered : %d\t”,substat->triggered) ;
printf (“cleared : %d\t”,substat->cleared) ;
printf (“transfer : %d\t”,substat->transfer) ;
printf (“byteIn : %d\n”,substat->byteIn) ;
printf (“byteOut : %d\n”,substat->byteOut) ;

}

9E. C Languages II. SOFTWARE GUIDES - 9. Driver488/SUB

II-154 Personal488 User’s Manual, Rev. 3.0

External Device Initialization
Refer to the device manufacturer’s documentation on specific requirements for initializing your
IEEE 488 instrument. In the case of the ADC488, appropriate initialization involves sending it a
Clear command and placing it into Remote mode:

Clear (adc) ;
Remote (adc) ;

For our hypothetical application, we also wish to have the ADC488 generate a service request should it
detect a command error. This involves sending a command string consisting of textual data to the
ADC488:

Output (adc, “M8X”) ;

We may also wish to perform other initialization and configuration. In this case, we set up the
ADC488 (adc) in the following configuration:

/* Setup the ADC488
Differential inputs (A0)
Scan group channel 1 (C1)
Compensated ASCII floating-point output format (G0)
Channel 1 range to +/-10V (R3)
One-shot trigger on talk (T6)

*/

The command to perform this configuration combines the above strings and adds the Execute (X)
command for the ADC488:

Output (adc,”A0C1G0R3T6X”) ;

Interrupt Handling
In case we send out an invalid command, either due to a programming error or an unanticipated
condition in the equipment, Driver488/SUB will automatically notify the interrupt handling function as
established above:

Output (adc,”V13X”) ;

The interrupt handler as established above might consist of a function similar to the following:

void isr (OpaqueP param) {
int sp,

stadc,
errnum;

char errtext [64] ;

/* Print parameter passed to isr to screen */
printf (“ In intrrupt handler, param=%d\n”,param) ;

/* Check if the intrrupt was due to a Service Request */
sp=SPoll (ieee) ;
if (sp==0) {

printf (“ No SRQ detected\n”) ;
exit (1) ;

}

/* Check that the Service Request was from the ADC488 */
stadc=SPo;l (adc) ;
if ((stadc&0x40)==0) {

printf (“ Not an ADC488 SRQ.\n”) ;
exit (1) ;

}

/* Interpret the Serial Poll response */
if (stadc&0x01)

printf (“ Triggered\n”) ;
if (stadc&0x02)

II. SOFTWARE GUIDES - 9. Driver488/SUB 9E. C Languages

Personal488 User’s Manual, Rev. 3.0 II-155

printf (“ trigger overrun\n”) ;
if (stadc&0x04)

printf (“ Buffer overrun\n”) ;
if (stadc&0x08) {

/* Read and interpret the ADC488 error status */
printf (“ ADC488 error\n”) ;
Output (adc,”E?”) ;
Enter (adc,errtext) ;
sscanf (errtext,”E%d”,&errnum) ;
if (errnum&0x01)

printf (“ Invalid DDC\n”) ;
if (errnum&0x02)

printf (“ Invalid DDC option\n”) ;
if (errnum&0x04)

printf (“ Conflict error\n”) ;
if (errnum&0x08)

printf (“ NVRAM setup error\n”) ;
if (errnum&0x10)

printf (“ Calibration error\n”) ;
if (errnum&0x20)

printf (“ NVRAM calibration error\n”) ;
}
if (stadc&0x20)

printf (“ Ready\n”) ;
if (stadc&0x40)

printf (“ SRQ asserted\n”) ;
if (stadc&0x80)

printf (“ Data acquisition complete\n”) ;
/* Set up interrupt pointers */
OnEvent (ieee, isr, (OpaqueP)0) ;

}

Basic Data Acquisition
With both Driver488/SUB and the external device ready for action, we next might try taking a simple
reading using the ADC488. Here, we use the serial poll (SPoll) capabilities of Driver488/SUB to
determine when a response is ready and to format the reply:

while((SPoll (adc) & 32) ==0) ;
Enter(adc,response) ;
sscanf(response,”%f”,&voltage) ;
printf(“ADC488 channel #1 reading valve is %g\n”,voltage) ;

Block Data Acquisition
First, we set up the ADC488 (adc) in the following configuration:

/* Setup the ADC488:
Compensated binary output format (G10)
100 usec scan interval (I3)
No pre-trigger scans, 100 post-trigger scans (N100)
Continuous trigger on GET (T1)

*/

We then wait for the ADC488 to start the acquisition process. Once the acquisition is complete, which
is determined by the MSB of the ADC488’s serial poll response, the buffer pointer of the ADC488 is
reset (B0).

Output(adc, “G10I3N100T1X”);

/* wait for the ready bit of the ADC488 to be asserted */
while ((SPoll(adc) & 32) == 0);

/* Trigger the ADC488 */
Trigger(adc);

/* wait for the acquisition complete bit of ADC488 to be asserted */
while ((SPoll(adc) & 128) == 0);

9E. C Languages II. SOFTWARE GUIDES - 9. Driver488/SUB

II-156 Personal488 User’s Manual, Rev. 3.0

/* Reset the buffer pointer of the ADC488 */
Output(adc, “B0X”);

Next, we fill the buffer with 100 readings from the ADC488. Since the data being returned from the
ADC488 is in a binary format, the noterm terminator structure is used to disable scanning for
terminators such as carriage-return and line-feed:

noterm.EOI=0 ;
noterm.nChar=0 ;
EnterX (adc, (char*) hundred,200,1,¬erm,1,0L) ;

The EnterX function will use a DMA transfer if available. Because DMA transfers are performed
entirely by the hardware, the program can continue with other work while the DMA transfer function
occurs. For example, the program will process the previous set of data while collecting a new set of
data into a different buffer. However, before processing the data we must wait for the transfer to
complete. For illustration purposes, we query the Driver488/SUB status both before and after waiting.

/* Display DRIVER488/W31 status */
Status (ieee,&substat) ;
showstat (&substat) ;

/* Wait for completion of input operation*/
Wait (adc) ;

/* Display DRIVER488/W31 status */
Status (ieee,&substat) ;
showstat (&substat) ;

Now we process the buffer:

/* Print the received characters */
for (i=0;id;i++) {

printf (“%6d”,hundred [i]) ;
if ((i%10)==9)

printf (“\n”) ;
}

The functions described so far in this Sub-Chapter provide enough functionality for a basic data
acquisition program. The following program listing covers the examples used. Additional functions
provided by Driver488/SUB are described in the “Section III: Command References” of this manual.

Sample Program
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include”iot_main.h”
#include”iottx10.h”

void showstat (IeeeStatusT*) ;
void isr (OpaqueP) ; /*handle inerrupt*/

DevHandleT adc,ieee,dev;
int hundred[100] ;

void main ()
{

char response [256] ;
int i;
float voltage,

sum;
IeeeStatusT substat ;

/*establish communications with Driver488/SUB*/
if ((ieee=OpenName (“IEEE”))==-1) {

printf (“Cannot initialize IEEE system.\n”) ;
exit (1) ;

}

II. SOFTWARE GUIDES - 9. Driver488/SUB 9E. C Languages

Personal488 User’s Manual, Rev. 3.0 II-157

/*Disable the automatic onscreen error display*/
Error (ieee,OFF) ;

/*Open the ADC488 devie handle or create if necessary*/
if ((adc=OpenName (“ADC”))==-1 {

GetError (ieee,response) ;
dev=OpenName (“DEVIEEE”) ;
adc=MakeDevice (dev,”ADC”) ;
BusAddress (adc,14,-1) ;

}

/* Read the Driver488/SUB revision number */
Hello (ieee,response) ;
printf (“%s\n”,response) ;

/*Set up interrupt pointers */
OnEvent (ieee,isr, (OpaqueP)0) ;

/*Enable Driver488/SUB interrupt on Error or Service Request */
Arm (ieee,acSRQ) ;

/*Display the Driver488/SUB system status */
Status (ieee,&substat) ;
showstat (&substat) ;

/*Put the ADC488 into remote mode */
Remote (adc) ;

/*Clear the ADC488*/
Clear (adc) ;

/*Enable ADC488 SRQ on command errors */
Output (adc,”M8X”) ;

/*Send an invlaid command to the ADC488 */
printf (“Sending invalid ADC command\n”) ;
Output (adc,”V13X”) ;

/*Setup the ADC488:
Differential inputs (a0)
Scan grou channel 1 (C1)
Compensated ASCII floating-point output format (G0)
Channel 1 range to +/-10v (R3)
One-shot trigger on talk (T6)

*/
Output (adc,”A0C1G0R3T6X”) ;

/*Wait for the ready bit of the ADC488 to be asserted */
while ((SPoll (adc) & 32 ==0) ;

/*Display a reading */
Enter (adc,reponse) ;
sscanf (response,”%f”,&voltage) ;
printf (“ADC488 channel #1 reading value is %g\n”,voltage) ;

/*Display the average of 10 readings */
sum=0.0 ;
for (i=0;i;i++) {

Enter (adc,response) ;
sscanf (response,”%f”,voltage) ;
sum=sum+voltage;

}
printf (“The average of 10 readings is %g\n”,sum/10.0) ;

/*Setup the ADC488:
Compensated binary output format (G10)

9E. C Languages II. SOFTWARE GUIDES - 9. Driver488/SUB

II-158 Personal488 User’s Manual, Rev. 3.0

100u sec scan interval (I3)
No pre-trigger scans, 100 post-trigger scans (n100)
Continuous trigger on GET (T1)

*/
Output (adc,”G10I3N100T1X”) ;

/*Wait for the ready bit of the ADC488 to be asserted*/
while ((SPoll (adc) &32)==0) ;

/*Trigger the ADC488 */
Trigger(adc);

/*Wait for the acquisition complete bit to be asserted*/
while ((SPoll (adc) &128)==0) ;

/*Reset the buffer pointer of the ADC488 */
Output (adc,”BOX”) ;

/*Take 100 readings from the ADC488* /
noterm.EOI=0;
noterm.nChar=0;
EnterX(adc, (char*)hundred,200,1,¬erm,1,0L);

/*Check the Status before and after waiting */
Status (ieee,&substat) ;
showstat (&substat) ;

/* Wait for completion of input operation */
Wait (adc);

/*Display the Driver488/SUB system status */
Status (ieee,&substat) ;
showstate (&substat) ;

/* Print the received characters */
for (i=0;id;i++) {

printf(“%6d”,hundred[i]) ;
if ((i%10)==9)

printf (“\n”) ;
}

}

/*Interrupt service routine for Driver488/SUB interrupts */
void isr (OpaqueP param) {

int sp,
stadc,
errnum;

char errtext [64] ;

/*Print parameter passed to isr to screen */
printf (“ In interrupt handler, param=%d\n”,param) ;

/* Check if the interrupt was due to a Service Request */
sp=SPoll (ieee) ;
if (sp==0) {

printf (“ No SRQ detected\n”) ;
exit (1) ;

}

/* Check that the Service Request was from the ADC488 */
stadc=SPoll (adc) ;
if ((stadc&0x40)==0) {

printf(“ Not an ADC488 SRQ.\n”) ;
exit (1) ;

}

/* Interpret the Serial Poll response */

II. SOFTWARE GUIDES - 9. Driver488/SUB 9F. QuickBASIC

Personal488 User’s Manual, Rev. 3.0 II-159

if (stadc&0x01)
printf (“ Triggered\n”) ;

if (stadc&0x02)
printf (“ Trigger overrun\n”) ;

if (stadc&0x04)
printf (“ Buffer overrun\n”) ;

if (stadc&0x08) {
/* Read and interpret the ADC488 error status * /
printf (“ ADC488 error\n”) ;
errnum=5;
Output (adc,”E?”) ;
Enter (adc,errtext) ;
sscanf (errtext,”E%d”,&errnum) ;
if (errnum&0x01)

printf(“ Invalid DDC\n”) ;
if (errnum&0x02)

printf(“ Invalid DDC option\n”) ;
if (errnum&0x04)

printf(“ Conflict error\n”) ;
if (errnum&0x08)

printf(“ NVRAM setup error\n”) ;
if (errnum&0x10)

printf(“ Calibration error\n”) ;
if (errnum&0x20)

printf(“ NVRAM calibration error\n”) ;
}
if (stadc&0x20)

printf (“ Ready\n”) ;
if (stadc&0x40)

printf(“ SRQ asserted\n”) ;
if (stadc&0x80)

printf(“ Data acquisition complete \n”) ;

/* Set up interrpt pointers */
OnEvent (ieee,isr,(OpaqueP) 0) ;

}

/* Display Status from Driver488/SUB */
void showstate (IeeeStatusT *substat) {

printf (“SC : %d\t”,substat->SC) ;
printf (“CA : %d\t”,substat->CA) ;
printf (“Primaddr : %d\t”,substat->Primaddr) ;
printf (“Secaddr : %d\t”,substat->Secaddr) ;
printf (“SRQ : %d\t”,substat->SRQ) ;
printf (“addrChange : %d\t”,substat->addrChange) ;
printf (“talker : %d\t”,substat->talker) ;
printf (“listener : %d\t”,substat->listener) ;
printf (“triggered : %d\t”,substat->triggered) ;
printf (“cleared : %d\t”,substat->cleared) ;
printf (“transfer : %d\t”,substat->transfer) ;
printf (“byteIn : %d\t”,substat->byteIn) ;
printf (“byteOut : %d\t”,substat->byteOut) ;

}

Command Summary
To obtain a summary of the C language commands for Driver488/SUB, turn to the “Section III:
Command References” of this manual.

9F. QuickBASIC II. SOFTWARE GUIDES - 9. Driver488/SUB

II-160 Personal488 User’s Manual, Rev. 3.0

Accessing from a QuickBASIC Program
Driver488/SUB provides support for Microsoft QuickBASIC. To allow for ready access to all
Driver488/SUB functions and type definitions, a definition file provides all required declarations. Note
the definition file (*.def) must be included in your program and linked to the proper Driver488/SUB
library files, as described in the Sub-Chapter “Getting Started” earlier in this Chapter. The following
$include directives should appear near the beginning of the program:

‘$include: ‘IOTMQB45.DEF’

The following declarations are assumed throughout the remainder of this discussion.

DIM adc%,adc2%,ieee%,dev,% ’ Device handles
DIM hundred% (100) ; ’ Driver488/SUB status structure
DIM response$ (256) ’ Text buffer for Driver488/SUB responses
DIM i% ’ General purpose loop counter
DIM voltage ! ’ Single reading variable
DIM sum ! ’ Summation used to compute average
DIM substat as Ieee status ’ Driver488/SUB status structure
DIM sp%,stadc% ’ Driver488/SUB and ADC488 spoll response
DIM errnum% ’ ADC488 error number
DIM errtext$ (64) ’ ADC488 error response
DIM rv% ’ Driver488/SUB return value
DIM noterm as terms ’ Driver488/SUB terminator structure

Establishing Communications
For the sake of this discussion, assume that Driver488/SUB has been configured to start with a
configuration including the devices IEEE (IEEE 488 interface) and ADC (ADC488/8S connected to the
IEEE 488 interface). Additional interfaces and/or devices may also have been defined, as the driver
can support up to four interfaces and 56 devices simultaneously. To open the two devices of interest,
we use the following statements:

ieee% = ioOpenName% (“IEEE”)
adc% = ioOpenName% (“ADC”)

If the ADC was not configured within Driver488/SUB, it can be optionally created “on the fly.” First
verify that opening the ADC failed, then use the GetError command to clear the error condition
generated by this failure. Next, use the handle of the device DEVIEEE, which is always available within

 9F. QuickBASIC

Topics

• Accessing from a QuickBASIC Program II-159
• Establishing Communications... II-159
• Confirming Communications... II-160
• Setting Up Event Handling .. II-160
• Reading Driver Status... II-161
• External Device Initialization ... II-161
• Interrupt Handling .. II-162
• Basic Data Acquisition .. II-162
• Block Data Acquisition.. II-162
• Sample Program ... II-163
• Command Summary... II-166

II. SOFTWARE GUIDES - 9. Driver488/SUB 9F. QuickBASIC

Personal488 User’s Manual, Rev. 3.0 II-161

Driver488/SUB, to clone a new device called ADC using the MakeDevice command. Lastly, the IEEE
bus address 14 is assigned to the ADC.

adc% = ioOpenName% (“ADC”)
IF (adc% = 1) THEN

response$ = SPACES (256)
rv% = ioGetError% (ieee%, response$)
dev% =ioOpenName% (“DEVIEEE”)
adc% = ioMakeDevice% (dev%,”ADC”)
rv% = ioBusAddress% (adc%,14,-1)

END IF

If other devices were needed for the application at hand, they could either be defined in the startup
configuration for Driver488/SUB or they could be created on the fly from the application:

adc2% = ioMakeDevice% (adc%,”ADC2”) ; /*Clone a new device */
rv% = ioBusAddress% (adc2%,10,-1) ; // Set the bus address

The new device ADC2 is configured to reside at a different bus address so that the two devices may be
distinguished. There is one other important difference between ADC and ADC2 at this point. ADC2 is a
temporary device; that is, as soon as the creating application closes, ADC2 ceases to exist. If our intent
was to create a device that could be accessed after this application ends, we must tell Driver488/SUB
this:

rv%=ioKeepDevice% (adc2%) ;

After executing the above statement, ADC2 is marked as being permanent; that is, the device will not be
removed when the creating application exists. If we later wish to remove the device, however, we can
do so explicitly:

rv%=ioRemoveDevice% (adc2) ;

Confirming Communications
With or without an open device handle, the application can, if desired, confirm communication with
Driver488/SUB via the Hello function:

The function also fills in a string from which information can be extracted if it is desirable to display
facts about the driver in use:

Setting Up Event Handling
If the event notification mechanism of Driver488/SUB is to be used, it should normally be set up
during application initialization and left in place until application shutdown. No special action is
required if event notification is not needed for the particular application. First, the ONPEN GOSUB and
PEN ON functions establish the notification path by specifying the function to be called:

ON PEN GOSUB isr
PEN ON
rv% = ioLightPen% (ieee%, 1)

Either during initialization or at some appropriate later point in the application, specific event types
may be Armed or Disarmed for use in the event system. Individual event types may be turned on and
off at will freely through the life of the application. In this case, we Arm to request notification of
IEEE 488 bus service requests:

rv% = ioArm% (ieee%, acSRQ)

To cease recognizing bus service requests, we might Disarm just the one class of events:

rv% = ioDisarm% (ieee%, acSRQ) ;

Or, to completely disable event notifications:

response$ = SPACES (256)
rv% = ioHello% (ieee%,response$)
PRINT response$

9F. QuickBASIC II. SOFTWARE GUIDES - 9. Driver488/SUB

II-162 Personal488 User’s Manual, Rev. 3.0

rv% = ioDisarm% (ieee%, 0) ;

Note that an external device handle is acceptable in this and other functions which actually refer to the
interface; the external device handle will simply be translated to the handle of the interface to which the
device is attached, prior to taking action. This translation is fully automatic within Driver488/SUB and
requires little overhead, so you need not and should not go to great lengths to pass an interface handle,
if your application structure makes the use of external device handles the more logical choice.

Reading Driver Status
Your application may interrogate Driver488/SUB at any time to determine its status and other
information. Status information is returned in a structure provided by the application and can be
displayed by the showstat function shown below:

rv%=ioStatus%(ieee%,substat)
CALL showstat (substat)

Another function to display the information contained in the Status structure could be:

SUB showstat (substat AS IeeeStatus)
PRINT “SC :”; substat.SC,
PRINT “CA :”; substat.CA,
PRINT “Primaddr :”; substat.Primaddr
PRINT “Secaddr :”; substat.Secaddr,
PRINT “SRQ :”; substat.SRQ,
PRINT “addrChange :”; substat.addrChange
PRINT “talker :”; substat.talker,
PRINT “listener :”; substat.listene,
PRINT “triggered :”; substat.triggered
PRINT “cleared :”; substat.cleared,
PRINT “transfer :”; substat.transfer,
PRINT “byteIn :”; substat.byteIn
PRINT “byteOut :”; substat.byteOut

END SUB

External Device Initialization
Refer to the device manufacturer’s documentation on specific requirements for initializing your
IEEE 488 instrument. In the case of the ADC488, appropriate initialization involves sending it a
Clear command and placing it into Remote mode:

rv% = ioRemote% (adc%)
rv% = ioClear% (adc%)

For our hypothetical application, we also wish to have the ADC488 generate a service request should it
detect a command error. This involves sending a command string consisting of textual data to the
ADC488:

rv% = ioOutput & (adc%, “M8X”)

We may also wish to perform other initialization and configuration. In this case, we set up the
ADC488 (adc) in the following configuration:

Differential inputs (A0)
Scan group channel 1 (C1)
Compensated ASCII floating-point output format (G0)
Channel 1 range to +/-10V (R3)
One-shot trigger on talk (T6)

The command to perform this configuration combines the above strings and adds the Output
command for the ADC488:

rv% = ioOutput& (adc%, “A0C1G0R3T6X”)

II. SOFTWARE GUIDES - 9. Driver488/SUB 9F. QuickBASIC

Personal488 User’s Manual, Rev. 3.0 II-163

Interrupt Handling
In case we send out an invalid command, either due to a programming error or an unanticipated
condition in the equipment, Driver488/SUB will automatically notify the interrupt handling function as
established above:

rv% = ioOutput & (adc%, “V13X”)

The interrupt handler as established above might consist of a function similar to the following:

‘ Interrupt service routine for Driver488/SUB interrupts
isr :
‘ Print isr message to screen
PRINT “ In interrupt handler”

‘ Check if the intrrupt was due to a Service Request
sp% = ioSPoll % (ieee%)
IF (sp% = 0) THEN PRINT “ No SRQ detected”: END

‘ Check that the Service Request ws from the ADC488
stadc% = ioSPoll%(adc%)
IF ((stadc% AND 64) = 0) THEN PRINT “ Not an ADC488 SRQ.”: END

‘ Interpret the Serial Poll response
IF ((stadc% AND 1) >0) THEN PRINT “Triggered”
IF ((stadc% AND 2) >0) THEN PRINT “Trigger overrun”
IF ((stadc% AND 4) >0) THEN PRINT “Buffer overrun”
IF ((stadc% AND 8) >0) THEN

‘ Read and interpret the ADC488 error status
PRINT “ ADC488 error”
rv% = ioOutput & (adc%, “E?”)
errtext$ = SPACE$ (64)
rv% = ioEnter& (adc%, errtext$)
errnum% = VAL (RIGHT$ (errtex$, LEN (errtext$) - 1))
IF ((errnum AND 1) >0) THEN PRINT “ Invalid DDC”
IF ((errnum AND 2) >0) THEN PRINT “ Invalid DDC option”
IF ((errnum AND 4) >0) THEN PRINT “ Conflict error”
IF ((errnum AND 8) >0) THEN PRINT “ NVRAM setup error”
IF ((errnum AND 16) >0) THEN PRINT “ Calibration error”
IF ((errnum AND 32) >0) THEN PRINT “ NRRAM calibration error”

END IF
IF ((stadc% AND 32) >0) THEN PRINT “ ready “
IF ((stadc% AND 64) >0) THEN PRINT “ SRQ asserted”
IF ((stadc% AND 128) >0) THEN PRINT “ Data acquisition complete”
RETURN

Basic Data Acquisition
With both Driver488/SUB and the external device ready for action, we next might try taking a simple
reading using the ADC488. Here, we use the serial poll (SPoll) capabilities of the system to
determine when a response is ready and format the reply.

WHILE ((ioSPoll%(adc%) AND 32) = 0) : WEND
response$ = SPACE$ (256)
rv% = ioEnter& (adc%, response$)
voltage ! = VAL (reponse$)
PRINT “ADC488 channel #1 rading value is “; voltage!

Block Data Acquisition
First, we set up the ADC488 (adc) in the following configuration:

Compensated binary output format (G10)
100 usec scan interval (I3)
No pre-trigger scans = 0, 100 post-trigger scans (N100)
Continuous trigger on GET (T1)

9F. QuickBASIC II. SOFTWARE GUIDES - 9. Driver488/SUB

II-164 Personal488 User’s Manual, Rev. 3.0

We then wait for the ADC488 to start the acquisition process. Once the acquisition is complete, which
is determined by the MSB of the ADC488’s serial poll response, the buffer pointer of the ADC488 is
reset (B0).

rv% = ioOutput& (adc%, “G10I3N100T1X”)
WHILE ((ioSPoll% (adc%) AND 32) = 0) : WEND
rv% = ioTrigger% (adc%)
WHILE ((ioSPoll% (adc%) AND 128) = 0) : WEND
rv% = ioOutput& (adc%, “BOX”)

Next, we fill the buffer with 100 readings from the ADC488. The noterm terminator structure is used
to disable scanning for terminators such as carriage-return and line-feed.

noterm.eoi = 0
noterm.nChar = 0
hundred$ = SPACES (200)
rv% = ioEnterX& (adc%, hundred$, 200, 1, noterm, 1, 0)

The EnterX function will use a DMA transfer if available. Because DMA transfers are performed
entirely by the hardware, the program can continue with other work while the DMA transfer function
occurs. For example, the program will process the previous set of data while collecting a new set of
data into a different buffer. However, before processing the data we must wait for the transfer to
complete. For illustration purposes, we query the Driver488/SUB status both before and after waiting.

rv% = ioStatus% (ieee%, substat)
CALL showstat (substat)

rv% = ioWait% (adc%)

rv% = ioStatus% (ieee%, substat)
CALL showstat (substat)

Now we process the buffer:

FOR i = 0 to 99
PRINT CVI (MID$ (hundred$, i * 2 +1, 2)) ;
IF ((iMOD 10) = 9) THEN PRINT

NEXT I

The above functions provide enough functionality for a basic data acquisition program. Additional
functions provided by Driver488/SUB are described in the “Section III: Command References” of this
manual.

Sample Program
‘$INCLUDE:’iotmqb45.def’
DECLARE SUB showstat (substat AS IeeeStatus)

COMMON SHARED adc%, ieee%, dev%
DIM hundred$ (200) , response$ (256), i%, voltage!, sum!, substat AS
IeeeStatus
DIM rv%, noterm AS terms

‘ establish communications with Driver488/SUB
ieee% = ioOpenName% (“IEEE”)
IF (ieee% = -1) THEN PRINT “Cannot initialize IEEE system.”: END

‘ Disable the automatic onscreen error display
rv% = ioError% (ieee%, TURNOFF)

‘ Open the ADC488 device handle or create if necessary
adc% = ioOpenName% (“ADC”)
IF (adc% = -1) THEN

response$ = SPACE$ (256)
rv% = ioGet Error% (ieee%, response$)
dev% = ioOpenName% (dev%, “ADC”)
rv% = ioBusAddress% (adc%, 14, -1)

END IF

II. SOFTWARE GUIDES - 9. Driver488/SUB 9F. QuickBASIC

Personal488 User’s Manual, Rev. 3.0 II-165

‘ Read the Driver488/SUB revision number
response$ = SPACE$ (256)
rv% = ioHello% (ieee%, response$)
PRINT response%

‘ Set up interrupt pointers
ON PEN GOSUB isr
PEN ON
rv% = ioLightPen% (ieee%, 1)

‘ Enable Driver488/SUB interrupt on Error or Service Request
rv% = ioArm% (ieee%, acSRQ)

‘ Display the Driver488/SUB system status
rv% = ioStatus% (ieee%, substat)

CALL showstat (substat)

‘ Put the ADC488 into remote mode
rv% = ioRemote% (adc%)

‘ Clear the AC488
rv% = io Clear% (adc%)

‘ Enable ADC488 SRQ on command errors
rv% = ioOutput& (adc%, “M8X”)

‘ Send an invalid command to the ADC488
PRINT “Sending invalid ADC command”
rv% = ioOutput & (adc%, “V13X”)

‘ Setup the ADC488:
‘ Differential inputs (a0)
‘ Scan group channel 1 (C1)
‘ Compensated ASCII floating-point output format (G0)
‘ Channel 1 range to +/-10V (R3)
‘ One-shot trigger on talk (T6)
rv% = ioOutput& (adc%, “A0C1G0R3T6X”)

‘ Wait for the ready bit of the ADC488 to be asserted
WHILE ((ioSPoll%(adc%) AND 32) = 0) : WEND

‘ Display a reading
response$ = SPACE$ (256)
rv% = ioEnter& (adc%, response$)
voltage ! = VAL (response$)
PRINT “ADC488 channel #1 reading value is “; voltage!

‘ Display the average of 10 readings
sum ! = 0!
FOR i = 0 TO 9

response$ = SPACE$ (256)
rv% = ioEnter& (adc%, response$)
voltage ! = VAL (response$)
sum ! = sum! + voltage !

NEXT i
PRINT “The average of 10 readings is “; sum! / 10!

‘ Set up the ADC488 :
‘ Compensated binary output format (G10)
‘ 100uSec scan interval (I3)
‘ No pre-trigger scans, 100 post-trigger scans (n100)

‘ Continuous trigger on GET (T1)
rv% = ioOutput& (adc%, “G10I3N100T1X”)

9F. QuickBASIC II. SOFTWARE GUIDES - 9. Driver488/SUB

II-166 Personal488 User’s Manual, Rev. 3.0

‘ Wait for the ready bit of the ADC488 to be asserted
WHILE ((isSPoll%(adc%)AND 32) = 0) : WEND

‘ Trigger the ADC488
rv% = ioTrigger% (adc%)

‘ Wait for the data acquisition bit of the ADC488 to be asserted
WHILE ((ioSPoll%(adc%) AND 128) = 0) : WEND

‘ Reset the buffer pointer of the ADC488
rv% = ioOutput& (adc%, “BOX”)

‘ Take 100 readings from the ADC488
noterm.eoi = 0
noterm.nChar = 0
hundred$ = SPACE$ (200)
rv% = ioEnterX& (adc%, hundred$, 200, 1, noterm, 1, 0)

‘ Check the Status before and after waiting
rv% = ioStatus% (ieee%, substat)
CALL showstat (substat)

‘ Wait for completion of input operation
rv% = ioWait% (adc%)

rv% = ioStatus% (ieee%, substat)
CALL showstat (substat)

‘ Print the received characters
FOR i = 0 to 99

PRINT CVI (MID$ (hundred$, i, * 2 + 1, 2)) ;
IF ((i MOD 10) = 9) THEN PRINT

NEXT i

END

‘ Interrupt service routine for Driver488/SUB interrupts
isr:
‘ Print isr message to screen
PRINT “ In interrupt handler”

‘ Check if the interrupt was due to a Service Request
sp% = ioSPoll% (ieee%)
IF (sp% = 0) THEN PRINT “ No SRQ detected”: END

‘ Check that the Service Request was from the ADC488
stadc% = isSPoll% (adc%)
IF ((stadc% AND 64) = 0) THEN PRINT “ Not an ADC488 SRQ.”: END

‘ Interpret the Serial Poll response
IF ((stadc% AND 1) 0) THEN PRINT “ Triggered”
IF ((stadc% AND 2) 0) THEN PRINT “ Trigger overrun”
IF ((stadc% AND 4) 0) THEN PRINT “ Buffer overrun”
IF ((stadc% AND 8) 0) THEN

‘ Read and interpret the ADC488 error status
PRINT “ ADC488 error”
rv% = ioOutput& (adc%, “E?”)
errtext$ = SPACE$ (64)
rv% = ioEnter& (adc%, errtext$)
errnum% = VAL (RIGHT$ (errtext$, LEN (errtext$) -1))
IF ((errnum AND 1) > 0) THEN PRINT “ Invalid DDC”
IF ((errnum AND 2) > 0) THEN PRINT “ Invalid DDC option”
IF ((errnum AND 4) > 0) THEN PRINT “ Conflict error”
IF ((errnum AND 8) > 0) THEN PRINT “ NVRAM setup error”
IF ((errnum AND 16) > 0) THEN PRINT “ Calibration error”
IF ((errnum AND 32) > 0) THEN PRINT “ NVRAM calibration error”

END IF

II. SOFTWARE GUIDES - 9. Driver488/SUB 9F. QuickBASIC

Personal488 User’s Manual, Rev. 3.0 II-167

IF ((stadc% AND 32) > 0) THEN PRINT “ Ready”
IF ((stadc% AND 64) > 0) THEN PRINT “ SRQ asserted”
IF ((stadc% AND 128) > 0) THEN PRINT “ Data acquisition complete”

RETURN

SUB, showstat (substat AS IeeeStatus)
‘ Display Status from Driver488/SUB
PRINT “SC :”; substate.SC>,
PRINT “CA :”; substate.CA,
PRINT “Primaddr :”; substate.Primaddr
PRINT “Secaddr :”; substate.Secaddr,
PRINT “SRQ :”; substate.SRQ,
PRINT “addrChange :”; substate.addrChange
PRINT “talker :”; substate.talker,
PRINT “listener :”; substate.listener,
PRINT “triggered :”; substate.triggered
PRINT “cleared :”; substate.cleared,
PRINT “transfer :”; substate.transfer,
PRINT “byteIn :”; substate.byteIn
PRINT “byteOut :”; substat.byteOut

END SUB

Command Summary
To obtain a summary of the QuickBASIC language commands for Driver488/SUB, turn to the
“Section III: Command References” of this manual.

Accessing from a Pascal Program
Driver488/SUB provides support for Borland Turbo Pascal. To allow for ready access to all
Driver488/SUB functions and type definitions, an include file provides all required declarations. In
addition, one include file must be included in the main module to provide for automatic detection of
certain compiler options and enable the required adjustments within the driver. Note that the header
files (*.h) must be included in your program and linked to the proper Driver488/SUB library files, as
described in the Sub-Chapter “Getting Started” earlier in this Chapter. The following include (uses)
directives should appear near the beginning of the program:

uses iottp60;

 9G. Pascal

Topics

• Accessing from a Pascal Program .. II-166
• Establishing Communications .. II-167
• Confirming Communication .. II-168
• Setting Up Event Handling.. II-168
• Reading Driver Status... II-168
• External Device Initialization... II-169
• Interrupt Handling .. II-169
• Basic Data Acquisition.. II-170
• Block Data Acquisition ... II-170
• Sample Program ... II-171
• Command Summary .. II-174

9G. Pascal II. SOFTWARE GUIDES - 9. Driver488/SUB

II-168 Personal488 User’s Manual, Rev. 3.0

The following declarations are assumed throughout the remainder of this discussion.

var
adc,ieee,dev,adc2 : Integer; { Device handles }
code : Integer; { Return Code }
hundred : array [0..99] of Integer; { Driver488/SUB status structure }
response : string; { Text buffer for Driver488/SUB responses }
i: Integer; { General purpose loop counter }
voltage : Real; { Single reading variable }
sum : Real; { Summation used to compute average }
substat : IeeeStatusrec; { Driver488/SUB status structure }
nilptr : pointer; { General purpose pointer }
lrv : Longint; { General purpose long return value }
sp,stadc, { Driver488/SUB and ADC488 spoll response }

errnum : Integer; { ADC488 error number }
errtext : string; { ADC488 error response }

Establishing Communications
For the sake of this discussion, assume that Driver488/SUB has been configured to start with a
configuration including the devices IEEE (IEEE 488 interface) and ADC (an ADC488/8S connected to
the IEEE 488 interface). Additional interfaces and/or devices may also have been defined, as the driver
can support up to four interfaces and 56 devices simultaneously. To open the two devices of interest,
we use the following statements:

ieee: = ioOpenName (‘IEEE’);
adc: = ioOpenName (‘ADC’);

If the ADC was not configured within Driver488/SUB, it can be optionally created “on the fly.” First,
verify that opening the ADC failed, then use the GetError command to clear the error condition
generated by this failure. Next, use the handle of the device DEVIEEE, which is always available within
Driver488/SUB, to clone a new device called ADC using the MakeDevice command. Lastly, the IEEE
bus address 14 is assigned to the ADC:

if adc = -1 then begin
rv: = ioGetError (ieee, response);
dev: = ioOpenName (‘DEVIEEE’);
adc: = ioMakeDevice (dev,’ADC’);
rv: = ioBusAddress (adc,14,-1);

end;

If other devices were needed for the application at hand, they could either be defined in the startup
configuration for Driver488/SUB or they could be created “on the fly” from the application:

dev: = ioOpenName (‘DEVIEEE’);
adc2: = ioMakeDevice (dev,’ADC2’) ;
rv: = ioBusAddress (adc2,14,-1) ;

The new device ADC2 is configured to reside at a different bus address so that the two devices may be
distinguished. There is one other important difference between ADC and ADC2 at this point. ADC2 is a
temporary device; that is, as soon as the creating application closes, ADC2 ceases to exist. If our intent
was to create a device that could be accessed after this application ends, we must tell Driver488/SUB
this:

rv: = ioKeepDevice (adc2);

After executing the above statement, ADC2 is marked as being permanent; that is, the device will not be
removed when the creating application exists. If we later wish to remove the device, however, we can
do so explicitly:

rv: = ioRemoveDevice% (adc2);

II. SOFTWARE GUIDES - 9. Driver488/SUB 9G. Pascal

Personal488 User’s Manual, Rev. 3.0 II-169

Confirming Communication
With or without an open device handle, the application can, if desired, confirm communication with
Driver488/SUB via the Hello function.

rv: = ioHello (ieee,response);
Writeln (response);

The function also fills in a string from which information can be extracted if it is desirable to display
facts about the driver in use.

Setting Up Event Handling
If the event notification mechanism of Driver488/SUB is to be used, it should normally be set up
during application initialization and left in place until application shutdown. No special action is
required if event notification is not needed for the particular application. First, the OnEvent function
establishes the notification path by specifying the function to be called, as follows:

rv: = ioOnEvent (ieee,@isr,nilptr);

Either during initialization or at some appropriate later point in the application, specific event types
may be Armed or Disarmed for use in the event system. Individual event types may be turned on and
off at will freely through the life of the application. In this case, we Arm to request notification of
IEEE 488 bus service requests:

rv: = ioArm (ieee, acSRQ);

To cease recognizing bus service request, we might Disarm just the one class of events:

rv: = ioDisarm (ieee, acSRQ);

Or, to completely disable event notifications:

rv: = ioDisarm (ieee, 0);

Note that an external device handle is acceptable in this and other functions which actually refer to the
interface; the external device handle will simply be translated to the handle of the interface to which the
device is attached, prior to taking action. This translation is fully automatic within Driver488/SUB and
requires little overhead, so you need not and should not go to great lengths to pass an interface handle
if your application structure makes the use of external device handles the more logical choice.

Reading Driver Status
Your application may interrogate Driver488/SUB at any time to determine its status and other
information. Status information is returned in a structure provided by the application and can be
displayed by the showstat function shown below:

rv: = ioStatus (ieee, substat);
showstat (@substat);

Another function to display the information contained in the Status structure could be:

procedure showstat (substat : StatPtr);
begin

Write(‘SC : ‘, substat^.SC);
Write(‘CA : ‘, substat^.CA);
Write(‘Primaddr : ‘, substat^.Primaddr);
Write(‘Secaddr : ‘, substat^.Secaddr);
Writeln(‘SRQ : ‘, substat^.SRQ);
Write(‘addrChange : ‘, substat^.addrChange);
Write(‘talker : ‘, substat^.talker);
Writeln(‘listener : ‘, substat^.listener);
Write(‘triggered : ‘, substat^.triggered);
Write(‘cleared : ‘, substat^.cleared);
Write(‘transfer : ‘, substat^.transfer);
Writeln(‘byteIn : ‘, substat^.byteIn);
Writeln(‘byteOut : ‘, substat^.byteOut);

end;

9G. Pascal II. SOFTWARE GUIDES - 9. Driver488/SUB

II-170 Personal488 User’s Manual, Rev. 3.0

External Device Initialization
Refer to the device manufacturer’s documentation on specific requirements for initializing your
IEEE 488 instrument. In the case of the ADC488, appropriate initialization involves sending it a
Clear command and placing it into Remote mode:

rv: = ioClear (adc);
rv: = ioRemote (adc);

For our hypothetical application, we also wish to have the ADC488 generate a service request should it
detect a command error. This involves sending a command string consisting of textual data to the
ADC488:

lrv: = ioOutput (adc,‘M8X’);

We may also wish to perform other initialization and configuration. In this case, we set up the
ADC488 (adc) in the following configuration:

Differential inputs (A0)
Scan group channel 1 (C1)
Compensated ASCII floating-point output format (G0)
Channel 1 range to +/-10V (R3)
One-shot trigger on talk (T6)

The command to perform this configuration combines the above strings and adds the Output
command for the ADC488:

lrv: = ioOutput (adc,’A0C1G0R3T6X’)

Interrupt Handling
In case we send out an invalid command, either due to a programming error or an unanticipated
condition in the equipment, Driver488/SUB will automatically notify the interrupt handling function as
established above:

lrv: = ioOutput (adc,’V13X’)

The interrupt handler as established above might consist of a function similar to the following:

procedure isr (var param);far;

var
sp, stadc, { Driver488/SUB and ADC488 spoll response }
errnum : Integer; { ADC488 error number }
errtext : string; { ADC error response }

begin

{ Check if the interrupt was due to a Service Request }
sp: = ioSPoll (ieee);
if sp = 0 then begin

Writeln (‘No SRQ detected’);
halt;

end;

{ Check that the Service Request was from the ADC488 }
stadc: = ioSPoll (adc);
if stadc = 64 then begin

Writeln (‘Not an ADC488 SRQ. SPOLL = ‘,stadc);
halt;

end;

{ Interpret the Serial Poll response }
if bitSet(stadc,1) then

Writeln(‘Triggered’);
if bitSet(stadc,2) then

Writeln(‘Trigger overrun’);
if bitSet(stadc,4) then

II. SOFTWARE GUIDES - 9. Driver488/SUB 9G. Pascal

Personal488 User’s Manual, Rev. 3.0 II-171

Writeln(‘Buffer overrun’);
if bitSet(stadc,8) then

{ Read and interpret the ADC488 error status }
Writeln(‘ADC488 error’);
errnum: = 5;
lrv: = ioOutput (adc,’E?’);
lrv: = ioEnter (adc,errtext);
Val (errtext,errnum,code);
ifbitSet (errnum,1) then

Writeln (‘Invalid DDC’);
ifbitSet (errnum,2) then

Writeln (‘Invalid DDC option’);
ifbitSet (errnum,4) then

Writeln (‘Conflict error’);
ifbitSet (errnum,8) then

Writeln (‘NVRAM setup error’);
ifbitSet (errnum,16) then

Writeln (‘Calibration error’);
ifbitSet (errnum,32) then

Writeln (‘NVRAM calibration error’);
end;

ifbitSet (stadc,32) then
Writeln (‘Ready’);

ifbitSet (stadc,64) then
Writeln (‘SRQ asserted’);

ifbitSet (stadc,128) then
Writeln (‘Data acquisition complete’);

{ Set up interrupt pointers }
nilptr: = nil;
rv: = ioOnEvent (ieee,@isr,nilptr);

end;

Basic Data Acquisition
With both Driver488/SUB and the external device ready for action, we next might try taking a simple
reading using the ADC488. Here, we use the serial poll (SPoll) capabilities of the system to
determine when a response is ready and format the reply.

While not bitset (ioSPoll(adc),32) do begin end;
lrv: = ioEnter (adc,response);
Val (response,voltage,code);
Writeln (‘ADC488 channel #1 reading value is’,voltage);

Block Data Acquisition
First, we set up the ADC488 (adc) for the following configuration:

Compensated binary output format (G10)
100 usec scan interval (I3)
No pre-trigger scans = 0, 100 post-trigger scans (N100)
Continuous trigger on GET (T1)

We then wait for the ADC488 to start the acquisition process. Once the acquisition is complete, which
is determined by the MSB of the ADC488’s serial poll response, the buffer pointer of the ADC488 is
reset (B0).:

lrv: = ioOutput (adc,’G10I3N100T1X’);
while not bitset (ioSPoll (adc),32) do begin end;
rv: = ioTrigger (adc);
while not bitset (ioSPoll (adc),128) do begin end;
lrv: = ioOutput (adc,’BOX’);

Next, we fill the buffer with 100 readings from the ADC488. The noterm terminator structure is used
to disable scanning for terminators such as carriage-return and line-feed.

9G. Pascal II. SOFTWARE GUIDES - 9. Driver488/SUB

II-172 Personal488 User’s Manual, Rev. 3.0

noterm.eoi: = false;
noterm.nChar: = 0;
lrv: = ioEnterX (adc,hundred,200,true,noterm,true,nilptr);

The EnterX function will use a DMA transfer if available. Because DMA transfers are performed
entirely by the hardware, the program can continue with other work while the DMA transfer function
occurs. For example, the program will process the previous set of data while collecting a new set of
data into a different buffer. However, before processing the data we must wait for the transfer to
complete. For illustration purposes, we query the Driver488/SUB status both before and after waiting.

rv: = ioStatus (ieee,substat);
showstat (@substat);

rv: = ioWait (adc);

rv: = ioStatus (ieee,substat);
showstat (@substat);

Now we process the buffer:

{ Print the received characters }
for i: = 0 to 99 do begin

Write (hundred[i]);
if (imod10) = 9 then

Writeln (‘’);
end;

The above functions provide enough functionality for a basic data acquisition program. Additional
functions provided by Driver488/SUB are described in the “Section III: Command References” of this
manual.

Sample Program
program manual;

uses iottp60, dos;

var
adc,ieee,dev,adc2 : Integer; { Device handles }
code : Integer; { Return Code }
hundred : array [0..99] of Integer; { Driver488/SUB status structure }
response : string; { Text buffer for Driver488 responses }
i: Integer; { General purpose loop counter }
rv: Integer; { General purpose return value }
voltage : Real; { Single reading variable }
sum : Real; { Summation used to compute average }
substat : IeeeStatusrec; { Driver488/SUB status structure }
nilptr : pointer; { General purpose pointer }
lrv : Longint; { General purpose long return value }
noterm : termrec; { Driver488 terminator structure }

{ Function to determine if bit is set according to mask value }
function bitSet (source,mask : integer) : boolean;
begin

if (source div mask) mod 2 = 0
then bitSet: = false;

else
bitSet: = true;

end;
end;

procedure isr (var param);far;

var
sp,stadc { Driver488 and ADC488 spoll response }
errnum : Integer; { ADC488 error number }
errtext : string; { ADC488 error response }

II. SOFTWARE GUIDES - 9. Driver488/SUB 9G. Pascal

Personal488 User’s Manual, Rev. 3.0 II-173

begin

{ Check if the interrupt was due to a Service Request }
sp: = ioSPoll (ieee);
if sp = 0 then begin

Writeln (‘No SRQ detected’);
halt;

end;

{ Check that the Service Request was from the ADC488 }
stadc: = ioSPoll (adc);
if not bitSet (stadc,64) then begin

Writeln (‘Not an ADC488 SRQ.SPOLL = ‘,stadc);
halt;

end;

{ Interpret the Serial Poll response }
if bitSet(stadc,1) then

Writeln (‘Triggered’);
if bitSet(stadc,2) then

Writeln(‘Trigger overrun’);
if bitSet(stadc,4) then

Writeln(‘Buffer overrun’);
if bitSet(stadc,8) then

{ Read and interpret the ADC488 error status }
Writeln(‘ADC488 error’);
errnum: = 5;
lrv: = ioOutput (adc,’E?’);
lrv: = ioEnter (adc,errtext);
Val (errtext,errnum,code);
ifbitSet (errnum,1) then

Writeln (‘Invalid DDC’);
ifbitSet (errnum,2) then

Writeln (‘Invalid DDC option’);
ifbitSet (errnum,4) then

Writeln (‘Conflict error’);
ifbitSet (errnum,8) then

Writeln (‘NVRAM setup error’);
ifbitSet (errnum,16) then

Writeln (‘Calibration error’);
ifbitSet (errnum,32) then

Writeln (‘NVRAM calibration error’);
end;

ifbitSet (stadc,32) then
Writeln (‘Ready’);

ifbitSet (stadc,64) then
Writeln (‘SRQ asserted’);

ifbitSet (stadc,128) then
Writeln (‘Data acquisition complete’);

{ Set up interrupt pointers }
nilptr: = nil;
rv: = ioOnEvent (ieee,@isr,nilptr);

end;

{ Display Status from Driver488/SUB }
procedure showstat (substat : StatPtr);

begin
Write(‘SC : ‘, substat^.SC);
Write(‘CA : ‘, substat^.CA);
Write(‘Primaddr : ‘, substat^.Primaddr);
Write(‘Secaddr : ‘, substat^.Secaddr);
Writeln(‘SRQ : ‘, substat^.SRQ);
Write(‘addrChange : ‘, substat^.addrChange);
Write(‘talker : ‘, substat^.talker);

9G. Pascal II. SOFTWARE GUIDES - 9. Driver488/SUB

II-174 Personal488 User’s Manual, Rev. 3.0

Writeln(‘listener : ‘, substat^.listener);
Write(‘triggered : ‘, substat^.triggered);
Write(‘cleared : ‘, substat^.cleared);
Write(‘transfer : ‘, substat^.transfer);
Writeln(‘byteIn : ‘, substat^.byteIn);
Writeln(‘byteOut : ‘, substat^.byteOut);

end;

begin
{ Establish communications with Driver488/SUB }
ieee: = ioOpenName (‘IEEE’);
if ieee = -1 then begin

Writeln(‘Cannot initialize IEEE system’);
halt;

end;

{ Disable the automatic onscreen error display }
if ioError (ieee,OFF) = -1 then begin end;

{ Open the ADC488 device handle or create if necessary }
adc: = ioOpenName (‘ADC’);
if adc = -1 then begin

rv: = ioGetError (ieee,response);
dev: = ioOpenName (‘DEVIEEE’);
adc: = ioMakeDevice (dev,’ADC’);
rv: = ioBusAddress (adc,14,-1);

end;

{ Read the Driver488/SUB revision number }
rv: = ioHello (ieee,response);
Writeln (response);

{ Set up interrupt pointers }
rv: = ioOnEvent (ieee,@isr,nilptr);

{ Enable Driver488/SUB interrupt on Error or Service Request }
rv: = ioArm (ieee,acSRQ);

{ Display the Driver488/SUB system status }
rv: = ioStatus (ieee,substat);
showstat (@substat);

{ Put the ADC488 into remote mode }
rv: = ioRemote (adc);

{ Clear the ADC488 }
rv: = ioClear (adc);

{ Enable ADC488 SRQ on command errors }
lrv: = ioOutput (adc,’M8X’);

{ Send an invalid command to the ADC488 }
Writeln (‘Sending invalid ADC command’);
lrv: = ioOutput (adc,’V13X’);

{ Set up the ADC488:
Differential inputs (A0)
Scan group channel 1 (C1)
Compensated ASCII floating-point output format (G0)
Channel 1 range to 3 (+/-10V)
One-shot trigger on talk (T6)

}
lrv: = ioOutput (adc,’A0C1G0R3T6X’);

{ Wait for the ready bit of the ADC488 to be asserted }
while not bitset (ioSPoll (adc),32) do begin end;

II. SOFTWARE GUIDES - 9. Driver488/SUB 9G. Pascal

Personal488 User’s Manual, Rev. 3.0 II-175

{ Display a reading }
lrv: = ioEnter (adc,response);
Val (response,voltage,code);
Writeln (‘ADC488 channel #1 reading value is ‘,voltage);

{ Display the average of 10 readings }
sum: = 0.0;
for i: 0 to 9 do begin

lrv: = ioEnter (adc,response);
Val (response,voltage,code);
sum: = sum + voltage;

end;
Writeln (‘The average of 10 readings is ‘,sum/10.0);

{ Set up the ADC488:
Compensated binary output format (G10)
100uSec scan interval (I3)
No pre-trigger scans, 100 post-trigger scans (n100)
Continuous trigger on GET (T1)

}
lrv: = ioOutput (adc,’G10I3N100T1X’);

{ Wait for the ready bit of the ADC488 to be asserted }
while not bitset (ioSPoll (adc),32 do begin end;

{ Trigger the ADC488 }
rv: = ioTrigger (adc);

{ Wait for the ready bit of the ADC488 to be asserted }
while not bitset (ioSPoll (adc),128) do begin end;

{ Reset the buffer pointer of the ADC488 }
lrv: = ioOutput (adc,’BOX’);

{ Take 100 readings from the ADC488 }
noterm.EOI: = false;
noterm.nChar: = 0;
lrv: = ioEnterX (adc,hundred,200,true,noterm,true,nilptr);

{ Check the Status before and after waiting }
rv: = ioStatus (ieee,substat);

{ Wait for completion of input operation }
rv: = ioWait (adc);

rv: = ioStatus (ieee,substat);
showstat (@substat);

{ Print the received characters }
for i: = 0 to 99 do begin

Write (hundred[i]);
if (i mod 10) = 9 then

Writeln (‘’);
end;

end.

Command Summary
To obtain a summary of the Pascal language commands for Driver488/SUB, turn to the “Section III:
Command References” of this manual.

9H. Data Transfers II. SOFTWARE GUIDES - 9. Driver488/SUB

II-176 Personal488 User’s Manual, Rev. 3.0

Terminators
Every transfer of data, between a program and Driver488, or between Driver488 and a bus device, must
have a definite end. This is a common requirement in most systems. For example, most printers do not
print a line until they receive the carriage return that ends that line. Similarly, a BASIC Input
statement waits for the <Enter> key to be pressed before returning the entered data to the program.
The only time that some terminator is not required is when the number of characters that compose the
data is known in advance or is transferred along with the data. This is the case, for example, when
fixed-length records are read from a random access disk file.

Driver488 actually uses two terminators:

• The data terminator (Term) for output to bus devices from Driver488.

• The data terminator (Term) to input from bus device into Driver488.

TERM Terminators
The Term terminators delimit the end of strings transferred between Driver488 and bus devices. The
Term output terminator marks the end of strings transferred from Driver488 to bus devices, and the
Term input terminator marks the end of strings transferred into Driver488 from bus devices.

The Term terminators normally consist of one or two ASCII characters. The characters do not need to
be printable and, in fact, are usually special characters such as carriage return and line feed. Input and
output terminators need not be the same.

You can specify that no characters are to be used as Term terminators. If the Term output terminator is
set to NONE, then Driver488 does not append any characters to the data sent to the device. When the
Term input terminator is set to NONE, Driver488 does not check for terminator characters in the
returned data.

The Term terminators can include the IEEE 488 bus end-or-identify (EOI) signal. The EOI signal,
when asserted during a character transfer, marks that character as the last of the transfer. This allows
the detection of the end of data regardless of which characters comprise the data. This feature is very
useful in binary data transfers which might contain any ASCII values from 0 to 255.

To support the EOI signal, the Term input and output terminators can be composed of just EOI, one or
two characters, or one or two characters with EOI. If EOI is specified, it has a slightly different
meaning on input than on output.

When EOI alone is specified as the Term output terminator, the EOI bus signal is asserted during the
last data character transmitted. If EOI is specified with one or two characters, then EOI is asserted on
the last character. In this way, EOI is asserted on the last character transmitted to the bus device.

When EOI alone is specified as the Term input terminator, then all the characters received from the bus
device, including the one on which EOI was asserted are returned to the user’s program. When one or

 9H. Data Transfers

For Driver488/SUB, W31, W95, & WNT

Topics

• Terminators ... II-175
TERM Terminators ... II-175

• Data Input and Output.. II-176
• Asynchronous Transfers ... II-177

II. SOFTWARE GUIDES - 9. Driver488/SUB 9H. Data Transfers

Personal488 User’s Manual, Rev. 3.0 II-177

two characters are specified, without EOI, all the characters up to, but not including, the Term input
terminator characters, are returned to the program. However, if both EOI and characters are specified,
the following considerations apply:

• If EOI is received, and the complete terminator character sequence has not been received (even if
the first of the two characters has been received), then all the received characters are returned to
the program.

• If the complete terminator character sequence has been received, with or without EOI asserted on
the last character, then only the characters up to but not including the terminator characters are
returned.

• If only one character is specified for input termination, the complete terminator character sequence
consists of just that one character, but if two characters are specified, then it consists of both
characters, received consecutively.

During normal Output, without a specified character count, the Term output terminator is appended to
the data before sending the data to the bus devices. During normal Enter, the Term input terminator
received by Driver488 is stripped off before being returned to the program. See the Enter and
Output commands in the following text, and in “Section III: Command References.”

Data Input and Output
When a program performs data I/O through Driver488, it tells Driver488 where in memory to find or
put the data and the amount of data to transfer. Driver488 handles the actual transfer. The program
sends the address and quantity of data to be transferred, and Driver488 takes care of the details of the
transfer. The program must be able to tell Driver488 where in memory to find the data, that is, it must
be able to provide Driver488 with the actual address of the buffer. In C language, a character array is
usually used at the memory location for the incoming or outgoing data:

char buffer [20];

The following is a typical EnterX command:

char buffer [20]
EnterX (dev, buffer, sizeofbuffer, 1, 0L, 0, 0L);

The Driver488 EnterX command addresses the ADC bus device (dev), requests Driver488 to read 20
bytes of data and put the received data in the buffer memory location. This gives Driver488 all the
information it needs to be able to transfer the received data directly into the buffer character array.

Data I/O using the Driver488 OutputX command is also possible. For instance, suppose the data from
the above example was to be sent to a device called DAC. Here, we would use the following command:

OutputX (DAC, buffer, sizeofbuffer, 1, 0L, 0, 0L);

Data I/O is normally performed with terminator detection set to the default values of carriage-return
line-feed (CR LF) with end-or-identify (EOI). However, it is possible to explicitly specify that the
Enter should stop on detection of EOI only, or on detection of EOI or some single character. For
example, to terminate on EOI:

term.eoi=1;
term.nChar=0;
EnterX (dev, buffer, sizeofbuffer, 1, &term, 0 0L);

This reads data into the buffer character array until either 20 characters have been received, or EOI has
been detected. However, if EOI causes the transfer to stop, we may need to know how much data was
received. This information can be obtained by using the Buffered command:

N=Buffered(dev)

The number of bytes transferred is read into N. This value can now be used to send the read data out to
the device (dev), as follows:

OutputN (dev, buffer, N, 1, &term, 0, 0L);

Note that the variable N has been used in place of the literal 20 to specify how many bytes to transmit.

9H. Data Transfers II. SOFTWARE GUIDES - 9. Driver488/SUB

II-178 Personal488 User’s Manual, Rev. 3.0

Asynchronous Transfers
Driver488 can return to the user’s program while a transfer is in progress. This is useful whenever the
transfer takes a substantial amount of time, and other processing could proceed while waiting. For
example, suppose a certain bus device can transfer only 1000 bytes per second. If there are 10,000
bytes to transfer it takes 10 seconds to complete the transfer. The following statements might be used
to receive this data:

char data [10000];
EnterX (ADC, data, 10000, 1, 0L, 1, 0L);

/*Now do other work while the transfer is processing*/

Wait (ADC);

The “true” async flag tells Driver488 to return to the program after setting up the transfer. The
program is then free to do other processing, as long as it does not need access to the IEEE 488 bus.
Finally, when the program is ready to process the received data, it performs a Wait to check that the
data has been completely received. In this way, asynchronous transfers overlap IEEE 488 bus data
transfers with program execution.

The use of DMA and interrupts requires proper hardware and software configuration. For more
information, refer to the Sub-Chapter “Installation & Configuration” early in this Chapter.

Introduction
There are four types of IEEE 488 bus devices: Active Controllers, Peripherals, Talk-Only devices, and
Listen-Always devices:

• In simple systems, Talk-Only and Listen-Always devices are usually used together, such as a Talk-
Only digitizer sending results to a Listen-Always plotter. In these systems, no controller is needed
because the talker assumes it is the only talker on the bus, and the listener(s) assume they are all
supposed to receive all data sent over the bus. This is a simple and effective method of
transferring data from one device to another, but is not adequate for more complex systems where,
for example, one computer is controlling many different bus devices.

• In more complex systems, the Active Controller sends commands to the various bus Peripherals,
telling them what to do. The controller sends bus commands such as: Unlisten, Listen
Address Group, Untalk, and Talk Address Group to specify which device(s) send data, and
which receive it.

When an IEEE 488 bus system is first turned on, some device must be the Active Controller. This
device is the System Controller and always keeps some control of the bus. In particular, the System

 9I. Operating Modes

For Driver488/SUB, W31, W95, & WNT

Topics

• Introduction... II-177
• Operating Mode Transitions.. II-177
• System Controller Mode.. II-178
• System Controller, Not Active Controller Mode.................... II-179
• Not System Controller Mode.. II-181
• Active Controller, Not System Controller Mode.................... II-181

II. SOFTWARE GUIDES - 9. Driver488/SUB 9I. Operating Modes

Personal488 User’s Manual, Rev. 3.0 II-179

Controller controls the Interface Clear (IFC) and Remote Enable (REN) bus management lines. By
asserting Interface Clear, the System Controller forces all other bus devices to stop their bus operations,
and regains control as the Active Controller.

Operating Mode Transitions
The System Controller is initially the Active Controller. It can, if desired, Pass Control to another
device and thereby make that device the Active Controller. Notice that the System Controller remains
the System Controller even when it is not the Active Controller. Of course, the device to which control
is passed must be capable of taking the role of Active Controller. It would make no sense to try to pass
control to a printer. Control should only be passed to other computers that are capable, and ready, to
become the Active Controller. Note further that there must be exactly one System Controller on the
IEEE 488 bus. All other potential controllers must be configured as Peripherals when they power up.

The state diagram which follows, shows the relationships between the various operating modes. The
top half of the state diagram shows the two operating states of a System Controller. At power on, it is
the Active Controller. It directs the bus transfers by sending the bus commands mentioned previously.
It also has control of the Interface Clear and Remote Enable bus lines. The System Controller can
pulse Interface Clear to reset all of the other bus devices.

Furthermore, the System Controller can pass control to some other bus device and thereby become a
Peripheral to the new Active Controller. If the System Controller receives control from the new Active
Controller, then it once again becomes the Active Controller. The System Controller can also force the
Active Controller to relinquish control by asserting the Interface Clear signal.

The bottom half of the state diagram shows the two operating states of a Not System Controller device.
At power on, it is a Peripheral to the System Controller which is the Active Controller. If it receives
control from the Active Controller, it becomes the new Active Controller. Even though it is the Active
Controller, it is still not the System Controller. The System Controller can force the Active Controller
to give up control by asserting Interface Clear. The Active Controller can also give up control by
Passing Control to another device, which may or may not be the System Controller.

In summary, a bus device is set in hardware as either the sole System Controller in the system, or as a
non-System Controller. At power on, the System Controller is the Active Controller, and the other
devices are Peripherals. The System Controller can give up control by passing control, and can regain
control by asserting Interface Clear, or by receiving control. A Peripheral can become the Active
Controller by receiving control, and can give up control by Passing Control, or on detecting Interface
Clear.

9I. Operating Modes II. SOFTWARE GUIDES - 9. Driver488/SUB

II-180 Personal488 User’s Manual, Rev. 3.0

System Controller Mode
The most common Driver488 configuration is as the System Controller, controlling several IEEE 488
bus instruments. In this mode, Driver488 can perform all the various IEEE 488 bus protocols
necessary to control and communicate with any IEEE 488 bus devices. As the System Controller in the
Active Controller mode, Driver488 can use all the commands available for the Active Controller state,
plus control the Interface Clear and Remote Enable lines. The allowed bus commands and their actions
are:

Command Action
Abort Pulse Interface Clear.
Local Unassert Remote Enable, or send Go To Local to selected devices.
Remote Assert Remote Enable, optionally setting devices to Remote.
Local Lockout Prevent local (front-panel) control of bus devices.
Clear Clear all or selected devices.
Trigger Trigger selected devices.
Enter Receive data from a bus device.
Output Send data to bus devices.
Pass Control Give up control to another device which becomes the Active Controller.
SPoll Serial Poll a bus device, or check the Service Request state.
PPoll Parallel Poll the bus.
PPoll Config Configure Parallel Poll responses.
PPoll Disable Disable the Parallel Poll response of selected bus devices.
PPoll Unconfig Disable the Parallel Poll response of all bus devices
Send Send low-level bus sequences.
Resume Unassert Attention. Use to allow Peripheral-to-Peripheral transfers.

System Controller, Not Active Controller Mode
After Passing Control to another device, the System Controller is no longer the Active Controller. It
acts as a Peripheral to the new Active Controller, and the allowed bus commands and their actions are
modified accordingly. However, it still maintains control of the Interface Clear and Remote Enable
lines. The available bus commands and their actions are:

Command Action
Abort Pulse Interface Clear.
Local Unassert Remote Enable.
Remote Assert Remote Enable.
Enter Receive data from a bus device as directed by the Active Controller.
Output Send data to bus devices as directed by the Active Controller.
Request Set own Serial Poll request (including Service Request) status.
SPoll Get own Serial Poll request status.

As a bus Peripheral, Driver488 must respond to the commands issued by the Active Controller. The
controller can, for example, address Driver488 to listen in preparation for sending data. There are two
ways to detect our being addressed to listen: through the Status command, or by detecting an
interrupt with the Arm command.

The Status command can be used to watch for commands from the Active Controller. The Operating
Mode, which is a “P” while Driver488 is a Peripheral, changes to a “C” if the Active Controller passes
control to Driver488. The Addressed State goes from Idle “I” to Listen “L” or Talk “T” if
Driver488 is addressed to listen or to talk, and goes back to Idle “I” when the Active Controller
issues Unlisten (UNL), Untalk (UNT), or specifies another Talker Address Group (TAG). The
Trigger “T1” and Clear “C1” indicators are set when Driver488 is triggered or cleared, and reset
when Status is read. The Address Change indicator is set to Change “G1” when the Addressed State
changes. These indicators allow the program to sense the commands issued to Driver488 by the Active
Controller.

The various Status indicators and their descriptions are provided in the following table:

II. SOFTWARE GUIDES - 9. Driver488/SUB 9I. Operating Modes

Personal488 User’s Manual, Rev. 3.0 II-181

Status Indicator Description
“P” (Peripheral) Driver488 is in the Peripheral (*CA) operating mode.
“C” (Controller) Driver488 is the Active Controller (CA).
“T1” (Trigger) Driver488, as a Peripheral, has received a Trigger bus command.
“C1” (Clear) Driver488, as a Peripheral, has received a Clear bus command.
“T” (Talk) Driver488 is in the Talk state and can Output to the bus.
“L” (Listen) Driver488 is in the Listen state and can Enter from the bus.
“I” (Idle) Driver488 is in neither the Talk nor Listen state.
“G1” (Change) An Address Change has occurred, that is, a change between Peripheral

and Controller, or among Talk, Listen, and Idle has occurred.
This is, perhaps, the most useful interrupt in the Peripheral mode.

The following BASIC program fragment illustrates the use of the Address Change and Addressed State
indicators to communicate with the Active Controller.

First check Status until it indicates there has been an Address Change:

while (1) {
Status (ieee, &stat);
if (!stat.addrChange) { continue;}
if (stat.idle) {continue;)

/* If we are addressed to listen, we ENTER a line from the */
/* controller and print it out. */

if (stat.listener) {
Enter (ieee, data);
printf (“%d”, data);
printf (“\n”;
continue;

}

/* If we are addressed to talk, we INPUT a line from the keyboard*/
/* and OUTPUT it to the controller.*/

if (stat.talker) {
gets (message);
Output (ieee, message);
continue;

}
printf (Bad addressed state.\n”);
break;

}

It is also possible to detect these conditions with the Arm command and handle them in an Interrupt
Service Routine (ISR). The Peripheral, Controller, Talk, Listen, and Idle conditions cause
interrupts only when the Address Change indicator “G1” in the Status response is set. The Change,
Trigger, and Clear indicators are all reset by the Status command. Thus, the Status command
should be used in the Interrupt Service Routine to prevent re-interruption by an indicator which has not
been reset.

The various Arm conditions and their descriptions are provided in the following table:

9I. Operating Modes II. SOFTWARE GUIDES - 9. Driver488/SUB

II-182 Personal488 User’s Manual, Rev. 3.0

Not System Controller Mode
If Driver488 is not configured as the System Controller, then at power on, it is a bus Peripheral. It
might use a program like the one previously described to communicate with the Active Controller.
When Driver488 is not the System Controller and not the Active Controller (*SCyy*CA), the available
bus commands and their actions are:

Command Action
Enter Receive data from a bus device as directed by the Active Controller.
Output Send data to bus devices as directed by the Active Controller.
Request Set own Serial Poll request (including Service Request) status.
SPoll Get own Serial Poll request status.

Active Controller, Not System Controller Mode
If the Active Controller passes control to the Driver488, then it becomes the new Active Controller.
This can be detected by the Status command or as an Armed interrupt. As an Active Controller, but
not the System Controller, the available bus commands and their actions are:

Command Action
Abort Assert Attention and send My Talk Address to stop any bus transfers.
Local Send Go To Local to selected devices.
Local Lockout Prevent local (front-panel) control of bus devices.
Clear Clear all or selected devices.
Trigger Trigger selected devices.
Enter Receive data from a bus device.
Output Send data to bus devices.
Pass Control Give up control to another device which becomes the Active Controller.
SPoll Serial Poll a bus device, or check the Service Request state.
PPoll Parallel Poll the bus.
PPoll Config Configure Parallel Poll responses.
PPoll Disable Disable the Parallel Poll response of selected bus devices.
PPoll Unconfig Disable the Parallel Poll response of all bus devices.
Send Send low-level bus sequences.
Resume Unassert Attention. Used to allow Peripheral-to-Peripheral transfers.

Arm Condition Description
SRQ The internal Service Request state is set. See the SPoll command in

“Section III: Command References” for more information.
Peripheral Driver488 is in the Peripheral (*CA) operating mode.
Controller Driver488 is the Active Controller (CA).
Trigger Driver488, as a Peripheral, has received a Trigger bus command.
Clear Driver488, as a Peripheral, has received a Clear bus command.
Talk Driver488 is in the Talk state and can Output to the bus.
Listen Driver488 is in the Listen state and can Enter from the bus.
Idle Driver488 is in neither the Talk nor Listen state.
Bytein Driver488 has been received a byte from the IEEE 488 bus.
Byteout Driver488 can output a byte to the IEEE 488 bus.
Error Driver488 has detected an error condition.
Change An Address Change has occurred, that is, a change between Peripheral

and Controller, or among Talk, Listen, and Idle has occurred.
This is, perhaps, the most useful interrupt in the Peripheral mode.

II. SOFTWARE GUIDES - 9. Driver488/SUB 9J. Utility Programs

Personal488 User’s Manual, Rev. 3.0 II-183

 9J. Utility Programs

Topics

• Printer & Serial Redirection ... II-182
• Removal & Reinstallation... II-184

MARKDRVR & REMDRVR..II-184
• Moving Files from an IEEE 488 (HP-IB) Controller to a PCII-185

PRNTEMUL Files ...II-185
Configuration of the IEEE Interface for PRNTEMUL............................II-185
Running PRNTEMUL..II-185
Data Transfer ...II-186

Printer & Serial Redirection
IEEELPT and IEEECOM are stand-alone utilities (Driver488 need not be installed to use them) that
allow programs which are unaware of the IEEE 488 bus to control IEEE 488 bus devices as if they
were printer (IEEELPT) or serial (IEEECOM) devices. They automatically redirect communications
destined for printer or serial ports to specified IEEE 488 bus devices. For example, the command:

C> IEEELPT IEEE05

will configure IEEE 488 bus device 5 to appear as the first parallel printer port (LPT1:). Any text that
is destined for LPT1: will, instead be send to bus device 5. For example, the COPY command:

C> COPY TEXTFILE.DOC LPT1:

will copy the contents of TEXTFILE.DOC to the IEEE 488 bus. Any software which prints to LPT1:
will now send its data to IEEE 488 bus device 5.

Similarly, the command:

C> IEEECOM IEEE12

will redirect communications to and from the COM1: serial port to IEEE 488 bus device 12. Thus, a
plotting program which expects a serial plotter can communicate with an IEEE 488 plotter using
Power488.

Serial port redirection is often less effective than printer port redirection because many programs
control the serial port hardware directly and bypass the redirection program. It is still possible to
redirect output from such a program to an IEEE device if that program can be configured to send its
output to a disk file rather than directly to the printer or plotter. If a file such as \DEV\COM1 is
specified, the program will act as though the data were being written to an actual disk file, while the
output will be sent to the IEEE 488 bus device to which COM1 was redirected. The program may even
issue a warning message that the specified file exists and will be overwritten. If it does, then the user
may tell it that it may delete or overwrite the file. No harm can result from trying to delete a device.

To understand how these programs are used, it is necessary to keep in mind the difference between
logical and physical devices. When the computer first boots up, it takes an inventory of the installed
hardware. It might, for example, find two parallel printer ports, and one serial communications port.
These are the physical devices. The physical device, LPT1 (note the absence of the colon) is the printer
port first identified by the computer. The logical device LPT1: (with the colon) refers to the device
which is currently configured to receive data to be printed. The computer maintains two tables of four
entries each to keep track of physical devices by logical device name. In the case of two printer and
one serial port, these tables initially appear as:

9J. Utility Programs II. SOFTWARE GUIDES - 9. Driver488/SUB

II-184 Personal488 User’s Manual, Rev. 3.0

The IEEELPT command takes up to four optional device arguments. Each argument is of the form
IEEEpp, IEEEppss or LPTn, where pp is an IEEE 488 bus primary address from 00 to 30, ppss is a
bus address composed of a primary address from 00 to 30 followed by a secondary address from 00 to
31, and n is a physical printer port device number, from 1 to 4.

If IEEELPT is executed with no arguments, then it just displays the current logical printer port
assignments. If one or more arguments are provided, then the first logical printer port (LPT1:) is
redirected to the physical device specified by the first argument, the next logical port (LPT2:) is
redirected to the next specified physical device, and so on. If fewer than four devices are specified,
then the remaining logical printers are directed to any unused physical parallel printer ports. For
example, on a machine with two physical parallel printer ports these commands have the effects
indicated in the following table:

Command Printer Port Assignments
LPT1: LPT2: LPT3: LPT4:

(Boot-Up) LPT1 LPT2 (none) (none)

IEEELPT (No change) LPT1 LPT2 (none) (none)

IEEELPT IEEE05 IEEE05 LPT1 LPT2 (none)

IEEELPT IEEE05 IEEE1201 IEEE05 IEEE1201 LPT1 LPT2

IEEELPT IEEE05 IEEE1201 IEEE17 IEEE05 IEEE1201 IEEE17 LPT1

IEEELPT IEEE05 IEEE1201 IEEE17 IEEE29 IEEE05 IEEE1201 IEEE17 IEEE29

IEEELPT LPT1 IEEE05 LPT1 IEEE05 LPT2 (none)

IEEELPT LPT2 LPT1 IEEE1201 LPT2 LPT1 IEEE1201 (none)

Note that the port assignments are flexible, any order may be used. Also note how the physical printer
ports are added to the assignments if there is room for them and if they have not already been specified.

Serial port redirection is accomplished by IEEECOM. IEEECOM is used identically to IEEELPT except
that the physical port names (without colons) are COM1 through COM4 rather than LPT1 through LPT4.
For example, the IEEECOM command:

IEEECOM IEEE12 COM2 COM1

will redirect communications from COM1: to IEEE 488 bus device 12, COM2: to COM2, and COM3: to
COM1.

In addition to the port specifications, both IEEELPT and IEEECOM allow two optional parameters. The
/Aioaddr parameter is used to specify the I/O base address of the IEEE 488 interface board and the
/Baddr parameter sets its IEEE 488 bus address.

The I/O base address must be specified when the associated IEEE 488 interface board is not at the
default I/O address of 02E1 (hex). The I/O base address is usually given as a hexadecimal number.
For example, to use the default I/O address, the parameter would be /A&H02E1. If the hexadecimal I/O
address ends in a 0 or an 8 then consecutive I/O addresses will be used. If the address ends in a 1 then
I/O addresses will be separated by &H400. I/O addresses ending in other than 0, 1, or 8 are not
allowed. For example, the command:

IEEELPT IEEE05 /A&H22E1

would configure LPT1: for output to IEEE 488 bus address 05 on a second interface card located at
22E1 (hex). The I/O base address is usually set by switches or jumpers on the interface card. Refer
to the manufacturer’s instructions for your IEEE 488 board to determine its I/O address.

The default I/O port base address for IEEELPT and IEEECOM is /A&H02E1.

Printer Port Assignments Serial Port Assignments
LPT1: LPT2: LPT3: LPT4: COM1: COM2: COM3: COM4:

LPT1 LPT2 (none) (none) COM1 (none) (none) (none)

II. SOFTWARE GUIDES - 9. Driver488/SUB 9J. Utility Programs

Personal488 User’s Manual, Rev. 3.0 II-185

The /B sets the primary IEEE 488 bus address of IEEE 488 interface card. Every IEEE 488 bus
device, including the controller must have a unique IEEE 488 address in the range of 00 to 30
(decimal). The default address for the interface card is 21, but must be changed if any IEEE
Peripheral uses the same address. For example, the command:

IEEECOM IEEE21 /B00

sets the interface card bus address to 00 so that COM1: may be redirected to an IEEE 488 bus device
with an address of 21.

Removal & Reinstallation
Driver488 is a special type of terminate-and-stay-resident (TSR) program that controls Power488,
Personal488, and LAN488. When DRVR488.COM is executed, it installs itself permanently into
memory and connects itself into DOS so that it appears to be a standard device driver that can be used
to control IEEE 488 devices. Normally, Driver488 is present in memory whenever the computer is
operating, even if it is not being used. Most computers have enough memory so that the amount taken
by Driver488 is not critical, but some very large programs need so much memory that they cannot
operate if Driver488 is installed.

It is possible to temporarily remove Driver488 by editing the AUTOEXEC.BAT file. Once Driver488 is
installed, the AUTOEXEC.BAT file will contain one or more lines similar to the following:

C:\IEEE488\DRVR488

These are the commands that install Driver488. They can be disabled by adding the word REM,
followed by a space, to convert them to remarks:

REM C:\IEEE488\DRVR488

When the computer is rebooted, these lines will be ignored, Driver488 will not be loaded, and the
memory that would have been used for Driver488 will now be available for other programs. If
Driver488 is needed later, the AUTOEXEC.BAT file must be re-edited to remove the REMs and to re-
enable Driver488, and then the computer must be rebooted.

A more practical method involves the creation of a separate batch file that holds the DRVR488
commands. When Driver488 is installed, the DRVR488 commands are placed in the AUTOEXEC.BAT
file. By moving these commands to a separate batch file, it is possible to avoid installing Driver488
before it is needed. To create a separate batch file, first copy AUTOEXEC.BAT to a new file, perhaps
DRIVER.BAT. Then edit the AUTOEXEC.BAT file, deleting the DRVR488 commands, and edit
DRIVER.BAT, leaving only the DRVR488 commands. When the system is rebooted, Driver488 will no
longer be installed because the AUTOEXEC.BAT file no longer contains the DRVR488 commands.
However, whenever Driver488 is needed, it can be installed by typing DRIVER which will execute the
DRVR488 commands in the DRIVER.BAT file. Once Driver488 has been installed, it will remain
installed until the system is rebooted.

MARKDRVR & REMDRVR
Using the techniques described above, it is possible to install Driver488 only when it is needed.
However, it is still necessary to reboot the computer to remove Driver488. The MARKDRVR and
REMDRVR utilities allow Driver488 and other TSR programs, such as Sidekick and Superkey, to be
installed and removed at will, without rebooting.

Before installing the TSR program, the MARKDRVR command should be used to “snapshot” the system
state:

C:> MARKDRVR comment
C:> C:\IEEE488\DRVR488

The MARKDRVR command is followed by an optional comment of up to 119 character that is normally
used to note which TSR programs are about to be installed. When the above command is executed it
saves internal system information including the interrupt vectors, the device driver chain, and the free
memory pointer. This information, along with the specified comment, is saved for use by REMDRVR.

9J. Utility Programs II. SOFTWARE GUIDES - 9. Driver488/SUB

II-186 Personal488 User’s Manual, Rev. 3.0

The MARKDRVR command is then followed by the commands needed to install the TSR programs.
When using Driver488, these would be the DRVR488 commands. When these commands have
completed, Driver488 is installed and ready for use.

When Driver488 is no longer needed, it can be removed by using the REMDRVR command:

C:> REMDRVR

REMDRVR prints out the comment that was saved by MARKDRVR and then uses the information that
MARKDRVR saved to restore the system to the state it had before MARKDRVR had been executed. This
removes Driver488 and any other TSR programs that had been loaded in the interim and recovers their
memory for reuse.

If several different TSR programs are being used, then it might be appropriate to use MARKDRVR more
than once. Then, when REMDRVR is used, it will only remove the TSR programs that were installed
after the last MARKDRVR command. Each time REMDRVR is used, it will remove one more “layer” of
TSR programs. The comment saved by MARKDRVR can help keep track of which TSR programs are
removed at each step.

Note that the most recently installed programs are always removed first. It is not possible to remove a
program until all the more recently installed programs have been removed.

When working with Power488, it is good practice to create a DRIVER.BAT file that includes the
DRVR488 commands as described above. Then a MARKDRVR command, such as MARKDRVR
Driver488 can be added to the beginning of the DRIVER.BAT file. Then, Driver488 can be installed
by typing DRIVER and removed by typing REMDRVR. Driver488 can thus be installed and removed as
desired, without rebooting the computer.

Moving Files from an IEEE 488 (HP-IB) Controller to a PC
Included on the Driver488 release disk is a utility program that allows files to be transferred from any
IEEE controller to the PC in which Driver488 resides. This utility program configures the PC as a
Peripheral on the IEEE network, much like a standard IEEE 488 printer. Any controller capable of
sending information to an IEEE 488 printer, including controllers like the HP 9000 series computers,
can send any type of data to the PC.

Once launched to the PC, the file transfer utility allows the operator to redirect the incoming data either
to the PC screen, a PC disk file, or a printer attached to the PC.

PRNTEMUL Files
In the \UTILS subdirectory of the Driver488 diskette, there are 2 files:

• PRNTEMUL.EXE: This file is the MS-DOS executable version of the program. This is all that you
will need to emulate an IEEE 488 printer on a PC/AT or PS/2 computer.

• PRNTEMUL.C: This is the C source code of the PRNTEMUL.EXE program. It uses a C subroutine
interface of Driver488, which is located in the \SUBAPI directory of the main Driver488 directory.
Refer to the corresponding language support section on how to compile this code.

Configuration of the IEEE Interface for PRNTEMUL
The PRNTEMUL program requires the Driver488 to be configured as a Peripheral (same as an IEEE
printer). Make sure that the IEEE interface is configured at a unique IEEE address.

Once Driver488 is configured properly, reboot the computer and connect your PC/AT to your IEEE
controller.

Running PRNTEMUL
After the IEEE interfaces of each computer has been configured and connected, run the PRNTEMUL
program from the \UTILS directory by typing one of the following commands at the DOS prompt:

II. SOFTWARE GUIDES - 9. Driver488/SUB 9K. Command Descriptions

Personal488 User’s Manual, Rev. 3.0 II-187

Command Description
PRNTEMUL <ENTER> Prints information received from the IEEE 488 bus

to the screen.
PRNTEMUL > MYPROG.BAS <ENTER> Redirects information to a file called MYPROG.BAS
PRNTEMUL > LPT1 <ENTER> Redirects information to the printer port (LPT1).

Once the PRNTEMUL program is started, it will continue to send any information received from the
IEEE bus to the specified destination until any key is pressed. Once a key is pressed, the PRNTEMUL
program will return to DOS at which time it can be run again, with a different destination specified, if
so desired.

Data Transfer
Data is transferred to the computer running PRNTEMUL the same way information is sent to an IEEE
printer. For a description of how to print information out, refer to the documentation of your IEEE
controller.

For example, the following commands might be used on an HP 9000 computer running HP BASIC:

Command Description
LOAD “MYPROG.BAS” Load a program to print out.
PRINTER IS 710 Set the current printer to address 10 of the IEEE bus.
LIST List the current program to the selected printer (computer

running PRNTEMUL).

The output of the PRNTEMUL program could be redirected to a datafile to transfer source files from the
IEEE controller to a PC/AT or PS/2.

Introduction
There are two types of commands: Bus commands and system commands. Bus commands
communicate with the IEEE 488 bus. System commands configure or request information from
Driver488. This Sub-Chapter contains a detailed description of the bus and system command formats

 9K. Command Descriptions

For Driver488/SUB, W31, W95, & WNT

Topics

• Introduction .. II-186
• Format .. II-187

Syntax ..II-187
Returns ..II-187
Mode ...II-187
Bus States..II-187
Examples ...II-188

• Data Types ... II-189
Arm Condition Bit Masks..II-189
Control Line Bit Masks..II-189
Terminator Structures ..II-189
Status Structure...II-190
Completion Code Bit Masks..II-190
Miscellaneous Constants...II-190

9K. Command Descriptions II. SOFTWARE GUIDES - 9. Driver488/SUB

II-188 Personal488 User’s Manual, Rev. 3.0

available for Driver488/SUB and Driver488/W31. The commands for Driver488/W95 and
Driver488/WNT are provided as guides, pending current software revisions. Refer to your operating
system header file for the latest available information specific to your application.

A double-lined banner box similar to the following:

Driver488/XXX Only

indicates differences among these Driver488 versions. For more detail on the individual system
commands, see “Section III: Command References.”

Format
The format for the Driver488/SUB, W31, W95, and WNT command descriptions consists of several
sections which together define the command. Using the C language, this format is implemented for the
system commands found in Sub-Chapter 15B: “Driver488/SUB, W31, W95 & WNT Commands” of
the “Section III: Command References” in this manual.

Syntax
The Syntax section of the system command description describes the proper command syntax that must
be sent to Driver488. To define the specific command function, syntax parameters accompany each of
the system commands. For five detailed listings of syntax parameters for Driver488/SUB and
Driver488/W31, turn to the topic “Syntax Parameters” found in each of the five Sub-Chapters of
Chapter 14 “Command Summaries.”

Returns
The Returns section describes the return of the function completed. Note that most functions return a
value of -1 to indicate an error. Where no other return value is needed, a 0 indicates normal
completion. Some functions can also return specific values such as the number of bytes of data
successfully transferred.

Note: This format section differs from the Response section of the Driver488/DRV.

Mode
This section of the command description format specifies the operating modes in which the command is
valid. Driver488 may be configured as the System Controller in which case it is initially the Active
Controller, or as a Not System Controller in which case it is initially in the Peripheral state. The
Driver488 configuration as System Controller or Not System Controller can be changed by the
INSTALL program.

Note: Even if Driver488 is not configured as the System Controller, it can still become the Active
Controller if another controller on the IEEE 488 bus passes control to Driver488.

The modes are referred to by their names and states as shown below:

Mode Name State Mode Name State
System Controller SC Not System Controller *SC

Active Controller CA Peripheral (Not Active Controller) *CA

Active System Controller SC•CA System Controller, Not Active SC•*CA
Not System Controller,
Active Controller

*SC•CA Not System Controller,
Not Active Controller

*SC•*C
A

Bus States
This section of the command description format indicates the state of the bus device. The mnemonics
abbreviations for these bus states, as well as the relevant bus lines and bus commands, are listed in the
following two tables:

II. SOFTWARE GUIDES - 9. Driver488/SUB 9K. Command Descriptions

Personal488 User’s Manual, Rev. 3.0 II-189

If a command is preceded by an asterisk (*), that command is unasserted. For example, *REN states
that the remote enable line is unasserted. Conversely, REN without the asterisk states that the line
becomes asserted.

For a further description of these bus states and their bus lines, turn to the topic “Bus States” found in
the Sub-Chapter “Command Descriptions” of Chapter 8, and to “Section V: Appendix” in this manual.

Bus State Bus Lines Data Transfer (DIO) Lines
8 7 6 5 4 3 2 1

Hex Value (QuickBASIC) &H80 &H40 &H20 &H10 &H08 &H04 &H02 &H01

Decimal Value 128 64 32 16 8 4 2 1

Bus Management Lines
IFC Interface Clear
REN Remote Enable

IEEE 488 Interface: Bus Management Lines
ATN Attention (&H04) 0 0 0 0 0 1 0 0
EOI End-Or-Identify (&H80) 1 0 0 0 0 0 0 0
SRQ Service Request (&H40) 0 1 0 0 0 0 0 0

IEEE 488 Interface: Handshake Lines
DAV Data Valid (&H08) 0 0 0 0 1 0 0 0
NDAC Not Data Accepted (&H10) 0 0 0 1 0 0 0 0
NRFD Not Ready For Data (&H20) 0 0 1 0 0 0 0 0

Serial Interface: Bus Management Lines
DTR Data Terminal Ready (&H02) 0 0 0 0 0 0 1 0
RI Ring Indicator (&H10) 0 0 0 1 0 0 0 0
RTS Request To Send (&H01) 0 0 0 0 0 0 0 1

Serial Interface: Handshake Lines
CTS Clear To Send (&H04) 0 0 0 0 0 1 0 0
DCD Data Carrier Detect (&H08) 0 0 0 0 1 0 0 0
DSR Data Set Ready (&H20) 0 0 1 0 0 0 0 0

Bus State Bus Commands Data Transfer (DIO) Lines
(IEEE 488) (ATN is asserted “1”) 8 7 6 5 4 3 2 1

Hex Value (QuickBASIC) &H80 &H40 &H20 &H10 &H08 &H04 &H02 &H01

Decimal Value 128 64 32 16 8 4 2 1
DCL Device Clear (&H14) x 0 0 1 0 1 0 0
GET Group Execute Trigger (&H08) x 0 0 0 1 0 0 0
GTL Go To Local (&H01) x 0 0 0 0 0 0 1
LAG Listen Address Group (&H20-3F) x 0 1 a d d r n
LLO Local Lock Out (&H11) x 0 0 1 0 0 0 1
MLA My Listen Address x 0 1 a d d r n
MTA My Talk Address x 1 0 a d d r n
PPC Parallel Poll Config x 1 1 0 S P2 P1 P0
PPD Parallel Poll Disable (&H70) x 1 1 1 0 0 0 0
PPU Parallel Poll Unconfig (&H15) x 0 0 1 0 1 0 1
SCG Second. Cmd. Group (&H60-7F) x 1 1 c o m m d
SDC Selected Device Clear (&H04) x 0 0 0 0 1 0 0
SPD Serial Poll Disable (&H19) x 0 0 1 1 0 0 1
SPE Serial Poll Enable (&H18) x 0 0 1 1 0 0 0
TAG Talker Address Group (&H40-5F) x 1 0 a d d r n
TCT Take Control (&H09) x 0 0 0 1 0 0 1
UNL Unlisten (&H3F) x 0 1 1 1 1 1 1
UNT Untalk (&H5F) x 1 0 1 1 1 1 1

(x = “don’t care”)

9K. Command Descriptions II. SOFTWARE GUIDES - 9. Driver488/SUB

II-190 Personal488 User’s Manual, Rev. 3.0

Examples
The Examples section of the command description format lists one or more short examples of the
command’s normal use. These and additional programs can be found in language or example
subdirectories of the Driver488 installation directory.

Data Types
Driver488 uses a number of data bit masks, data constants, and data structures. The following
constructions have been defined for the C language. Other languages are shown in their respective
language sections of this manual.

Arm Condition Bit Masks
Defined bit masks used in the Arm and Disarm functions:

acError acChange acIdle acSRQ
acByteIn acClear acListen acTalk
acByteOut acController acPeripheral acTrigger

Control Line Bit Masks
The following Control Line functions for IEEE 488 devices:

clEOI clSRQ clNRFD clNDAC clDAV clATN

return the following defined bit masks, as shown in the table:

The following Control Line functions for serial devices:

clDSR clRI clDCD clCTS clDTR clRTS

return the following defined bit masks, as shown in the table:

For more information on the Control Line command, turn to “Section III: Command References” in
this manual.

Terminator Structures
Structure used by Enter, Output, and Term:

typedef struct {
bool EOI; /* Do we care about or send EOI?*/
int nChar; /* 0,1, or 2 characters to match*/
bool EightBits; /* 7 (False) or 8 (True) bit terminator match*/
int termChar [2]; /* The actual terminating character*/

} TermT;

Control Line Bit Masks Data Transfer (DIO) Lines
8 7 6 5 4 3 2 1

Hex Value (QuickBASIC) &H80 &H40 &H20 &H10 &H08 &H04 &H02 &H01
Decimal Value 128 64 32 16 8 4 2 1

Bit Mask EOI SRQ NRFD NDAC DAV ATN 0 0

Control Line Bit Masks Data Transfer (DIO) Lines
8 7 6 5 4 3 2 1

Hex Value (QuickBASIC) &H80 &H40 &H20 &H10 &H08 &H04 &H02 &H01
Decimal Value 128 64 32 16 8 4 2 1

Bit Mask 0 0 DSR RI DCD CTS DTR RTS

II. SOFTWARE GUIDES - 9. Driver488/SUB 9L. Command Reference

Personal488 User’s Manual, Rev. 3.0 II-191

Status Structure
Structure used by Status:

typedef struct { /* These flags are TRUE (non-zero) if: */
bool SC; /* we are System Controller */
bool CA; /* we are Active Controller */
char Primaddr; /* our primary bus address */
char Secaddr; /* our secondary bus address */
bool SRQ; /* SRQ is active (CA) or rsv is active (-CA) */
bool addrChange; /* we detected an address status change */
bool talker; /* we are an active talker */
bool listener; /* we are an active listener */
bool triggered; /* we have been triggered */
bool cleared; /* we have been cleared */
bool transfer; /* we have a transfer in progress */
bool byteIn; /* we have an input byte to read */
bool byteOut; /* we may be able to output a byte */

} IeeeStatusT;
typedef IeeeStatusT*IeeeStatusPT;

Miscellaneous Constants
The following constants are defined and are required as parameters in several functions:

IN OUT ON OFF FILL_OFF FILL_ERROR

 9L. Command Reference

For Driver488/SUB, W31, W95, & WNT
To obtain a detailed description of the command references for Driver488/SUB and Driver488/W31,
turn to Section III in this manual entitled “Command References.” The commands for Driver488/W95
and Driver488/WNT are provided as guides, pending current software revisions. Refer to your
operating system header file for the latest available information specific to your application. The
commands are presented in alphabetical order for ease of use.

Completion Code Bit Masks
Structure used by all the Enter and Output functions:

typedef enum {
ccCount = 0x0001 /* specified number of characters transferred */
ccBuffer = 0x0002 /* buffer count exhausted */
ccTerm = 0x0004 /* terminator character(s) detected */
ccEnd = 0x0008 /* End signal (EOI) detected */
ccChange = 0x0010 /* unexpected change of I/O signals */
ccStop = 0x0020 /* transfer terminated by program cmd */
ccDone = 0x4000 /* transfer has terminated */
ccError = 0x8000 /* details in error code field */

} CompCodeT;
typedef CompCodeT far *CompCodePT;

10A. Introduction II. SOFTWARE GUIDES - 10. Driver488/W31

II-192 Personal488 User’s Manual, Rev. 3.0

 10. Driver488/W31

Sub-Chapters

10A. Introduction ... II-191
10B. Installation & Configuration .. II-192
10C. External Device Interfacing ... II-202
10D. Getting Started .. II-205
10E. C Languages .. II-208
10F. Visual Basic .. II-232
10G. Utility Programs.. II-251
10H. Command Reference... II-256

 10A. Introduction

Note: Driver488/WIN from previous manuals, has been renamed Driver488/W31.

Driver488/W31 includes a Windows Dynamic Link Library (DLL) for integrating IEEE 488.2 control
into Microsoft Windows applications. Driver488/W31 transfers data at up to 1M byte/second. It uses
HP-style IEEE 488 commands for high- and low-level IEEE 488.1 bus control, and offers additional
commands that support the IEEE 488.2 standard. Furthermore, Driver488/W31 conforms to Windows’
standard application architecture, allowing Windows to link with the IEEE 488 driver during run time,
and to manage its memory requirements, interrupts and messages.

Because Microsoft Windows enables multitasking, multiple test applications may concurrently require
access to the same network of IEEE 488 instruments. Driver488/W31 automatically arbitrates among
test applications, letting multiple applications run concurrently without the risk of data loss.

Microsoft Windows provides access to Dynamic Data Exchange (DDE), a mechanism by which
unrelated applications can exchange data during run time. Driver488/W31 lets you use this inter-
application communication technique to transfer data acquired from instruments to any other
compatible application. For example, with Driver488/W31, an application program can collect data
from an instrument and automatically transfer it to a concurrently running Excel spreadsheet.

Driver488/W31 provides language interfaces for Microsoft C, Quick C on Windows, Visual Basic,
Turbo C and Borland C++. Driver488/W31 makes IEEE events in your C or C++ applications
conform to Windows’ standard event handling scheme, passing IEEE events such as bus errors and
SRQs to Windows as standard messages. This assures consistent handling of IEEE and user events.

Visual Basic lets you easily develop full-featured Windows applications. Unlike DOS-based test-
system development environments, which merely code for insertion into an application, Visual Basic
greatly simplifies the task of adding a user interface to your application. In addition, Visual Basic
contains a tool palette for designing your application’s user interface, letting you use point-and-click
operations to design and test your interface.

Driver488/W31 augments this tool palette with an IEEE Event Custom Control tool. When you
include this Event Custom Control tool in your application, it creates service routines for IEEE events
such as bus errors and instruments interrupts (SRQ), letting your application handle asynchronous bus
events with ease. At run time, the IEEE Event Custom Control traps IEEE events which are then
automatically dispatched to the appropriate service routines.

II. SOFTWARE GUIDES - 10. Driver488/W31 10B. Installation & Configuration

Personal488 User’s Manual, Rev. 3.0 II-193

Driver488/W31 supports up to four IEEE 488 interfaces. These can be multiple external devices on
each interface up to the limits imposed by either electrical loading (14 devices), or with a product such
as Expander488, to the limits of the IEEE 488 addressing protocols.

Driver488/W31 supports the GP488B, AT488, MP488, MP488CT, GP488/MM, and NB488 series of
IEEE 488.2 interface hardware (with the exception of the Digital I/O and Counter/Timer functions).
All interaction between the application and the driver takes place via subroutine calls. Note that
Counter/Timer support is available in the IOTTIMER.DLL package included on the Driver488/W31
diskette. Refer to your appropriate manuals for more information.

 10B. Installation & Configuration

Topics

• Before You Get Started ... II-192
• Making Backup Disk Copies.. II-193
• Driver Installation ... II-193

Enhanced Mode DMA Transfers ..II-194
• Configuration Utility... II-195

Interfaces...II-195
External Devices...II-195
Opening the Configuration Utility ..II-195

• Configuration of IEEE 488 Interfaces II-195
• Configuration of IEEE 488 External Devices......................... II-198
• Modification of the Initialization File..................................... II-199

Driver Core Sections ..II-200

Before You Get Started
Prior to Driver488/W31 software installation, configure your interface board by setting the appropriate
jumpers and switches as detailed in the “Section I: Hardware Guides.” Note the configuration settings
used, as they must match those used within the Driver488/W31 software installation.

Once the IEEE 488 interface hardware is installed, you are ready to proceed with the steps outlined
within this Sub-Chapter to install and configure the Driver488/W31 software. The Driver488/W31
software disk(s) include the driver files themselves, installation tools, example programs, and various
additional utility programs. A file called README.TXT, if present, is a text file containing new material
that was not available when this manual went to press.

10B. Installation & Configuration II. SOFTWARE GUIDES - 10. Driver488/W31

II-194 Personal488 User’s Manual, Rev. 3.0

The first thing to do, before installing the software, is to make a backup copy of the Driver488/W31
software disks onto blank disks. To make the backup copy, follow the instructions given below.

Making Backup Disk Copies
1. Boot up the system according to the manufacturer’s instructions.

2. Find the MS-DOS icon, and open the DOS window.

3. Type the command CD\ to go back to your system’s root directory.

4. Place the first Driver488/W31 software disk into drive A:.

5. Type DISKCOPY A: A: and follow the instructions given by the DISKCOPY program. (You may
need to swap the original (source) and blank (target) disks in drive A: several times to complete
the DISKCOPY. If your blank disk is unformatted, the DISKCOPY program allows you to format it
before copying.)

6. When the copy is complete, remove the backup (target) disk from drive A: and label it to match
the original (source) Driver488/W31 software disk just copied.

7. Store the original Driver488/W31 software disk in a safe place.

8. Place the next Driver488/W31 software disk into drive A: and repeat steps 4-6 for each original
(source) disk included in the Driver488/W31 package.

9. Place the backup copy of the Installation disk into drive A:, type A:INSTALL, then follow the
instructions on the screen.

Driver Installation
There are two steps involved in installing Driver488/W31 onto your working disk. The batch file must
first be used to copy the required files from the distribution disk to your working disk, and then the
configuration must be established by using the Driver488/W31 configuration utility or modifying the
supplied Windows-style initialization file.

Note: Driver488/W31 requires about 2.5MB of hard disk space.

Driver488/W31 should normally be installed on a hard disk. Installing Driver488/W31 on a floppy
disk, while possible, is not recommended. The installation batch file will install DRVR488W.INI into
your Windows directory and all other files into a new subdirectory, named \IEEE488, within your
Windows directory. Three subdirectories exist within the \IEEE488 subdirectory which include the
language interfaces, example program(s), and utility programs: \LANGS, \EXAMPLES, and \UTILS,
respectively.

NOTICE

1. The Driver488/W31 software, including all files and data, and the diskette on which it is
contained (the “Licensed Software”), is licensed to you, the end user, for your own internal
use. You do not obtain title to the licensed software. You may not sublicense, rent, lease,
convey, modify, translate, convert to another programming language, decompile, or
disassemble the licensed software for any purpose.

2. You may:

• only use the software on one single machine;

• copy the software into any machine-readable or printed form for backup in support
of your use of the program on the single machine; and,

• transfer the programs and license to use to another party if the other party agrees to
accept the terms and conditions of the licensing agreement. If you transfer the
programs, you must at the same time either transfer all copies whether in printed or
in machine-readable form to the same party and destroy any copies not transferred.

II. SOFTWARE GUIDES - 10. Driver488/W31 10B. Installation & Configuration

Personal488 User’s Manual, Rev. 3.0 II-195

Assuming that the Driver488/W31 disk is in drive A:, specify the full path of your Windows directory.
For example, if your Windows directory is C:\WINDOWS, you would copy all required files by entering
the following command at the DOS prompt:

INSTALL C:\WINDOWS

The language support files can be copied to any location accessible to your compiler and other
development tools. If you wish to have the Driver488/W31 support reside with your application,
simply copy or move the files from the \LANGS\xxx directory appropriate to your development
environment:

• For Borland C compilers: \LANGS\BC

• For Microsoft C compilers: \LANGS\MC

• For Visual Basic: \LANGS\VB

Alternatively, you can place the files where your compiler expects its own files, which may involve
placing include files in one place and library files in another.

Example programs are contained in individual subdirectories of \EXAMPLES with a precompiled
executable made from the provided source files, allowing you to run the example and compare the
source code without necessarily needing to compile the program.

The utilities subdirectory \UTILS contains two utility programs: WINTEST and QUIKTEST. These
programs were designed as an exercise in order to see the functionality contained within
Driver488/W31, to test that your hardware is properly installed and working correctly, and to
experiment with command sequences that might be used in your application. For more information on
these programs, refer to the Sub-Chapter “Utility Programs” found later in this Chapter.

Note: Before using Driver488/W31, the C:\WINDOWS\IEEE488 subdirectory must be added to your
path. To do so, you may wish to add the following line to your AUTOEXEC.BAT file:

set PATH=C:\WINDOWS\IEEE488;%PATH%

or simply add the following segment to your path statement:

;C:\WINDOWS\IEEE488

Note if any error messages display when trying to load Driver488/W31 in memory. If so, refer to
“Section IV: Troubleshooting” in this manual..

Enhanced Mode DMA Transfers
Driver488/W31 contains an option to use Direct Memory Access (DMA) transfers which provides the
highest data transfer rate of the interface hardware. Due to the fact the Microsoft-supplied enhanced-
mode DMA device-driver does not allow Driver488/W31 to properly interrogate the DMA controller,
you must instruct Windows to use the DMA device driver. If you wish to use DMA transfers, perform
the following additional installation steps:

1. In C:\WINDOWS\SYSTEM.INI, change the line: device=*vdmad
 to: device=vdmad.386

2. Next, copy VDMAD.386 from the C:\WINDOWS\IEEE488 directory into the C:\WINDOWS
directory: COPY\WINDOWS\IEEE488\VDMAD.386 \WINDOWS

Note: The device driver vdmad.386 can be used in Windows 3.1 only. DO NOT use any other
operating system.

10B. Installation & Configuration II. SOFTWARE GUIDES - 10. Driver488/W31

II-196 Personal488 User’s Manual, Rev. 3.0

Configuration Utility
The Driver488/W31 startup configuration is specified in a Windows-style initialization file named
DRVR488W.INI, which resides in the \WINDOWS directory. The first screen of the CONFIG program is
used to enter the configuration settings so the Driver488/W31 software can be correctly modified to
reflect the state of the hardware.

An alternative to using the configuration utility, is to modify the initialization file directly (either using
a text editor or from an application program). For more information on this process, refer to the last
topic “Modification of the Initialization File” found in this Sub-Chapter.

The driver can be reconfigured at any time by running the CONFIG program. If the driver is currently
loaded (the Driver488/W31 icon is present), any changes made will not take affect until the driver is
closed and reloaded.

Interfaces
The minimum requirement for configuring your system is to make certain that your IEEE 488.2
interface board or module is selected under “Device Type.” The default settings in all of the other
fields match those of the interface as shipped from the factory. If you are unsure of a setting, it is
recommended that you leave it as is.

External Devices
Within your IEEE 488.2 application program, devices on the bus are accessed by name. These names
must be created and configured within the CONFIG program. After configuring your interface
parameters, press <F5> to open the External Devices window. All configured devices will be
accessible in your application program via the OpenName command. For more details, refer to the
topic “Configuration of IEEE 488 External Devices” found later in this Sub-Chapter.

Opening the Configuration Utility
In general, all Driver488/W31 configuration utility screens have three main windows: the “name” of
the interfaces or devices on the left, the “configuration” window on the right, and the “instruction”
window at the bottom of the screen. Based on current cursor position, the valid keys for each window
will display in the Instructions box.

To begin the interface configuration, move the cursor in the name window to select an interface
description for modification. (Interfaces can be added or deleted using <F3> and <F4>.) Notice
moving the cursor up and down the list of interfaces or devices in the left window changes the
parameters in the configuration window. The configuration fields always correspond with the currently
selected interface and device type.

Once all modifications have been made to the configuration screen, <F10> must be pressed to accept
the changes made or <F9> can be pressed to exit without making any change. Additional function keys
allow the user to continue onto the configuration of external devices via <F5> or to view a graphic
representation of the interface card with the selected settings via <F7>.

II. SOFTWARE GUIDES - 10. Driver488/W31 10B. Installation & Configuration

Personal488 User’s Manual, Rev. 3.0 II-197

Configuration of IEEE 488 Interfaces
Note: The Driver488/W31

supports only the
IEEE interface.

The following
Driver488/W31 figure
displays the configuration of:
An MP488 IEEE 488.2
interface in the upper screen
section, and a WAVE external
device in the lower screen
section.

For additional information on
using more than one
interface, refer to the final
topic “Multiple Interface
Management” in the Sub-
Chapter “Installation &
Configuration” of Chapter 8.

Once an interface is selected,
the fields and default entries
which display in the
configuration window depend on the device type specified. The configuration parameters of the IEEE
interface, shown in the figure, are as follows:

Configuration Parameters

• Name: This field is a descriptive instrument name which is manually assigned by the user. This
must be a unique name. Typically, IEEE is used.

• IEEE Bus Address: This is the setting for the IEEE bus address of the board. It will be checked
against all the instruments on the bus for conflicts. It must be a valid address from 0 to 30.

• DMA: A direct memory access (DMA)
channel can be specified for use by the I/O
interface card. If DMA is to be used, select
a channel as per the hardware setting. If no
DMA is to be used, select NONE. The
NB488 does not support DMA, therefore the
DMA field will not display if this device
type is used. Valid settings are displayed in
the table.

• Interrupt: A hardware interrupt level
(IRQ) can be specified to improve the
efficiency of the I/O adapter control and
communication using Driver488/W31. For
DMA operation or any use of OnEvent and
Arm functions, an interrupt level must be
selected. Boards may share the same
interrupt level. If no interrupt level is to be
used, select NONE. Valid interrupt levels
depend on the type of interface. Possible settings are shown in the table.

• SysController: This field determines whether or not the IEEE 488 interface card is to be the
System Controller. The System Controller has ultimate control of the IEEE 488 bus, and the
ability of asserting the Interface Clear (IFC) and Remote Enable (REN) signals. Each IEEE 488
bus can have only one System Controller. If the board is a Peripheral, it may still take control of

Configuration Utility Screen with MP488 Board

I/O Board Specified DMA Channel
GP488B 1, 2, 3 or none
AT488 1, 2, 3, 5, 6, 7 or none
MP488 1, 2, 3, 5, 6, 7 or none
MP488CT 1, 2, 3, 5, 6, 7 or none
NB488 Not applicable
CARD488 Not applicable

I/O Board Specified Interrupt Level
GP488B levels 2-7 or none
AT488 levels 3-7, 9-12, 14-15 or none
MP488 levels 3-7, 9-12, 14-15 or none
MP488CT levels 3-7, 9-12, 14-15 or none
NB488 level 7 for LPT1, level 5 for LPT2
CARD488 levels 3-7, 9-12, 14-15 or none

10B. Installation & Configuration II. SOFTWARE GUIDES - 10. Driver488/W31

II-198 Personal488 User’s Manual, Rev. 3.0

the IEEE 488 bus if the Active Controller passes control to the board. The board may then control
the bus and, when it is done, pass control back to the System Controller or another computer,
which then becomes the Active Controller. If the board will be operating in Peripheral mode (not
System Controller), select NO in this field.

• Timeout (ms): The time out period is the amount of time that data transfers wait before assuming
that the device does not transfer data. If the time out period elapses while waiting to transfer data,
an error signal occurs. This field is the default timeout for any bus request or action, measured in
milliseconds. If no timeout is desired, the value may be set to zero.

• Device Type: This field specifies the type of device represented by the IEEE device name
selected.

I/O Address

• IEEE 488: This field is the I/O base address which sets the addresses used by the computer to
communicate with the IEEE interface hardware on the board. The address is specified in
hexadecimal and can be 02E1, 22E1, 42E1 or 62E1.

 Note: This field does not apply to the NB488. Instead, the NB488 uses the I/O address of the
data register (the first register) of the LPT port interface, typically 0x0378.

• Bus Terminators: The IEEE 488 bus terminators specify the characters and/or end-or-identify
(EOI) signal that is to be appended to data that is sent to the external device, or mark the end of
data that is received from the external device.

This second Driver488/W31
example displays the configuration
of an NB488 IEEE interface
module, specified in the upper
screen section. This screen
resembles the previous IEEE
interface example with the
exception of 3 different
configuration parameters which
are described below.

Configuration Parameters

• LPT Port: The LPT port is
the external parallel port to be
connected to the NB488.
Valid selections are: LPT1,
LPT2, or LPT3. This field
takes the place of the I/O
Address field.

• Enable Printer Port:
Because most laptop and
notebook PCs provide only
one LPT port, the NB488 offers LPT pass-through for simultaneous IEEE 488 instrument control
and printer operation. If this option is selected, a printer connected to the NB488 will operate as if
it were connected directly to the LPT port. If not enabled, then the printer will not operate when
the NB488 is active. The disadvantage of pass-through printer support is that it makes
communications with the NB488 about 20% slower.

 Note: If this option is in use, it is important to note that printing will not occur while any IEEE
devices are open. If you attempt to print while IEEE 488 devices are open, the program responds
as if printing were accomplished. However, Windows actually spools the printer output but then
waits until all IEEE 488 devices are closed before printing.

Configuration Utility Screen for NB488

II. SOFTWARE GUIDES - 10. Driver488/W31 10B. Installation & Configuration

Personal488 User’s Manual, Rev. 3.0 II-199

To print through the NB488 printer port, you can either close all IEEE 488 devices, print as
necessary and then reopen all instruments on the bus or allow Windows to spool the printer data
until the driver devices are closed.

• LPT Port Type: This field is used to specify whether the LPT port is a standard IBM
PC/XT/AT/PS/2 compatible port. Valid options are Standard or 4-bit. The slower 4-bit option is
provided for those computers which do not fully implement the IBM standard printer port. These
computers can only read 4 bits at a time from the NB488 making communication with the NB488
up to 30% slower.

A test program has been provided with NB488 to help identify the user’s LPT port type. Once the
NB488 is installed, type: NBTEST.EXE. This program will determine if your computer can
communicate with the NB488 and what type of LPT port is installed (Standard or 4-bit).

It is important to note there are four different versions of the NB488 driver. The CONFIG utility
determines which is to be used based on the user-defined parameters. If both pass-through printer
support and the 4-bit LPT port support are selected, then the communication with the IEEE 488 bit
may be slowed as much as 40% compared with the fastest case in which neither option is selected.
The actual performance will very depending on the exact type and speed of the computer used.

To save your changes to disk, pull down the File menu item and double-click on the Save option. Or to
exit without making any changes, double-click on the Exit option. All changes will be saved in the
directory where you installed Driver488/W31. If at any time you wish to alter your Driver488/W31
configuration, simply rerun CONFIG.

Configuration of IEEE 488 External Devices
Configuration of IEEE 488 external devices under Driver488/W31 is done by editing an initialization
file that stores the specific configuration information about all of the configured external devices. The
configuration for each device is set when the Driver488/W31 loads itself into memory and is present at
the start of the application program.

Each external device requires a handle to communicate with Driver488/W31. An external device
handle is a means of maintaining a record about 3 configurable items: its IEEE 488 bus address, its
IEEE 488 bus terminators and its time out period. Any communication with the external device uses
these three items. The different configurable items, which define the external device, are listed in the
following figure. All external devices have either a default value or a user supplied value for the
different fields. All fields can be changed by Driver488/W31 commands during program execution.

Like the first two configuration
screen figures, this third figure
displays the configuration of an
external device named WAVE,
specified in the lower screen
section. The following parameters
are available for modification:

Configuration Parameters

• Name: This field specifies
the type of device represented
by the IEEE device name
selected. External device
names are user defined names
which are used to convey the
configuration information
about each device, from the
initialization file to the
application program. Each
external device must have a
name to identify its
configuration to

Configuration Utility Screen for External Devices

10B. Installation & Configuration II. SOFTWARE GUIDES - 10. Driver488/W31

II-200 Personal488 User’s Manual, Rev. 3.0

Driver488/W31. The name can then be used to obtain a handle to that device which will be used
by all the Driver488/W31 commands. External device names consist of 1 to 32 characters, and the
first character must be a letter. The remaining characters may be letters, numbers, or underscores
(_). External device names are case insensitive; upper and lower case letters are equivalent. ADC
is the same device as adc.

• IEEE Bus Address: This is the setting for the IEEE 488 bus address of the board. It will be
checked against all the devices on the bus for conflicts. The IEEE 488 bus address consists of a
primary address from 00 to 30, and an optional secondary address from 00 to 31. Where required,
Driver488/W31 accepts a secondary address of -1 to indicate “NONE.”

• Timeout (ms): The time out period is the amount of time that data transfers wait before assuming
that the device does not transfer data. If the time out period elapses while waiting to transfer data,
an error signal occurs. This field is the default timeout for any bus request or action, measured in
milliseconds. If no timeout is desired, the value may be set to zero.

• Device Type: This field specifies the type of device represented by the external device name
selected.

• Bus Terminators: The IEEE 488 bus terminators specify the characters and/or end-or-identify
(EOI) signal that is to be appended to data that is sent to the external device, or mark the end of
data that is received from the external device.

Note: Because secondary addresses and bus terminators are specified by each handle, it may be
useful to have several different external devices defined for a single IEEE 488 bus device. For
example, separate device handles would be used to communicate with different secondary
addresses within a device. Also, different device handles might be used for communication of
command and status strings (terminated by carriage return/line feed) and for communication
of binary data (terminated by EOI).

Note: If installation or configuration problems exist, refer to “Section IV: Troubleshooting.”

To save your changes to disk, pull down the File menu item and double-click on the Save option. Or to
exit without making any changes, double-click on the Exit option. All changes will be saved in the
directory where you installed Driver488/W31. If at any time you wish to alter your Driver488/W31
configuration, simply rerun CONFIG.

Modification of the Initialization File
If instead of using the configuration utility you wish to modify the initialization file directly, (either
using a text editor or from an application program), the following text describes the required contents.

The example initialization file DRVR488W.INI provides a default setup with one 16-bit IEEE 488
interface at bus address 21, and one external device called WAVE at bus address 16. This file can be
modified to define other configurations, as described in the following paragraphs. Fields not described,
should be left as in the example. The order of the fields within the file is significant and should be
preserved. If your application will modify the initialization file, note that per Microsoft
recommendations for future compatibility, it should be accessed only through the
GetPrivateProfileString and SetPrivateProfileString functions.

Refer to the supplied DRVR488W.INI while reviewing the following material:

• The field labeled “Driver” in each section, is the filename of the driver file for a particular layer of
the driver. This can be just the filename if the driver file is present in the Windows directory or in
the DOS search path, or this can include a full path to the file.

• To support multiple IEEE 488 interfaces, duplicate the driver core sections labeled IEEE_3,
IEEE_4, and IEEE for each additional interface, changing the names as required to avoid duplicate
names. For instance, IEEE_3 might be changed to IEEE2_3. These names follow the rules given
for device names under MakeDevice found in “Section III: Command References” of this manual.
Also, for more information on multiple interfaces, see the last topic “Multiple Interface
Management” in the Sub-Chapter “Installation & Configuration” of Chapter 8.

II. SOFTWARE GUIDES - 10. Driver488/W31 10B. Installation & Configuration

Personal488 User’s Manual, Rev. 3.0 II-201

• Terminators refer to the particular characters or other signals which indicate the end of a data
transfer. For instance, a carriage return (CR) and line feed (LF) pair typically indicates the end of a
line of text to a printer. However, some printers may use just CR or just LF to indicate the end of a
line. Other devices may use one of these combinations or some other character, with or without
the IEEE 488 end-or-identify (EOI) signal, to indicate the end of a transfer.

Driver488/W31 provides for automatic insertion and detection of these terminators, with the exact
terminator to be used, configurable for each interface and external device. Terminators are
indicated in the initialization file as a quoted string containing any combination of the following,
which indicates no more than 2 characters plus an optional EOI:

CR : Carriage return (decimal 13, hex 0D)

LF : Line feed (decimal 10, hex 0A)

$char : A specific character as indicated in decimal

‘X : A specific printable character such as X

EOI : The IEEE 488 End Or Identify signal

For example, to specify terminators of carriage return followed by line feed with EOI, the
specification would be CR LF EOI. To specify a terminator of the character X (decimal 88, hex
58) without EOI, you could use either ’X or $88.

Router Section

The Router section refers to the driver core section responsible for communications among the other
parts of the driver.

Message Handling Section

The Message Handling section refers to the section responsible for error reporting.

Interrupt Section

The Interrupt section refers to the section responsible for coordination of interrupts and event handling.

DMA Section

The DMA section refers to the section responsible for data transfers via Direct Memory Access.

IEEE_3 Section

The IEEE_3 section concerns the lowest-level access to the interface board and is responsible for
directly controlling the hardware. Its components include the following:

• IOaddr: &H02E1, &H22E1, &H42E1, &H62E1, &H0378, &W0278 or &W03BC according to the
hardware configuration.

• DMA: The DMA channel number to be used (such as 1, 3, 5, etc.) as selected on the interface
hardware. If DMA is not desired for any reason, the entry NONE in place of a channel number
indicates this fact. For more information on enhanced mode DMA transfers, see the topic “Driver
Installation” in the Sub-Chapter “Installation & Configuration” of this Chapter.

• Interrupt: The interrupt channel to be used (such as 2, 7, 15, etc.) as selected on the interface
hardware. If interrupt support is not desired, the word NONE replaces the channel number.

Driver Core Sections
Drivers Section

This section contains the names of all active succeeding driver core sections. Any given section can be
disabled by removing or commenting out the corresponding line in this section, as has been done with
the support for a second IEEE 488 interface in the supplied initialization file.

10B. Installation & Configuration II. SOFTWARE GUIDES - 10. Driver488/W31

II-202 Personal488 User’s Manual, Rev. 3.0

• Subset: MP488CT, MP488, AT488, GP488BP, GP488B or NB488 depending on the type of
interface which is present. Also, note that a section defining a GP488B interface must follow a
section defining one of the other interfaces.

IEEE_4 Section

The IEEE_4 section concerns components which are common to all IEEE 488 interfaces but not
necessarily all types of communications. These components include the following:

• Slave: Name of the slave device. With multiple interfaces, this allows the specification of which
interface is in this particular chain. The slave must be a device using the IOTMP488.EXE driver.

• IEEE Bus Address: The IEEE 488 Bus Address to be assigned to the interface. This must be a
one- or two-digit decimal address between 0 and 30.

• System Controller: The digit 1 indicates System Controller, and 0 indicates not System
Controller.

IEEE Section

The IEEE section, which is the device visible to applications as the interface device, concerns
components which are common to all types of communication. These components include the
following:

• Slave: Name of the slave device. With multiple interfaces, this allows the specification of which
interface is in this particular chain. The slave must be a device using the IOTIEEE4.EXE driver.

• Timeout: Timeout interval in milliseconds.

• Termin: Input terminator (Enter) following the format specified for terminators, as described
above.

• Termout: Output terminator (Output) following the format specified for terminators, as
described above.

IEEEDEV Section

The IEEEDEV section is used for predefined external devices, such as a digital multimeter (DMM),
oscilloscope (SCOPE), or analog-to-digital converter (ADC), and is visible to applications as an external
device. The name can be changed to suit the application and will be the name referenced by the
OpenName command. There must be at least one external device defined in the initialization file in
order to use the MakeDevice command. There may be multiple external devices on each interface, up
to the limits imposed by IEEE 488, but the total number of devices (interfaces plus external devices)
may not exceed 56 at any one time. The components for this section, include the following:

• Slave: Name of the slave device. With multiple interfaces, this allows the specification of which
interface serves this external device. The slave must be a device using the IOTGNRCD.EXE driver.
As noted above, several external devices can specify the same slave when multiple devices are
physically connected to the same interface.

• Termin: Input terminator (Enter) following the format specified for terminators, as described
above.

• Termout: Output terminator (Output) following the format specified for terminators, as
described above.

• IEEE Bus Address: IEEE 488 Bus Address (decimal) to be assigned to the device. If this
address is one or two digits, it is interpreted as a primary address with no secondary address. With
three digits, it is interpreted as a one-digit primary address followed by a two-digit secondary
address. With four digits, it is interpreted as a two-digit primary address followed by a two-digit
secondary address.

• Timeout: Timeout interval in milliseconds.

Additional external devices on the same IEEE 488 interface can be configured by duplicating the
IEEEDEV section and modifying the bus address and other parameters as required.

II. SOFTWARE GUIDES - 10. Driver488/W31 10C. External Device Interfacing

Personal488 User’s Manual, Rev. 3.0 II-203

 10C. External Device Interfacing

Topics

• Introduction .. II-202
 Subroutine Calls...II-202
• Configuration of Named Devices.. II-202
• Use of External Devices .. II-204
• Extensions For Multiple Interfaces ... II-204

Duplicate Device Names ...II-205
Access of Multiple Interfaces..II-205
Example ...II-205

Introduction
This Sub-Chapter is a technical review of external device interfacing. It contains information on how
to use external devices and multiple interfaces.

Driver488/W31 controls I/O adapters and their attached external devices. In turn, Driver488/W31 is
controlled via subroutine calls.

Driver488/W31 communicates directly with I/O adapters such as an IEEE 488 interface board. More
than one I/O adapter may reside on a single plug-in board. For example, the IEEE 488 interface board
contains the IEEE 488 I/O adapter.

I/O adapters connect to external devices such as digitizers, multimeters, plotters, and oscilloscopes
(IEEE 488 interface); and serial devices such as printers, plotters, and modems. However,
Driver488/W31 allows direct control of IEEE 488 external devices only.

Note: To reiterate, Driver488/W31 supports IEEE 488 external devices, and does not support serial
external devices.

Driver488/W31 is controlled by sending data and commands, and receiving responses and status by
subroutine calls. This method is the only Application Program Interface, API, available to connect the
application (user’s) program to Driver488/W31.

Subroutine Calls
The subroutine API is a library of subroutines linked to the application program that are invoked like
any other subroutines in that programming language. Once invoked, these routines can control
Driver488/W31.

Configuration of Named Devices
Named devices provide a method to maintain a permanent record of an external device’s configuration
that does not change between application programs. Once the configuration of a particular external
device is established, its Driver488/W31 configuration for that device will remain the same until the
next time you reconfigure it or unload and reload the driver. The external devices supported by
Driver488/W31 are IEEE 488 external devices only.

External devices are most easily configured at installation. For Driver488/W31, the device names,
terminators, timeout period, and bus addresses may be entered into a configuration file (either manually
or using the CONFIG utility) which contains the device configuration information. This configuration
file is automatically read during driver load to install the configured named devices. The application
program can then refer to the external device by name and have all of the configuration information
automatically set.

10C. External Device Interfacing II. SOFTWARE GUIDES - 10. Driver488/W31

II-204 Personal488 User’s Manual, Rev. 3.0

Every device to be accessed by Driver488/W31 must have a valid device name. Driver488/W31 comes
with several device and interface names preconfigured for use. Among those already configured for the
GP488B board, for example, are: IEEE and WAVE. You can configure up to 32 external devices for
each IEEE 488 interface.

It is also possible to configure new named devices by using the Driver488/W31 command
MakeDevice. The MakeDevice command creates a temporary device that is an identical copy of an
already existing Driver488/W31 device. The new device has default configuration settings identical to
those of the existing device. The new device can then be reconfigured by calling the proper functions,
such as BusAddress, IntLevel, and TimeOut. When Driver488/W31 is closed, the new device is
forgotten unless the KeepDevice command is used to make it permanent.

The following code illustrates how the subroutine API version of the MakeDevice command could be
used to configure several new named devices. Using the C language subroutine interface, three named
devices can be configured as follows:

wave = OpenName(“WAVE”)
dmm = MakeDevice(WAVE,"DMM");
if (dmm == -1) { process error...}
err = BusAddress(dmm,16,-1);
if (err == -1) { processerror...}
term.EOI = TRUE;
term.nChars = 2;
term.termChar[0] = ‘\r’;
term.termChar[1] = ‘\n’;
err = Term(dmm,&term,BOTH);
if (err == -1) {process error...}

adc = MakeDevice(WAVE,"ADC");
if (a == -1) { process error...}
err = BusAddress(adc,14,00);
if (err == -1) { process error...}
term.EOI = FALSE;
term.nChars = 1;
term.termChar[0] = ‘\n’;
err = Term(adc,&term,BOTH);
if (err == -1) { process error...}

scope = MakeDevice(WAVE,"SCOPE");
if (scope == -1) { process error...}
err = BusAddress(scope,12,01);
if (err == -1) { process error...}
term.EOI = TRUE;
term.nChars = 0;
err = Term(scope,&term,BOTH);
if (err == -1) { process error...}

The above example defines the following: An external device named DMM (digital multimeter) as
device 16 with bus terminators of carriage return (\r), line feed (\n), and EOI; a second external
device named ADC (analog-to-digital converter) as device 14 with bus terminators of carriage return
and line feed (together as \n); and a third external device named oscilloscope (SCOPE) as device 12
with bus terminators of EOI only.

External devices defined in a configuration file are permanent. Their definitions last until they are
explicitly removed or until the configuration file is changed and Driver488/W31 is restarted. Devices
defined after installation are normally temporary. They are forgotten as soon as the program finishes.
The KeepDevice command can be used to make these devices permanent. The RemoveDevice
command removes the definitions of devices even if they are permanent. These commands are
described in further detail in the “Section III: Command Reference” of this manual.

II. SOFTWARE GUIDES - 10. Driver488/W31 10C. External Device Interfacing

Personal488 User’s Manual, Rev. 3.0 II-205

Use of External Devices
When using subroutine Application Program Interface (API) functions, it is first necessary to obtain a
device handle for the device(s) with which you wish to interact.

When using Driver488/W31, the OpenName function must be the first function called in the program.
It takes the name of the device to open and returns a handle for the specified interface board or device.
Every other function can then use that handle to access the device.

The following program illustrates how Driver488/W31 might communicate with an analog-to-digital
converter (adc) and an oscilloscope (scope):

DevHandleT ieee; // handle to access the interface board ieee
DevHandleT adc; // handle to access a ADC488
DevHandleT scope; // handle to access the scope
DevHandleT deviceList[5]; // array containing a list of device handles;
int err;

Communication with a single device:

adc = OpenName (“ADC”);

If you use several devices, you must open each one.

ieee = OpenName(“IEEE”);
scope = OpenName(“SCOPE”); // Add adc to the list of devices
deviceList[0] = adc; // Add oscilloscope to the list of devices
deviceList[1] = scope // End of list marker
deviceList[2] = -1;

Abort(ieee); // Send Interface Clear (IFC)

Output(scope,"SYST:ERR?"); // Read SCOPE error status
Enter(scope,data);
printf(data);

Output(adc,"A0 C1 G0 R3 T0 X"); // Set up ADC488
Enter(adc,data);
printf(data);

ClearList (deviceList) ; // Send a Selected Device Clear (SDC) to a list
Close (adc) ; // Close ADC488. Handle is now unavailable for

// access.

If we tried to call Output by sending the handle adc without first opening the name ADC, an error
would result and Output would return a -1 as shown below:

result = Output (adc, “A0 C1 G0 R3 T0 X”);
printf (“Output returned: %d.\n”,result);

should print:

Output returned: -1.

As mentioned above, named devices have another advantage: they automatically use the correct bus
terminators and time out. When a named device is defined, it is assigned bus terminators and a time
out period. When communicating with that named device occurs, Driver488/W31 uses these
terminators and time out period automatically. Thus Term commands are not needed to reconfigure the
bus terminators for devices that cannot use the default terminators (which are usually carriage-return
line-feed EOI). It is still possible to override the automatic bus terminators by explicitly specifying the
terminators in an Enter or Output command, or to change them semi-permanently via the Term
command. For more information, see the Enter, Output, and Term commands described in
“Section III: Command References.”

Extensions For Multiple Interfaces
Driver488/W31 allows the simultaneous control of multiple interfaces each with several attached
devices. To avoid confusion, external devices may be referred to by their “full name” which consists of
two parts. The “first name” is the hardware interface name, followed by a colon separator (:). The
“last name” is the external device name on that interface. For example, the “full name” of DMM might
be IEEE:DMM.

10D. Getting Started II. SOFTWARE GUIDES - 10. Driver488/W31

II-206 Personal488 User’s Manual, Rev. 3.0

Duplicate Device Names
Duplicate device names are most often used in systems that consist of several identical sets of
equipment. For example, a test set might consist of a signal generator and an oscilloscope. If three test
sets were controlled by a single computer using three separate IEEE 488 interfaces, then each signal
generator and each oscilloscope might be given the same name and the program would specify which
test set to use by opening the correct interface (OpenName(“IEEE”) for one, OpenName(“IEEE2”)
for the other), or by using the interface names when opening the devices
(OpenName(“IEEE:GENERATOR”) for one and OpenName(“IEEE2:GENERATOR”) for the other).

Unique names are appropriate when the devices work together, even if more than one interface is used.
If two different oscilloscopes, on two different interfaces are used as part of the same system, then they
would each be given a name appropriate to its function. This avoids confusion and eliminates the need
to specify the interface when opening the devices.

Access of Multiple Interfaces
If the computer only has one IEEE 488 interface, then there is no confusion; for every external device
is known to be on that interface. As noted above, duplicate device names on one interface are not
recommended; if they exist, the most recently defined device with the requested name will be used.
When more than one interface is available and duplicate names appear on different interfaces, the
following rules apply.

1. If the external device name is specified without its interface name, then any external device with
that name may be used. If more than one external device has that name, then the choice of which
particular external device is not defined.

2. If the external device name is specified with its interface name prefixed, then that external device
on that hardware interface is used. If that external device is not attached to the specified hardware
interface, then an error occurs.

Example
Assume there are three IEEE 488 interfaces: IEEE, IEEE2, and IEEE3 controlling multiple devices:
SCOPE (on IEEE), DA (on IEEE2) and DA (on IEEE3). Since there are two external devices, both
named DA, their full name must be used to specify them.

We can communicate with the external devices, according to the two rules above.

scope = OpenName (“SCOPE”) ; // SCOPE on IEEE (Rule 1)
da = OpenName (“DA”) // DA on IEEE2 or IEEE3 (not specified)
da = OpenName (“IEEE2:DA”) ; // DA on IEEE2 (Rule 2)
scope = OpenName (“IEEE2:SCOPE”); // Error (not IEEE:SCOPE) (Rule 2)

 10D. Getting Started

Topics

• Introduction... II-206
C Languages... II-206
Visual Basic ... II-206

• C Languages... II-206
Required Headers.. II-206
Required Libraries .. II-207

• Visual Basic.. II-207
Required Files .. II-207

II. SOFTWARE GUIDES - 10. Driver488/W31 10D. Getting Started

Personal488 User’s Manual, Rev. 3.0 II-207

Introduction

C Languages
Driver488/W31 provides support for Microsoft C, Quick C and Borland C++. In addition,
Driver488/W31 features an IEEE 488 Event Message. The IEEE Event Message can be used to trap
IEEE 488 events such as bus errors and instrument interrupts (SRQ) letting your application handle
asynchronous bus events. At run time, the IEEE 488 Message Handler traps IEEE 488 events, which
are then automatically dispatched to the appropriate service routines.

The following text outlines the steps necessary to produce an application program that communicates
with Driver488/W31. For more details on using C languages to develop a basic data acquisition
program and on how to use the IEEE 488 Event Message with Driver488/W31, turn to the next Sub-
Chapter “C Languages” in this Chapter. All of the examples described in that Sub-Chapter were
developed using Quick C for Windows. For details on using the WINTEST and QUIKTEST utility
programs, turn to the following Sub-Chapter “Utility Programs” in this Chapter. Additional functions
provided by Driver488/W31 are described in “Section III: Command References” of this manual.

Visual Basic
Driver488/W31 provides support for Microsoft’s Visual Basic. Visual Basic includes a tool palette for
designing your application’s user interface, letting you use point-and-click operations to design and test
your entire user interface. For example, to place a button in one of your application’s windows, you
simply select the button tool from the tool palette, then click and drag in the desired window to place
and size the button.

In addition, Driver488/W31 adds to the tool palette with an IEEE 488 Event Custom Control.
Including the Event Custom Control in your application creates service routines for IEEE 488 events
such as bus errors and instrument interrupts (SRQ), letting your application handle asynchronous bus
events with unparalleled ease. At run time, the IEEE 488 Event Custom Control traps IEEE 488
events, which are then automatically dispatched to the appropriate service routines.

The following text outlines the steps necessary to produce an application program that communicates
with Driver488/W31. For more details on using Visual Basic to develop a basic data acquisition
program, how to use the IEEE 488 Event Custom Control, and performing Dynamic Data Exchange
with Driver488/W31, turn to the following Sub-Chapter “Visual Basic” in this Chapter. For details on
using the WINTEST and QUIKTEST utility programs, turn to the following Sub-Chapter “Utility
Programs” in this Chapter. Additional functions provided by Driver488/W31 are described in
“Section III: Command References” of this manual.

C Languages
To successfully operate Driver488/W31, several declarations must be included in the user’s application
program. These declarations are found in two headers which must be included in the main module of
your C program. The two required headers can be found in the language-specific subdirectory at the
end of the path \IEEE488\LANGUAGE, if installed under the default conditions.

In the same directory as the headers is the library that must be linked with your C project to resolve
Driver488/W31 external references.

Note: For proper configuration, the C compiler must have byte alignment when using term structure.

Required Headers
For Microsoft C and Quick C Users:

• All programs need to include the following header files to run with Driver488/W31:

iot_main.h
iotmc60w.h

• These header files must be included in your test program. To do so, insert the following lines:

10D. Getting Started II. SOFTWARE GUIDES - 10. Driver488/W31

II-208 Personal488 User’s Manual, Rev. 3.0

#include “iot_main.h”
#include “iotmc60w.h”

These lines must be included at the top of your program before any calls to the Driver488/W31
subroutine functions are made. Notice that the header file iot_main.h must be in the module
containing your main() function and may not appear in any other modules.

For Borland C Users:

• All programs need to include the following header files to run with Driver488/W31:

iot_main.h
iotbc20w.h

• These header files must be included in your test program. To do so, insert the following lines:

#include “iot_main.h”
#include “iotbc20w.h”

These lines must be included at the top of your program before any calls to the Drvier488/W31
subroutine functions are made. Notice that the header file iot_main.h must be in the module
containing your main() function and may not appear in any other modules.

This file must be included in your test program’s makefile or link process. Due to the complexity
of makefiles, this discussion will not attempt to build a makefile but does include sample makefiles
for each of the examples used within the next Sub-Chapter “C Languages” in this Chapter.

For Borland C Users:

• All programs need to include the following library in the link process to run with Driver488/W31:

drvr488.lib

This file must be included in your test program’s project file or link process. Due to the
complexity of project files, this discussion will not attempt to build a project file but does include
sample project files for each of the examples used within the next Sub-Chapter “C Languages” in
this Chapter.

Visual Basic
To successfully operate Driver488/W31, a text file must be included in the user’s application program.
The required library can be found in the language-specific subdirectory at the end of the path
\IEEE488\WINAPI, if installed under the default conditions.

Required Files
In order to have access to all the Driver488/W31 functions, you must include the following file:

IOTVB10.TXT

You can accomplish this through the Add File item under the File menu. Type *.TXT into the
selection field to find the file in your project.

Certain functions provided by Driver488/W31 require that data structures be passed in a particular
format which is not easily generated from a VB application. Conversion functions are provided in:

IOTVB10.BAS

This file should be included in the Project Window. Using the VB File menu, select the item Add File
and select IOTVB10.BAS. At this point, all Driver488/W31 functions should be accessible.

Required Libraries
For Microsoft C & Quick C Users:

• All programs need to include the following library in the link process to run with Driver488/W31:

drvr488.lib

II. SOFTWARE GUIDES - 10. Driver488/W31 10D. Getting Started

Personal488 User’s Manual, Rev. 3.0 II-209

If you require event handling support, use the custom control written for event handling. The IEEE
488 Event Custom Control support is included in the following file:

IOTEVENT.VBX

This file should be included in the Project Window. For more information on using the IEEE 488
Event Custom Control, turn to the topic “IEEE 488 Event Custom Control” found in the following Sub-
Chapter “Visual Basic” in this Chapter.

Accessing from a Windows Program
The structure of a Windows program generally dictates that actions take place in response to messages
such as an operator key press, mouse action, menu selection, etc. This discussion covers the basic
actions needed to control Driver488/W31. How these actions are combined and coordinated in
response to Windows messages, is up to the application designer.

Opening & Closing the Driver
The first Driver488/W31 programming example is designed for simplicity. Its sole purpose is to verify
proper communication with the driver, and upon closing, remove the driver from memory.

In every C program using Driver488/W31, header files of declarations must be merged into the
program. In the following example, those declarations have been omitted from the listing for the sake
of brevity.

With the associated source files, the following program can be built using the file EXAMPLE1.MAK (for
Microsoft C or Quick C users) or EXAMPLE1.PRJ (for Borland C users) found on the Driver488/W31
disk.

This example has several declarations that will be used later:

HWND hDriver /* handle for Driver488/W31 */
DevHandleT ieee; /* handle for the IEEE board * /
char hellomsg[256]; /* string to hold the hello response */

 10E. C Languages

Topics

• Accessing from a Windows Program II-208
Opening & Closing the Driver..II-208

• Establishing Communications .. II-209
• Confirming Communications .. II-211
• IEEE 488 Event Message... II-211
• Reading Driver Status... II-213
• External Device Initialization... II-214
• Basic Data Acquisition.. II-214
• Block Data Acquisition ... II-215
• Sample Programs ... II-216

Data Acquisition Sample Programs ...II-216
IEEE 488 Event Message Sample Programs...II-224

• Command Summary .. II-231

10E. C Languages II. SOFTWARE GUIDES - 10. Driver488/W31

II-210 Personal488 User’s Manual, Rev. 3.0

The program only has one menu with two selections: Go and Quit. When Go is selected, the service
routine for Go opens Driver488/W31. Then the Hello function is called, using the handle returned
from the OpenName function:

case WM_INITDIALOG:
cwCenter(hWndDlg, 0);
/* initialize working variables */
ieee=OpenName(“IEEE”);
Hello(ieee, hellomsg);
SetDlgItemText(hWndDlg, 101, (LPSTR)hellomsg);
Close(ieee);
break; /* End of WM_INITDIALOG */

After the Hello Message window is displayed, as shown in the figure, the driver handle is closed. Since
in this application the handle is created every time Go is selected, a potential conflict could arise if that
handle is not closed as we exit this subroutine. Clicking the OK button will close this window.

When the application is closed by selecting Quit, the WM_DESTROY message is sent to Driver488/W31:

case WM_CLOSE: /* close the window */
hDriver=FindWindow((LPSTR)"Driver488Loader",
(LPSTR)"Driver488/W31");
SendMessage(hDriver, WM_DESTROY, 0, 0L);
DestroyWindow(hWnd);
if (hWnd == hWndMain)

PostQuitMessage(0); /* Quit the application */
break;

Establishing Communications
The following program contains most of the function calls of Driver488/W31. The user interface of
this program is intentionally simple to highlight the Driver488/W31 operations. To centralize all of the
Driver488/W31-related code, the architecture of this example is not typical of a C program. This
example operates the multi-channel 16-bit analog-to-digital converter; the ADC488.

In every C program using Driver488/W31, header files of declarations must be merged into the
program. In the next example, those declarations are omitted from the listing for the sake of brevity.

With the associated source files, the following program can be built using the file EXAMPLE2.MAK (for
Miscrosoft C or Quick C users) or EXAMPLE2.PRJ (for Borland C users) found on the Driver488/W31
disk.

This example has several declarations that will be used later:

HWND hDriver /* handle for Driver488/W31 */
DevHandleT ieee, adc, devhandle; /* handles for the IEEE board * /
char textstr[2048], response[64]; /* string for Driver488responses */
double sum, voltage; /* variables for ADC488 responses */

For the sake of this discussion, assume that Driver488/W31 has been configured to start with a
configuration including the devices IEEE (IEEE 488 interface) and ADC (ADC488/8S connected to the
IEEE 488 interface). Additional interfaces and/or devices may also have been defined, as the driver
can support up to 4 interfaces and 56 devices simultaneously. To open the two devices of interest, we
use the following statements:

Hello Message Window

II. SOFTWARE GUIDES - 10. Driver488/W31 10E. C Languages

Personal488 User’s Manual, Rev. 3.0 II-211

/* Open Driver488/W31 */
if ((ieee=OpenName(“IEEE”))<0) {

MessageBox(hWndDlg,(LPSTR)"Cannot initialize IEEE system",
NULL,MB_OK);
EndDialog(hWndDlg, TRUE);
return TRUE;

}

/* Open or create the device named ADC */
Error(ieee, OFF);
switch (adc=OpenName(“ADC”)) {

case -2:
MessageBox(hWndDlg,(LPSTR)"ADC device already open",NULL,
MB_OK);
EndDialog(hWndDlg, TRUE);
return TRUE;

case -1:
/* Create the device ADC by copying the default device WAVE*/
switch (devhandle=OpenName(“WAVE”)) {

case -2:
MessageBox(hWndDlg,(LPSTR)"WAVE device already
open",NULL,MB_OK);
EndDialog(hWndDlg, TRUE);
return TRUE;

case -1:
MessageBox(hWndDlg,(LPSTR)"Cannot open WAVE
device",NULL,MB_OK);
EndDialog(hWndDlg, TRUE);
return TRUE;

default:
break;

}
if ((adc=MakeDevice(devhandle, “ADC”))) {

MessageBox(hWndDlg, (LPSTR)"Cannot create ADC device", NULL,
MB_OK);
EndDialog(hWndDlg, TRUE);
return TRUE;

}
Close(devhandle);

break;
default:

break;
}
GetError(ieee, textstr);
BusAddress(adc, 14, -1);

If the ADC was not configured within Driver488/W31, it can be optionally created “on the fly”, as
shown above. First Error was used to turn OFF automatic error reporting so that our application can
trap the error instead. If opening the name ADC failed, the handle of the device IEEE, which is always
available within Driver488/W31, is used to clone a new device called ADC using the MakeDevice
command. GetError is then called to clear the internal error registered within Driver488/W31.
Lastly, the IEEE bus address 14 is assigned to the ADC.

If other devices were needed for the application at hand, they could either be defined in the startup
configuration for Driver488/W31 or they could be created “on the fly” from the application:

adc2 = MakeDevice(adc, “ADC2")
BusAddress (adc2,10,-1)

The new device ADC2 is configured to reside at a different bus address so that the two devices may be
distinguished. There is one other important difference between ADC and ADC2 at this point. ADC2 is a
temporary device; that is, as soon as the creating application closes, ADC2 ceases to exist. If our intent
was to create a device that could be accessed after this application ends, we must tell Driver488/W31
this:

KeepDevice (adc2)

After executing the previous statement, ADC2 is marked as being permanent; that is, the device will not
be removed when the creating application exits. If we later wish to remove the device, however, we
can do so explicitly:

RemoveDevice (adc2)

10E. C Languages II. SOFTWARE GUIDES - 10. Driver488/W31

II-212 Personal488 User’s Manual, Rev. 3.0

Confirming Communications
With or without an open device handle, the application can, if desired, confirm communication with
Driver488/W31 via the Hello function:

Hello(ieee, textstr);
strcat(textstr, “\r\n”);

The function also fills in a string, from which information can be extracted if it is desirable to display
facts about the driver in use.

IEEE 488 Event Message
The IEEE 488 Event Message feature of Driver488/W31 allows a C program to respond to IEEE 488
bus events. Driver488/W31 will send the Windows Message WM_IEEE488EVENT to the application
when an enable event occurs. A listing of available events is shown in the table:

Event Description
SRQ The Service Request bus line is asserted.
Peripheral An addressed status change has occurred and the interface is a Peripheral.
Controller An addressed status change has occurred and the interface is an Active Controller.
Trigger The interface has received a device Trigger command.
Clear The interface has received a device Clear command.
Talk An addressed status change has occurred and the interface is a Talker.
Listen An addressed status change has occurred and the interface is a Listener.
Idle An addressed status change has occurred and the interface is neither a Talker nor a

Listener.
ByteIn The interface has received a data byte.
ByteOut The interface has been configured to output a data byte.
Error A Driver488/W31 error has occurred.
Change The interface has changed its addressed state. The Controller/Peripheral or

Talker/Listener/Idle states of the interface have changed.

Note: This Event table mirrors the Arm Condition table found under the topic “System Controller,
Not Active Controller Mode” in the Sub-Chapter “Operating Modes” of Chapter 9.

To trap the IEEE 488 Event Message: Simply check for the WM_IEEE488EVENT message in the default
switch of the application’s window handler. If the IEEE 488 Event Message is detected, execute code
to handle the event.

The following example uses the capability of the ADC488 to issue an IEEE 488 SRQ when it needs
servicing. The IEEE 488 Event Message will be issued and trapped on the SRQ and the ADC488 will
be serviced.

In every C program using Driver488/W31, header files of declarations must be merged into the
program. In the following example, those declarations have been omitted from the listing for the sake
of brevity.

With the associated source files, the following program can be built using the file EXAMPLE3.MAK (for
Microsoft C or Quick C users) or EXAMPLE3.PRJ (for Borland C users) found on the Driver488/W31
disk.

This example has several declarations that will be used later:

HWND hDriver /* handle for Driver488/W31 */
DevHandleT ieee; /* handle for the IEEE board * /
char textstr[2048], response[64]; /* string for Driver488responses */
char hellomsg[256]; /* string to hold the hello response */
int i, hundred[100]; /* general counter and data buffer */
TermT noterm; /* structure for disabling terminators */

Starting out like the previous example, this program then differs by adding an Error line to turn ON the
automatic error reporting:

II. SOFTWARE GUIDES - 10. Driver488/W31 10E. C Languages

Personal488 User’s Manual, Rev. 3.0 II-213

/* open Driver488/W31 */
if ((ieee=OpenName(“IEEE”))) {

MessageBox(hWndDlg, (LPSTR)"Cannot initialize IEEE system",
NULL, MB_OK);
EndDialog(hWndDlg, TRUE);
return TRUE;

}

/* open device named ADC */
Error(ieee, OFF);
switch (adc=OpenName(“ADC”)) {

case -2:
MessageBox(hWndDlg, (LPSTR)"ADC device already open", NULL,
MB_OK);
EndDialog(hWndDlg, TRUE);
return TRUE;

case -1:
/* Create the device ADC by copying the default device WAVE*/
switch (devhandle=OpenName(“WAVE”)) {

case -2:
MessageBox(hWndDlg, (LPSTR)"WAVE device already
open", NULL, MB_OK);
EndDialog(hWndDlg, TRUE);
return TRUE;

case -1:
MessageBox(hWndDlg, (LPSTR)"Cannot open WAVE
device",NULL, MB_OK);
EndDialog(hWndDlg, TRUE);
return TRUE;

default:
break;

}
if ((adc=MakeDevice(devhandle, “ADC”))) {

MessageBox(hWndDlg, (LPSTR)"Cannot create ADC device", NULL,
MB_OK);
EndDialog(hWndDlg, TRUE);
return TRUE;

}
Close(devhandle);

break;
default:

break;
}
GetError(ieee, response);
Error(ieee, ON);
BusAddress(adc, 14, -1);

When the IEEE 488 Event Message has been passed to the application, the following service routine is
executed. The particular subroutine is invoked when the ADC generates an SRQ on “acquisition
complete.”

default:
if (Message==WM_IEEE488EVENT) {

strcpy(textstr,"SRQ event detected\r\n");
SetDlgItemText(hWndDlg, 201, (LPSTR)textstr);

}

/* Clear the SRQ condition */
SPoll(adc);

/* Reset the buffer pointer of the ADC488 */
Output(adc, “B0X”);

/* Get 100 readings from the ADC488 */
for (i=0;id;i++) {

Enter(adc,response);
strcat(textstr, response);
strcat(textstr, “\r\n”);

}

SetDlgItemText(hWndDlg, 201, (LPSTR)textstr);
}
return FALSE;

10E. C Languages II. SOFTWARE GUIDES - 10. Driver488/W31

II-214 Personal488 User’s Manual, Rev. 3.0

To enable the WM_IEEE488EVENT message, Driver488/W31 must be told to which window to send the
message using the OnEvent command. It must also enable the message on an SRQ with the Arm
command.

/* Setup event handling for trapping the SRQ */
OnEvent(ieee, hWndDlg, (OpaqueP)0L);
Arm(ieee, acSRQ);

Note that upon closing the handle, all event handling associated with this control is disabled. You must
keep the device open during the time in which its events are of interest. That is, with an ADC488, you
would open the device, assign the device handle, configure the adc with Output commands, and then
wait for the SRQ event to be triggered. The SRQ event handler would read data from the ADC488 and
then close the device, allowing other tasks access, and eliminating the event notification. The data read
from the ADC488, is displayed in the ADC488 Response window, as shown in the figure.

Finally, the ADC488 is setup to complete an acquisition and assert SRQ.

/* Clear the ADC488 */
Clear(adc);

/* Setup the ADC488 to SRQ on acquisition complete */
Output(adc, “M128X”);

/* Setup the ADC488:
100 uSec scan interval (I3)
No pre-trigger scans, 100 post-trigger scans (N100)
Continuous trigger on GET (T1)

*/
Output(adc, “I3N100T1X”);

/* Wait for the ready bit of the ADC488 to be asserted */
while ((SPoll(adc) & 32) == 0);

/* Trigger the ADC488 */
Trigger(adc);

Reading Driver Status
Your application may interrogate Driver488/W31 at any time to determine its status and other
information. Status information is returned in a structure provided by the application and can be
displayed by the showstat function shown below.

Status(ieee, &substat);
showstat(&substat, textstr);

Another function to display the information contained in the Status structure could be:

void showstat(IeeeStatusT *substat, char *textstr) {
char response[64];

sprintf(response, “SC :%d\r\n”, substat->SC);
strcat(textstr, response);
sprintf(response, “CA :%d\r\n”, substat->CA);
strcat(textstr, response);

Data read from the ADC488

II. SOFTWARE GUIDES - 10. Driver488/W31 10E. C Languages

Personal488 User’s Manual, Rev. 3.0 II-215

sprintf(response, “PrimAddr :%d\r\n”, substat->Primaddr);
strcat(textstr, response);
sprintf(response, “SecAddr :%d\r\n”, substat->Secaddr);
strcat(textstr, response);
sprintf(response, “SRQ :%d\r\n”, substat->SRQ);
strcat(textstr, response);
sprintf(response, “addrChange :%d\r\n”, substat->addrChange);
strcat(textstr, response);
sprintf(response, “talker :%d\r\n”, substat->talker);
strcat(textstr, response);
sprintf(response, “listener :%d\r\n”, substat->listener);
strcat(textstr, response);
sprintf(response, “triggered :%d\r\n”, substat->triggered);
strcat(textstr, response);
sprintf(response, “cleared :%d\r\n”, substat->cleared);
strcat(textstr, response);
sprintf(response, “transfer :%d\r\n”, substat->transfer);
strcat(textstr, response);
sprintf(response, “byteIn :%d\r\n”, substat->byteIn);
strcat(textstr, response);
sprintf(response, “byteOut :%d\r\n”, substat->byteOut);
strcat(textstr, response);
}

External Device Initialization
Refer to the device manufacturer’s documentation on specific requirements for initializing your
IEEE 488 instrument. In the case of the ADC488, appropriate initialization involves sending it a
Clear command and placing it into Remote mode:

Clear (adc) ;
Remote (adc) ;

For our hypothetical application, we also wish to have the ADC488 generate a service request should it
detect a command error. This involves sending a command string consisting of textual data to the
ADC488:

Output (adc, “M8X”) ;

We may also wish to perform other initialization and configuration. In this case, we set up the
ADC488 (adc) in the following configuration:

/* Setup the ADC488
Differential inputs (A0)
Scan group channel 1 (C1)
Compensated ASCII floating-point output format (G0)
Channel 1 range to +/- 10V (R3)
One-shot trigger on talk (T6)

*/

The command to perform this configuration combines the above strings and adds the Execute (X)
command for the ADC488:

Output(adc, “A0C1G0R3T6X”);

Basic Data Acquisition
With both Driver488/W31 and the external device ready for action, we next might try taking a simple
reading using the ADC488. Here, we use the serial poll (SPoll) capabilities of Driver488/W31 to
determine when a response is ready and to format the reply.

/* Wait for the ready bit of the ADC488 to be asserted */
while ((SPoll(adc) & 32) == 0);

/* Display the reading */
Enter(adc, response);
strcat(textstr, “ADC488 channel #1 reading value is ”);
strcat(textstr, response);
strcat(textstr, “\r\n”);

10E. C Languages II. SOFTWARE GUIDES - 10. Driver488/W31

II-216 Personal488 User’s Manual, Rev. 3.0

/* Now acquire and display the average of 10 readings */
sum = 0.0;
for (i=0;i<10;i++) {

Enter(adc,response);
sscanf(response,"%lf",&voltage);
sum+=voltage;

}
sum/=10.0;

sprintf(response, “The average of 10 readings is %lf\r\n”, sum);
strcat(textstr, response);

Block Data Acquisition
First, we set up the ADC488 (adc) in the following configuration:

/* Setup the ADC488:
Compensated binary output format (G10)
100 uSec scan interval (I3)
No pre-trigger scans, 100 post-trigger scans (N100)
Continuous trigger on GET (T1)

*/

We then wait for the ADC488 to start the acquisition process. Once the acquisition is complete, which
is determined by the MSB of the ADC488’s serial poll response, the buffer pointer of the ADC488 is
reset (B0).

Output(adc, “G10I3N100T1X”);

/* wait for the ready bit of the ADC488 to be asserted */
while ((SPoll(adc) & 32) == 0);

/* Trigger the ADC488 */
Trigger(adc);

/* wait for the acquisition complete bit of ADC488 to be asserted */
while ((SPoll(adc) & 128) == 0);

/* Reset the buffer pointer of the ADC488 */
Output(adc, “B0X”);

Next, we fill the buffer with 100 readings from the ADC488. Since the data being returned from the
ADC488 is in a binary format, the noterm terminator structure is used to disable scanning for
terminators such as carriage return and line feed.

noterm.EOI = 0;
noterm.nChar = 0;
EnterX(adc, (char *)hundred, 200, 1, ¬erm, 1, 0);

The EnterX function will use a DMA transfer if available. Because DMA transfers are performed
entirely by the hardware, the program can continue with other work while the DMA transfer function
occurs. For example, the program will process the previous set of data while collecting a new set of
data into a different buffer. However, before processing the data we must wait for the transfer to
complete. For illustration purposes, we query the Driver488/W31 status both before and after waiting.

/* Display DRIVER488/W31 status */
Status(ieee, &substat);
showstat(&substat, textstr);

/* Wait for completion of input operation*/
Wait(adc);

/* Display DRIVER488/W31 status */
Status(ieee, &substat);
showstat(&substat, textstr);

II. SOFTWARE GUIDES - 10. Driver488/W31 10E. C Languages

Personal488 User’s Manual, Rev. 3.0 II-217

Now we process the buffer:

/* Print the received characters */
for (i=0;i<100;i++) {

sprintf(response, “%6d ”, hundred[i]);
strcat(textstr, response);
if ((i%8)==7) {

strcat(textstr,"\r\n");
}

}
strcat(textstr,"\r\n");
SetDlgItemText(hWndDlg, 201, (LPSTR)textstr);

The readings are stored in the local variable textstr in the above example. They could, however be
placed into a text-type control. Refer to the Driver488/W31 status display in the ADC488 Response
window, shown in the following figure:

The functions described so far in this Sub-Chapter provide enough functionality for a basic data
acquisition program. The following program listing covers the examples used. Additional functions
provided by Driver488/W31 are described in the “Section III: Command References” of this manual.

Source Code (Example 2.c)

/* QuickCase:W KNB Version 1.00 */
#include “EXAMPLE2.h”
#include “iot_main.h”
#include “iotmc60w.h”
#include “stdio.h”

/* function prototypes */
void showstat(IeeeStatusT *substat, char *textstr);

int PASCAL WinMain(HANDLE hInstance, HANDLE hPrevInstance, LPSTR
lpszCmdLine, int nCmdShow)
{

/***/
/* HANDLE hInstance; handle for this instance */
/* HANDLE hPrevInstance; handle for possible previous instances */
/* LPSTR lpszCmdLine; long pointer to exec command line */
/* int nCmdShow; Show code for main window display */
/***/

Driver488/W31 Status Display

Sample Programs

Data Acquisition Sample Programs
The following examples were developed using Quick C for Windows. Additional example programs
are included on the Driver488/W31 disk.

10E. C Languages II. SOFTWARE GUIDES - 10. Driver488/W31

II-218 Personal488 User’s Manual, Rev. 3.0

MSG msg; /* MSG structure to store your messages */
int nRc; /* return value from Register Classes */

strcpy(szAppName, “EXAMPLE2");
hInst = hInstance;
if (!hPrevInstance) {
 /* register window classes if first instance of application */
 if ((nRc = nCwRegisterClasses()) == -1) {

 /* registering one of the windows failed */
 LoadString(hInst,IDS_ERR_REGISTER_CLASS,szString,

 sizeof(szString));
 MessageBox(NULL, szString, NULL, MB_ICONEXCLAMATION);
 return nRc;
 }
 }

 /* create application’s Main window */
 hWndMain = CreateWindow(
 szAppName /* Window class name */

“Driver488/W31 Simple Example” , /* Window’s title */
WS_CAPTION | /* Title and Min/Max */
WS_SYSMENU /* Add system menu box */
WS_MINIMIZEBOX | /* Add minimize box */
WS_MAXIMIZEBOX | /* Add maximize box */
WS_THICKFRAME | /* thick sizeable frame */
WS_CLIPCHILDREN | /* don’t draw in child windows areas*/

 WS_OVERLAPPED,
 CW_USEDEFAULT, 0, /* Use default X, Y */
 CW_USEDEFAULT, 0, /* Use default X, Y */
 NULL, /* Parent window’s handle */
 NULL, /* Default to Class Menu */
 hInst, /* Instance of window */
 NULL); /* Create struct for WM_CREATE */

if (hWndMain == NULL) {
 LoadString(hInst, IDS_ERR_CREATE_WINDOW, szString,
 sizeof(szString));
 MessageBox(NULL, szString, NULL, MB_ICONEXCLAMATION);
 return IDS_ERR_CREATE_WINDOW;
 }

ShowWindow(hWndMain, nCmdShow) /* display main window */

while (GetMessage(&msg, NULL, 0, 0)) { /* Until WM_QUIT message */
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }

 /* Do clean up before exiting from the application */
 CwUnRegisterClasses();
 return msg.wParam;
} /* End of WinMain */

/***/
/* */
/* Main Window Procedure */
/* */
/* This procedure provides service routines for the Windows events */
/* (messages)that Windows sends to the window, as well as the user */
/* initiated events (messages) that are generated when the user */
/* selectsthe action bar and pulldown menu controls or the */
/* corresponding keyboard accelerators. */
/* */
/***/

LONG FAR PASCAL WndProc(HWND hWnd, WORD Message, WORD wParam, LONG
lParam)

II. SOFTWARE GUIDES - 10. Driver488/W31 10E. C Languages

Personal488 User’s Manual, Rev. 3.0 II-219

{
HMENU hMenu=0; /* handle for the menu */
HBITMAP hBitmap=0 /* handle for bitmaps */
 HDC hDC; /* handle for the display device */
 PAINTSTRUCT ps; /* holds PAINT information */
 int nRc=0; /* return code */
HWND hDriver;

switch (Message) {
 case WM_COMMAND:

/* The Windows messages for action bar and pulldown menu items */
 /* are processed here. */
 switch (wParam) {
 case IDM_F_GO:

/* Place User Code to respond to the */
/* Menu Item Named “&Go” here. */

 {
 FARPROC lpfnEX2DLGMsgProc;

 lpfnEX2DLGMsgProc = MakeProcInstance((FAPROC)EX2DLGMsgProc,
hInst);
 nRc = DialogBox(hInst, MAKEINTRESOURCE(200), hWnd,

lpfnEX2DLGMsgProc);
 FreeProcInstance(lpfnEX2DLGMsgProc);
 }
 break;

 case IDM_F_QUIT:
 /* Place User Code to respond to the */
 /* Menu Item Named “&Quit” here. */

SendMessage(hWnd, WM_CLOSE, 0, 0L);
break;

 default:
return DefWindowProc(hWnd, Message, wParam, lParam);

 }
 break; /* End of WM_COMMAND */
case WM_CREATE:
 break; /* End of WM_CREATE */
case WM_MOVE: /* code for moving the window */
 break;
case WM_SIZE: /* code for sizing client area */
 break; /* End of WM_SIZE */
case WM_PAINT: /* code for the window’s client area */
 /* Obtain a handle to the device context */
 /* BeginPaint will sends WM_ERASEBKGND if appropriate */
 memset(&ps, 0x00, sizeof(PAINTSTRUCT));
 hDC = BeginPaint(hWnd, &ps);

/* Included in case the background is not a pure color */
 SetBkMode(hDC, TRANSPARENT);

/* Inform Windows painting is complete */
 EndPaint(hWnd, &ps);
 break; /* End of WM_PAINT */
 case WM_CLOSE: /* close the window */
 /* Destroy child windows, modeless dialogs, then,this window */
 hDriver=FindWindow((LPSTR)"Driver488/W31 Loader",

(LPSTR)"Driver488/W31");
SendMessage(hDriver, WM_DESTROY, 0, 0L);
 DestroyWindow(hWnd);
 if (hWnd == hWndMain)
 PostQuitMessage(0); /* Quit the application */
 break;
default:
 /* For any message for which you don’t specifically provide */
 /* a service routine, you should return the message to */

10E. C Languages II. SOFTWARE GUIDES - 10. Driver488/W31

II-220 Personal488 User’s Manual, Rev. 3.0

 /* Windows for default message processing. */
 return DefWindowProc(hWnd, Message, wParam, lParam);
 }

 return 0L;
} /* End of WndProc */

/***/
/* */
/* Dialog Window Procedure */
/* */
/* This procedure is associated with the dialog box that is */
/* included in the function name of the procedure. It provides the */
/* service routines for the events (messages) that occur because */
/* the end user operates one of the dialog box’s buttons, entry */
/* fields, or controls. */
/***/

BOOL FAR PASCAL EX2DLGMsgProc(HWND hWndDlg, WORD Message, WORD wParam,
LONG lParam)
{
DevHandleT ieee, adc, devhandle; /* handles for the IEEE devices */
IeeeStatusT substat; /* structure for the Driver488/W31 Status*/
chartextstr[2048],response[64];

/* strings for Driver488/W31 responses */
 double sum, voltage; /* variables for ADC488 responses */
 int i, hundred[100]; /* general counter and data buffer */
 TermT noterm; /* structure for disabling terminators */

switch(Message)
{
case WM_INITDIALOG:
 cwCenter(hWndDlg, 0);

/* initialize working variables */

/* open Driver488/W31 */
 if ((ieee=OpenName(“IEEE”))<0) {

MessageBox(hWndDlg, (LPSTR)"Cannot initialize IEEE system",
NULL, MB_OK);

 EndDialog(hWndDlg, TRUE);
 return TRUE;
}

/* open or create the device named ADC */
Error(ieee, OFF);
switch (adc=OpenName(“ADC”)) {
 case -2:
 MessageBox(hWndDlg, (LPSTR)"ADC device already open", NULL,

MB_OK);
 EndDialog(hWndDlg, TRUE);
 return TRUE;
 case -1:
 /* Create the device ADC by copying the default device WAVE */
 switch (devhandle=OpenName(“WAVE”)) {
 case -2:
 MessageBox(hWndDlg, (LPSTR)"WAVE device already open",

NULL, MB_OK);
 EndDialog(hWndDlg, TRUE);
 return TRUE;

 case -1:
 MessageBox(hWndDlg, (LPSTR)"Cannot open WAVE device",

NULL, MB_OK);
 EndDialog(hWndDlg, TRUE);
 return TRUE;

 default:
 break;
 }

II. SOFTWARE GUIDES - 10. Driver488/W31 10E. C Languages

Personal488 User’s Manual, Rev. 3.0 II-221

 if ((adc=MakeDevice(devhandle, “ADC”))<0) {
MessageBox(hWndDlg, (LPSTR)"Cannot create ADC device", NULL,

MB_OK);
 EndDialog(hWndDlg, TRUE);
 return TRUE;
 }
 Close(devhandle);
 break;
 default:
 break;
 }
 GetError(ieee, textstr);
BusAddress(adc, 14, -1);
/* get Driver488/W31 hello response */
Hello(ieee, textstr);
strcat(textstr, “\r\n”);

/* get Driver488/W31 status response */
Status(ieee, &substat);
showstat(&substat, textstr);

/* Clear the ADC488 */
Clear(adc);

/* Setup the ADC488
 Differential inputs (A0)
 Scan group channel 1 (C1)
 Compensated ASCII floating-point output format (G0)
 Channel 1 range to +/- 10V (R3)
 One-shot trigger on talk (T6)
*/
Output(adc, “A0C1G0R3T6X”);

/* wait for the ready bit of the ADC488 to be asserted */
while ((SPoll(adc) & 32) == 0);

/* display the reading */
Enter(adc, response);
strcat(textstr, “ADC488 channel #1 reading value is ”);
strcat(textstr, response);
strcat(textstr, “\r\n”);

/* Now aquire and display the average of 10 readings */
sum = 0.0;
for (i=0;i<0;i++) {
 Enter(adc,response);
 sscanf(response,"%lf",&voltage);
 sum+=voltage;
 }
sum/=10.0;
sprintf(response, “The average of 10 readings is %lf\r\n”, sum);
strcat(textstr, response);

/* Setup the ADC488:
 Compensated binary output format (G10)
 100 uSec scan interval (I3)
 No pre-trigger scans, 100 post-trigger scans (N100)
 Continuous trigger on GET (T1)
*/
Output(adc, “G10I3N100T1X”);

/* wait for the ready bit of the ADC488 to be asserted */
while ((SPoll(adc) & 32) == 0);
/* Trigger the ADC488 */
Trigger(adc);

10E. C Languages II. SOFTWARE GUIDES - 10. Driver488/W31

II-222 Personal488 User’s Manual, Rev. 3.0

/* wait for the acquisition complete bit of ADC488 to be asserted */
while ((SPoll(adc) & 128) == 0);

/* Reset the buffer pointer of the ADC488 */
Output(adc, “B0X”);
/* Take 100 readings from the ADC488 */
noterm.EOI = 0;
noterm.nChar = 0;
EnterX(adc, (char *)hundred, 200, 1, ¬erm, 1, 0);

/* Display DRIVER488/W31 status */
Status(ieee, &substat);
showstat(&substat, textstr);

/* Wait for completion of input operation */
Wait(adc);

/* Display DRIVER488/W31 status */
Status(ieee, &substat);
showstat(&substat, textstr);

/* Print the received charcters */
for (i=0;i<100;i++) {
 sprintf(response, “%6d ”, hundred[i]);
 strcat(textstr, response);
 if ((i%8)==7) {
 strcat(textstr,"\r\n");
 }
}
strcat(textstr,"\r\n");
SetDlgItemText(hWndDlg, 201, (LPSTR)textstr);

Close(ieee);
Close(adc);

 break; /* End of WM_INITDIALOG */

case WM_CLOSE:
 /* Closing the Dialog behaves the same as Cancel */
 PostMessage(hWndDlg, WM_COMMAND, IDCANCEL, 0L);
 break; /* End of WM_CLOSE */

case WM_COMMAND:
 switch(wParam)
 {
 case 201: /* Edit Control */
 break;
 case IDOK:
 EndDialog(hWndDlg, TRUE);
 break;
 case IDCANCEL:
 /* Ignore data values entered into the controls */
 /* and dismiss the dialog window returning FALSE */
 EndDialog(hWndDlg, FALSE);
 break;
 }
 break; /* End of WM_COMMAND */

default:
 return FALSE;
 }
 return TRUE;
} /* End of EX2DLGMsgProc */

II. SOFTWARE GUIDES - 10. Driver488/W31 10E. C Languages

Personal488 User’s Manual, Rev. 3.0 II-223

/***/
/* */
/* nCwRegisterClasses Function */
/* */
/* The following function registers all the classes of all the */
/* windows associated with this application. The function returns */
/* an error code if unsuccessful, otherwise it returns 0. */
/* */
/***/
int nCwRegisterClasses(void)
{
 WNDCLASS wndclass; /* struct to define a window class */
 memset(&wndclass, 0x00, sizeof(WNDCLASS));

 /* load WNDCLASS with window’s characteristics */
 wndclass.style = CS_HREDRAW | CS_VREDRAW | CS_BYTEALIGNWINDOW;
 wndclass.lpfnWndProc = WndProc;
 /* Extra storage for Class and Window objects */
 wndclass.cbClsExtra = 0;
 wndclass.cbWndExtra = 0;
 wndclass.hInstance = hInst;
 wndclass.hIcon = LoadIcon(hInst, “EXAMPLE2");
 wndclass.hCursor = LoadCursor(NULL, IDC_ARROW);
 /* Create brush for erasing background */
 wndclass.hbrBackground = (HBRUSH)(COLOR_WINDOW+1);
 wndclass.lpszMenuName = szAppName; /* Menu Name is App Name */
 wndclass.lpszClassName = szAppName; /* Class Name is App Name*/
 if (!RegisterClass(&wndclass))
 return -1;
return(0);
} /* End of nCwRegisterClasses */

/***/
/* cwCenter Function */
/* */
/* centers a window based on the client area of its parent */
/* */
/***/
void cwCenter(hWnd, top)
HWND hWnd;
int top;
{
POINT pt;
RECT swp;
RECT rParent;
int iwidth;
int iheight;

/* get the rectangles for the parent and the child */
GetWindowRect(hWnd, &swp);
GetClientRect(hWndMain, &rParent);

/* calculate the height and width for MoveWindow */
iwidth = swp.right - swp.left;
iheight = swp.bottom - swp.top;

/* find the center point and convert to screen coordinates */
pt.x = (rParent.right - rParent.left) / 2;
pt.y = (rParent.bottom - rParent.top) / 2;
ClientToScreen(hWndMain, &pt);

/* calculate the new x, y starting point */
pt.x = pt.x - (iwidth / 2);
pt.y = pt.y - (iheight / 2);
/* top will adjust the window position, up or down */

if (top)

10E. C Languages II. SOFTWARE GUIDES - 10. Driver488/W31

II-224 Personal488 User’s Manual, Rev. 3.0

 pt.y = pt.y + top;

/* move the window */
 MoveWindow(hWnd, pt.x, pt.y, iwidth, iheight, FALSE);
}

/***/
/* CwUnRegisterClasses Function */
/* */
/* Deletes any refrences to windows resources created for this */
/* application, frees memory, deletes instance, handles and does */
/* clean up prior to exiting the window */
/* */
/***/
void CwUnRegisterClasses(void)
{
WNDCLASS wndclass; /* struct to define a window class */
 memset(&wndclass, 0x00, sizeof(WNDCLASS));

UnregisterClass(szAppName, hInst);
} /* End of CwUnRegisterClasses */

void showstat(IeeeStatusT *substat, char *textstr) {
 char response[64];

sprintf(response, “SC :%d\r\n”, substat->SC);
strcat(textstr, response);
sprintf(response, “CA :%d\r\n”, substat->CA);
strcat(textstr, response);
sprintf(response, “PrimAddr :%d\r\n”, substat->Primaddr);
strcat(textstr, response);
sprintf(response, “SecAddr :%d\r\n”, substat->Secaddr);
strcat(textstr, response);
sprintf(response, “SRQ :%d\r\n”, substat->SRQ);
strcat(textstr, response);
sprintf(response, “addrChange :%d\r\n”, substat->addrChange);
strcat(textstr, response);
sprintf(response, “talker :%d\r\n”, substat->talker);
strcat(textstr, response);
sprintf(response, “listener :%d\r\n”, substat->listener);
strcat(textstr, response);
sprintf(response, “triggered :%d\r\n”, substat->triggered);
strcat(textstr, response);
sprintf(response, “cleared :%d\r\n”, substat->cleared);
strcat(textstr, response);
sprintf(response, “transfer :%d\r\n”, substat->transfer);
strcat(textstr, response);
sprintf(response, “byteIn :%d\r\n”, substat->byteIn);
strcat(textstr, response);
sprintf(response, “byteOut :%d\r\n”, substat->byteOut);
strcat(textstr, response);
}

Header File (Example2.h)

/* QuickCase:W KNB Version 1.00 */
#include <windows.h>
#include <string.h>
#define IDM_FILE 1000
#define IDM_F_GO 1050
#define IDM_F_QUIT 1150

#define IDS_ERR_REGISTER_CLASS 1
#define IDS_ERR_CREATE_WINDOW 2

char szString[128]; /* variable to load resource strings */

II. SOFTWARE GUIDES - 10. Driver488/W31 10E. C Languages

Personal488 User’s Manual, Rev. 3.0 II-225

char szAppName[20]; /* class name for the window */
HWND hInst;
HWND hWndMain;
void cwCenter(HWND, int);

LONG FAR PASCAL WndProc(HWND, WORD, WORD, LONG);
BOOL FAR PASCAL EX2DLGMsgProc(HWND, WORD, WORD, LONG);
int nCwRegisterClasses(void);
void CwUnRegisterClasses(void);

Resource Script (Example2.rc)

#include “EXAMPLE2.h”
EXAMPLE2 ICON 488.ICO

EXAMPLE2 MENU
 BEGIN
 POPUP “&File”
 BEGIN
 MENUITEM “&Go”, IDM_F_GO
 MENUITEM SEPARATOR
 MENUITEM “&Quit”, IDM_F_QUIT
 END

 END

#include “EXAMPLE2.DLG”

STRINGTABLE
BEGIN
 IDS_ERR_CREATE_WINDOW, “Window creation failed!”
 IDS_ERR_REGISTER_CLASS, “Error registering window class”
END

Dialog Script (Example2.dlg)

DLGINCLUDE RCDATA DISCARDABLE
BEGIN
 “EXAMPLE2.H\0"
END

200 DIALOG 27, 40, 293, 138
STYLE DS_MODALFRAME | WS_POPUP | WS_VISIBLE | WS_CAPTION
CAPTION “ADC488 Response”
FONT 8, “Helv”
BEGIN
 EDITTEXT 201, 3, 6, 287, 99, ES_MULTILINE | ES_AUTOVSCROLL |
 ES_AUTOHSCROLL
 PUSHBUTTON “OK”, IDS_ERR_REGISTER_CLASS, 127, 117, 40, 14
END

Definition (Example2.def)

NAME EXAMPLE2
EXETYPE WINDOWS
STUB ‘WINSTUB.EXE’
CODE PRELOAD MOVEABLE
DATA PRELOAD MOVEABLE MULTIPLE
HEAPSIZE 4096
STACKSIZE 5110
EXPORTS WndProc @1
 EX2DLGMsgProc @2

IEEE 488 Event Message Sample Programs
Source Code (Example3.c)

/* QuickCase:W KNB Version 1.00 */
#include “EXAMPLE3.h”
#include “iot_main.h”

10E. C Languages II. SOFTWARE GUIDES - 10. Driver488/W31

II-226 Personal488 User’s Manual, Rev. 3.0

#include “iotmc60w.h”
#include “stdio.h”

/* Global variables */
DevHandleT ieee, adc, devhandle; /* handles for IEEE devices */
char textstr[2048], response[64];

 /* strings for Driver488/W31 responses*/

int PASCAL WinMain(HANDLE hInstance, HANDLE hPrevInstance, LPSTR
lpszCmdLine, int nCmdShow)
{

/***/
/* HANDLE hInstance; handle for this instance */
/* HANDLE hPrevInstance; handle for possible previous instances */
/* LPSTR lpszCmdLine; long pointer to exec command line */
/* int nCmdShow; Show code for main window display */
/***/

MSG msg; /* MSG structure to store your messages */
int nRc; /* return value from Register Classes */

strcpy(szAppName, “EXAMPLE3");
hInst = hInstance;
if (!hPrevInstance) {
/* register window classes if first instance of application */
if ((nRc = nCwRegisterClasses()) == -1) {

/* registering one of the windows failed */
LoadString(hInst, IDS_ERR_REGISTER_CLASS, szString,
sizeof(szString));
MessageBox(NULL, szString, NULL, MB_ICONEXCLAMATION);
return nRc;

 }
 }

/* create application’s Main window */
hWndMain = CreateWindow(

szAppName /* Window class name */
“Driver488/W31 Simple Example”, /* Window’s title */

 WS_CAPTION | /* Title and Min/Max */
 WS_SYSMENU | /* Add system menu box */
 WS_MINIMIZEBOX | /* Add minimize box */
 WS_MAXIMIZEBOX | /* Add maximize box */
 WS_THICKFRAME | /* thick sizeable frame */
 WS_CLIPCHILDREN | /* don’t draw in child windows areas */

WS_OVERLAPPED,
 CW_USEDEFAULT, 0, /* Use default X, Y */
 CW_USEDEFAULT, 0, /* Use default X, Y */
 NULL, /* Parent window’s handle */
 NULL, /* Default to Class Menu */
 hInst, /* Instance of window */
 NULL); /* Create struct for WM_CREATE */

if (hWndMain == NULL) {
LoadString(hInst, IDS_ERR_CREATE_WINDOW, szString,
sizeof(szString));
MessageBox(NULL, szString, NULL, MB_ICONEXCLAMATION);
return IDS_ERR_CREATE_WINDOW;

 }

ShowWindow(hWndMain, nCmdShow); /* display main window */

while (GetMessage(&msg, NULL, 0, 0)) { /* Until WM_QUIT message */
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }

II. SOFTWARE GUIDES - 10. Driver488/W31 10E. C Languages

Personal488 User’s Manual, Rev. 3.0 II-227

/* Do clean up before exiting from the application */
 CwUnRegisterClasses();
 return msg.wParam;
} /* End of WinMain */

/***/
/* */
/* Main Window Procedure */
/* This procedure provides service routines for the Windows */
/* events(messages) that Windows sends to the window, as well as */
/* the user initiated events (messages) that are generated when */
/* the user selects the action bar and pulldown menu controls or */
/* the corresponding keyboard accelerators. */
/***/

LONG FAR PASCAL WndProc(HWND hWnd, WORD Message, WORD wParam, LONG
lParam)
{
HMENU hMenu=0; /* handle for the menu */
HBITMAP hBitmap=0; /* handle for bitmaps */
HDC hDC; /* handle for the display device */
PAINTSTRUCT ps; /* holds PAINT information */
int nRc=0; /* return code */
HWND hDriver;

 switch (Message) {
 case WM_COMMAND:

 /* The Windows messages for action bar and pulldown menu items */
/* are processed here. */

 switch (wParam) {
 case IDM_F_GO:

/* Place User Code to respond to the */
/* Menu Item Named “&Go” here. */
{

 FARPROC lpfnEX3DLGMsgProc;

lpfnEX3DLGMsgProc = MakeProcInstance((FARPROC)EX3DLGMsgProc,
hInst);

 nRc = DialogBox(hInst, MAKEINTRESOURCE(200), hWnd,
 lpfnEX3DLGMsgProc);
 FreeProcInstance(lpfnEX3DLGMsgProc);
}
break;
case IDM_F_QUIT:
 /* Place User Code to respond to the */
 /* Menu Item Named “&Quit” here. */
SendMessage(hWnd, WM_CLOSE, 0, 0L);
break;
default:
return DefWindowProc(hWnd, Message, wParam, lParam);
}
 break; /* End of WM_COMMAND */
case WM_CREATE:
 break; /* End of WM_CREATE */
case WM_MOVE: /* code for moving the window */
 break;
case WM_SIZE: /* code for sizing client area */
 break; /* End of WM_SIZE */
case WM_PAINT: /* code for the window’s client area */
 /* Obtain a handle to the device context */
 /* BeginPaint will sends WM_ERASEBKGND if appropriate */
 memset(&ps, 0x00, sizeof(PAINTSTRUCT));
 hDC = BeginPaint(hWnd, &ps);

 /* Included in case the background is not a pure color */
 SetBkMode(hDC, TRANSPARENT);

10E. C Languages II. SOFTWARE GUIDES - 10. Driver488/W31

II-228 Personal488 User’s Manual, Rev. 3.0

/* Inform Windows painting is complete */
 EndPaint(hWnd, &ps);
 break; /* End of WM_PAINT */
case WM_CLOSE: /* close the window */

/* Destroy child windows, modeless dialogs, then, this window */
 hDriver=FindWindow((LPSTR)"Driver488/W31 Loader",
 (LPSTR)"Driver488/W31");
 SendMessage(hDriver, WM_DESTROY, 0, 0L);
 DestroyWindow(hWnd);
 if (hWnd == hWndMain)
 PostQuitMessage(0); /* Quit the application */
 break;
default:
/* For any message for which you don’t specifically provide a */
 /* service routine, you should return the message to Windows */
 /* for default message processing. */
 return DefWindowProc(hWnd, Message, wParam, lParam);
 }
 return 0L;
} /* End of WndProc */

/***/
/* */
/* Dialog Window Procedure */
/* */
/* This procedure is associated with the dialog box that is */
/* included inthe function name of the procedure. It provides the */
/* service routines for the events (messages) that occur because */
/* the end user operates one of the dialog box’s buttons, entry */
/* fields, or controls. */
/***/

BOOL FAR PASCAL EX3DLGMsgProc(HWND hWndDlg, WORD Message, WORD wParam,
LONG lParam)
{
 double sum, voltage;
int i, hundred[100];
 TermT noterm;

switch(Message) {
 case WM_INITDIALOG:
 cwCenter(hWndDlg, 0);
 /* initialize working variables */

 /* open Driver488/W31 */
 if ((ieee=OpenName(“IEEE”))<0) {

MessageBox(hWndDlg, (LPSTR)"Cannot initialize IEEE system", NULL,
 MB_OK);
 EndDialog(hWndDlg, TRUE);

return TRUE;
 }

/* open device named ADC */
Error(ieee, OFF);
switch (adc=OpenName(“ADC”)) {
 case -2:
 MessageBox(hWndDlg, (LPSTR)"ADC device already open", NULL,

MB_OK);
 EndDialog(hWndDlg, TRUE);
 return TRUE;
 case -1:
 switch (devhandle=OpenName(“WAVE”)) {

case -2:
MessageBox(hWndDlg, (LPSTR)"WAVE device already open", NULL, MB_OK);
 EndDialog(hWndDlg, TRUE);

II. SOFTWARE GUIDES - 10. Driver488/W31 10E. C Languages

Personal488 User’s Manual, Rev. 3.0 II-229

 return TRUE;
 case -1:

MessageBox(hWndDlg, (LPSTR)"Cannot open WAVE device",
NULL, MB_OK);
EndDialog(hWndDlg, TRUE);
return TRUE;

default:
break;

 }
 if ((adc=MakeDevice(devhandle, “ADC”))<0) {
MessageBox(hWndDlg, (LPSTR)"Cannot create ADC device", NULL,
MB_OK);
EndDialog(hWndDlg, TRUE);
return TRUE;

 }
 Close(devhandle);
 break;
 default:
 break;
 }
GetError(ieee, response);
Error(ieee, ON);
BusAddress(adc, 14, -1);

/* Setup event handling for trapping the SRQ */
OnEvent(ieee, hWndDlg, (OpaqueP)0L);
Arm(ieee, acSRQ);

/* Clear the ADC488 */
Clear(adc);

/* Setup the ADC488 to SRQ on acquisition complete */
Output(adc, “M128X”);
/* Setup the ADC488:

100 uSec scan interval (I3)
No pre-trigger scans, 100 post-trigger scans (N100)
Continuous trigger on GET (T1)
*/
Output(adc, “I3N100T1X”);

/* Wait for the ready bit of the ADC488 to be asserted */
while ((SPoll(adc) & 32) == 0);

/* Trigger the ADC488 */
 Trigger(adc);
 strcpy(textstr,"Waiting for SRQ event\r\n");
 SetDlgItemText(hWndDlg, 201, (LPSTR)textstr);
 break; /* End of WM_INITDIALOG */
case WM_CLOSE:
 /* Closing the Dialog behaves the same as Cancel */
 PostMessage(hWndDlg, WM_COMMAND, IDCANCEL, 0L);
 break; /* End of WM_CLOSE */
case WM_COMMAND:
 switch(wParam) {
 case 201: /* Edit Control */

 break;
 case IDOK:

 Close(ieee);
 Close(adc);
 EndDialog(hWndDlg, TRUE);
 break;

 case IDCANCEL:
 /* Ignore data values entered into the controls */
 /* and dismiss the dialog window returning FALSE */
 EndDialog(hWndDlg, FALSE);
 break;

10E. C Languages II. SOFTWARE GUIDES - 10. Driver488/W31

II-230 Personal488 User’s Manual, Rev. 3.0

 }
 break; /* End of WM_COMMAND */
 default:
 if (Message==WM_IEEE488EVENT) {

 strcpy(textstr,"SRQ event detected\r\n");
 SetDlgItemText(hWndDlg, 201, (LPSTR)textstr);

 /* Clear the SRQ condition */
 SPoll(adc);

 /* Reset the buffer pointer of the ADC488 */
 Output(adc, “B0X”);
 /* Get 100 readings from the ADC488 */
 for (i=0;i<100;i++) {

Enter(adc,response);
strcat(textstr, response);
strcat(textstr, “\r\n”);

 }
 SetDlgItemText(hWndDlg, 201, (LPSTR)textstr);
}
return FALSE;
}
return TRUE;
} /* End of EX3DLGMsgProc */

/***/
/* */
/* nCwRegisterClasses Function */
/* */
/* The following function registers all the classes of all the */
/* windows associated with this application. The function returns */
/* an error code if unsuccessful, otherwise it returns 0. */
/* */
/***/

int nCwRegisterClasses(void)
{
 WNDCLASS wndclass; /* struct to define a window class */
 memset(&wndclass, 0x00, sizeof(WNDCLASS));
 /* load WNDCLASS with window’s characteristics */
 wndclass.style = CS_HREDRAW | CS_VREDRAW | CS_BYTEALIGNWINDOW;
 wndclass.lpfnWndProc = WndProc;
 /* Extra storage for Class and Window objects */
 wndclass.cbClsExtra = 0;
 wndclass.cbWndExtra = 0;
 wndclass.hInstance = hInst;
 wndclass.hIcon = LoadIcon(hInst, “EXAMPLE3");
 wndclass.hCursor = LoadCursor(NULL, IDC_ARROW);
 /* Create brush for erasing background */
 wndclass.hbrBackground = (HBRUSH)(COLOR_WINDOW+1);
 wndclass.lpszMenuName = szAppName; /* Menu Name is App Name */
 wndclass.lpszClassName = szAppName; /* Class Name is App Name */
 if (!RegisterClass(&wndclass))
 return -1;

 return(0);
} /* End of nCwRegisterClasses */

/***/
/* cwCenter Function */
/* */
/* centers a window based on the client area of its parent */
/* */
/***/

void cwCenter(hWnd, top)
HWND hWnd;

II. SOFTWARE GUIDES - 10. Driver488/W31 10E. C Languages

Personal488 User’s Manual, Rev. 3.0 II-231

int top;

{
POINT pt;
RECT swp;
RECT rParent;
int iwidth;
int iheight;

/* get the rectangles for the parent and the child */
GetWindowRect(hWnd, &swp);
GetClientRect(hWndMain, &rParent);

/* calculate the height and width for MoveWindow */
iwidth = swp.right - swp.left;
iheight = swp.bottom - swp.top;

/* find the center point and convert to screen coordinates */
pt.x = (rParent.right - rParent.left) / 2;
pt.y = (rParent.bottom - rParent.top) / 2;
ClientToScreen(hWndMain, &pt);

/* calculate the new x, y starting point */
pt.x = pt.x - (iwidth / 2);
pt.y = pt.y - (iheight / 2);

/* top will adjust the window position, up or down */
if (top)
 pt.y = pt.y + top;

/* move the window */
MoveWindow(hWnd, pt.x, pt.y, iwidth, iheight, FALSE);
}

/***/
/* CwUnRegisterClasses Function */
/* */
/* Deletes any refrences to windows resources created for this */
/* application, frees memory, deletes instance, handles and does */
/* clean up prior to exiting the window */
/* */
/***/

void CwUnRegisterClasses(void)
{
WNDCLASS wndclass; /* struct to define a window class */
memset(&wndclass, 0x00, sizeof(WNDCLASS));

UnregisterClass(szAppName, hInst);
} /* End of CwUnRegisterClasses */

Header File (Example3.h)

/* QuickCase:W KNB Version 1.00 */
#include windows.h
include
g.h
#define IDM_FILE 1000
#define IDM_F_GO 1050
#define IDM_F_QUIT 1150
#define IDS_ERR_REGISTER_CLASS 1
#define IDS_ERR_CREATE_WINDOW 2

char szString[128]; /* variable to load resource strings */

char szAppName[20]; /* class name for the window */
HWND hInst;
HWND hWndMain;

10E. C Languages II. SOFTWARE GUIDES - 10. Driver488/W31

II-232 Personal488 User’s Manual, Rev. 3.0

void cwCenter(HWND, int);

LONG FAR PASCAL WndProc(HWND, WORD, WORD, LONG);
BOOL FAR PASCAL EX3DLGMsgProc(HWND, WORD, WORD, LONG);
int nCwRegisterClasses(void);
void CwUnRegisterClasses(void);

Resource Script (Example3.rc)

#include “EXAMPLE3.h”
EXAMPLE3 ICON 488.ICO

EXAMPLE3 MENU
BEGIN
 POPUP “&File”
 BEGIN

 MENUITEM “&Go”, IDM_F_GO
 MENUITEM SEPARATOR
 MENUITEM “&Quit”, IDM_F_QUIT

 END
 END

#include “EXAMPLE3.DLG”

STRINGTABLE
BEGIN
 IDS_ERR_CREATE_WINDOW, “Window creation failed!”
 IDS_ERR_REGISTER_CLASS, “Error registering window class”
END

Dialog Script (Example3.dlg)

DLGINCLUDE RCDATA DISCARDABLE
BEGIN
 “EXAMPLE3.H\0"
END

200 DIALOG 27, 40, 293, 138
STYLE DS_MODALFRAME | WS_POPUP | WS_VISIBLE | WS_CAPTION
CAPTION “ADC488 Response”
FONT 8, “Helv”
BEGIN

EDITTEXT 201, 3, 6, 287, 99, ES_MULTILINE | ES_AUTOVSCROLL |
 ES_AUTOHSCROLL
 PUSHBUTTON “OK”, IDS_ERR_REGISTER_CLASS, 127, 117, 40, 14
END

Definition (Example3.def)

NAME EXAMPLE3
EXETYPE WINDOWS
STUB ‘WINSTUB.EXE’
CODE PRELOAD MOVEABLE
DATA PRELOAD MOVEABLE MULTIPLE
HEAPSIZE 4096
STACKSIZE 5110
EXPORTS WndProc @1
 EX3DLGMsgProc @2

Command Summary
To obtain a summary of the C language commands for Driver488/W31, turn to the “Section III:
Command References” of this manual.

II. SOFTWARE GUIDES - 10. Driver488/W31 10F. Visual Basic

Personal488 User’s Manual, Rev. 3.0 II-233

Accessing from a Windows Program
The structure of a Windows program generally dictates that actions take place in response to messages
such as an operator key press, mouse action, menu selection, etc. This discussion covers the basic
actions needed to control Driver488/W31. How these actions are combined and coordinated in
response to Windows messages is up to the application designer.

The interface between Visual Basic (VB) and Driver488/W31 consists of three pieces:

• IOTVB10.TXT : A file containing the required external declarations

• IOTVB10.BAS : A set of interface functions to handle structure conversions

• IOTEVENT.VBX : An IEEE 488 Event Custom Control

Your application can call all Driver488/W31 functions as
documented in the “Section III: Command References.”
The following functions found in that Section, as shown
in the table, are renamed to avoid conflicts with VB
reserved words:

In order to have access to all the Driver488/W31
functions, you must include the file IOTVB10.TXT. You
can accomplish this through the Add File item under the
file menu. Type *.TXT into the selection field to find
the file in your project.

Certain functions provided by Driver488/W31 require
that data structures be passed in a particular format which is not easily generated from a VB
application. Conversion functions are provided in IOTVB10.BAS, which should be included in the

 10F. Visual Basic

Topics

• Accessing from a Windows Program II-232
Opening & Closing the Driver..II-233

• Establishing Communications .. II-234
• Confirming Communications .. II-235
• IEEE 488 Event Custom Control... II-235
• Reading Driver Status... II-238
• External Device Initialization... II-238
• Basic Data Acquisition.. II-239
• Block Data Acquisition ... II-239
• Dynamic Data Exchange (DDE) .. II-241

Application ...II-241
Server Links ..II-241
Acquisition Engine ..II-243

• Sample Programs ... II-246
Data Acquisition Sample Program ...II-246
IEEE 488 Event Custom Control Sample ProgramII-249
Acquisition Engine Sample Program ...II-250

• Command Summary .. II-251

Driver488/W31
Command

Visual Basic
Name

Clear ioClear
Close ioClose
Error ioError
Local ioLocal
Output ioOutput
Reset ioReset
Resume ioResume
Stop ioStop
Wait ioWait

10F. Visual Basic II. SOFTWARE GUIDES - 10. Driver488/W31

II-234 Personal488 User’s Manual, Rev. 3.0

Project window. Using the VB File menu, select the item Add File and select IOTVB10.BAS. At this
point, all Driver488/W31 functions should be accessible.

If you require event handling support, use the custom control written for event handling. The IEEE
488 Event Custom Control support is included in the file IOTEVENT.VBX, which should be included in
the Project window. For more information on using the IEEE 488 Event Custom Control, turn to the
following topic “IEEE 488 Event Custom Control” in this Sub-Chapter.

Opening & Closing the Driver
The first Driver488/W31 programming example is designed for simplicity. Its sole purpose is to verify
proper communication with the driver, and upon closing, remove the driver from memory.

In every Visual Basic program using Driver488/W31, a file of declarations must be merged into the
program, typically to the GLOBAL.BAS file. In the following example, those declarations have been
omitted from the listing for the sake of brevity.

With the associated source files, the following program can be built using the file EXAMPLE1.MAK
found on the Driver488/W31 disk.

This example has two declarations that will be used later:

Declare Function FindWindow Lib “User” (ByVal data1$, ByVal data2$)As
Integer

Declare Function SendMessage Lib “User” (ByVal winHandle%, ByVal
message%, ByVal wp%, ByVal lp As Long) As Integer

The form has only one text box with one button . When the button is pressed, the service routine for
Command1_Click opens the driver. Then the Hello function is called, using the handle returned from
the OpenName function.

Sub Command1_Click ()
Dim ieee As Integer
Dim hellomsg As String * 247
ieee = OpenName (“IEEE”)
errcode = Hello (ieee, ByVal hellomsg)
Response.Text = hellomsg
errcode = ioClose(ieee)

End Sub

After the Hello Message window is displayed, as shown in the figure, the driver handle is closed. Since
in this application, the handle is created every time the form button is pressed, a potential conflict could
arise if that handle is not closed as we exit this subroutine. Clicking the HELLO button will close this
window.

When the application is closed by the user, the Unload event is sent to the form. Our service routine
for Unload uses the functions that were declared earlier in the GLOBAL.BAS file.

Sub Form_Unload (Cancel As Integer)
‘Unload the IEEE driver
loaderName$ = “Driver488Loader”
winName$ = “Driver488/W31”
Hdriver% = FindWindow (loaderName$, winName$)
asdf = SendMessage (Hdriver%, &H2, 0, 0)

End Sub

Hello Message Window

II. SOFTWARE GUIDES - 10. Driver488/W31 10F. Visual Basic

Personal488 User’s Manual, Rev. 3.0 II-235

Establishing Communications
The following program contains most of the function calls of Driver488/W31. The user interface of
this program is intentionally simple to highlight the Driver488/W31 operations. To centralize all of the
Driver488/W31-related code, the architecture of this example is not typical of a Visual Basic program.
This example operates the multichannel, 16-bit analog to digital converter; the ADC488.

In every Visual Basic program using Driver488/W31, a file of declarations must be merged into the
program, typically to the GLOBAL.BAS file. In the following example, those declarations have been
omitted from the listing for the sake of brevity.

With the associated source files, the following program can be built using the file EXAMPLE2.MAK
found on the Driver488/W31 disk.

This example has two declarations that will be used later:

Declare Function FindWindow Lib “User” (ByVal data1$, ByVal data2$)As
Integer

Declare Function SendMessage Lib “User” (ByVal winHandle%,
ByValmessage%, ByVal wp%, ByVal lp As Long) As Integer

The following declarations are included in the General section of the form, and are assumed through
the remainder of the discussion:

Dim nl As String * 2
Dim mystring As String
Dim substat As IeeeStatus
Dim adc As Integer
Dim response As String * 256
Dim intResp(500) As Integer
Dim voltage As Single
Dim sum As Single
Dim noterm As terms
Dim sample As String * 7

For the sake of this discussion, assume that Driver488/W31 has been configured to start with a
configuration including the devices IEEE (IEEE 488 interface) and ADC (ADC488/8S connected to the
IEEE 488 interface). Additional interfaces and/or devices may also have been defined, as the driver
can support up to 4 interfaces and 56 devices simultaneously. To open the two devices of interest, we
use the following statements:

If the ADC was not configured within Driver488/W31, it can be optionally created “on the fly”, as
shown above. First ioError was used to TURNOFF automatic error reporting so that our application
can trap the error instead. If opening the name ADC failed, the handle of the device wave, which is

‘Open Driver488/W31
ieee% = OpenName(“IEEE”)
If (ieee% = -1) Then

MsgBox “Cannot initialize IEEE system”
End

End If

‘Open device named ADC
rv% = ioError (ieee%, TURNOFF)
devhandle% = OpenName (“wave”)
adc = OpenName(“ADC”)
If (adc = -1) Then

adc = MakeDevice(devhandle%, “ADC”)
If (adc = -1) Then

MsgBox “Can not initialize device ADC”
End

End If
End If

response = “”
rv% = GetError (1eee%, response)
rv% = BusAddress (adc, 14, -1)

10F. Visual Basic II. SOFTWARE GUIDES - 10. Driver488/W31

II-236 Personal488 User’s Manual, Rev. 3.0

always available within Driver488/W31, is used to clone a new device called ADC using the
MakeDevice command. GetError is then called to clear the internal error registered within
Driver488/W31. Lastly, the IEEE bus address 14 is assigned to the ADC.

If other devices were needed for the application at hand, they could either be defined in the startup
configuration for Driver488/W31 or they could be created “on the fly” from the application:

adc2% = MakeDevice(adc, “ADC2")
rv% = BusAddress(adc2, 10, -1)

The new device ADC2 is configured to reside at a different bus address so that the two devices may be
distinguished. There is one other important difference between ADC and ADC2 at this point. ADC2 is a
temporary device; that is, as soon as the creating application closes, ADC2 ceases to exist. If our intent
were to create a device that could be accessed after this application ends, we must tell Driver488/W31
this:

rv%=KeepDevice (adc2)

After executing the above statement, ADC2 is marked as being permanent; that is, the device will not be
removed when the creating application exits. If we later wish to remove the device, however, we can
do so explicitly:

rv%=RemoveDevice (adc2)

Confirming Communications
With or without an open device handle, the application can, if desired, confirm communication with
Driver488/W31 via the Hello function:

rv% = Hello(ieee%, response)
mystring = “”

The function also fills in a string, from which information can be extracted if it is desirable to display
facts about the driver in use.

IEEE 488 Event Custom Control
The IEEE 488 Event Custom Control feature of Driver488/W31 allows a Visual Basic program to
respond to IEEE 488 bus events. This feature is represented by a tool icon in the toolbox containing
“488” within a double arrow which appears when the IOTEVENT.VBX file is included in the Project
window. To begin this program from the VB File menu, select the tool icon and then select
IOTEVENT.VBX.

The IEEE 488 Event Custom Control has properties that correspond to IEEE 488
bus events that can be enabled or disabled. If an IEEE 488 Event Custom Control
property is enabled, the Visual Basic program will call a user written function
associated with the specified event when the event occurs. The IEEE 488 Event
Custom Control has two other properties: the Handle property and the CtrlName
property. The Handle property specifies the device that the events describe. The
CtrlName property stores space for the name of an application text box. For more
information on CtrlName, refer to the topic “Dynamic Data Exchange (DDE)”
found later in this Sub-Chapter.

The IEEE 488 bus events that Driver488/W31 supports are shown in the following table:

IEEE 488 Event
Custom Control

Icon

II. SOFTWARE GUIDES - 10. Driver488/W31 10F. Visual Basic

Personal488 User’s Manual, Rev. 3.0 II-237

Note: This Event table mirrors the Arm Condition table found under the topic “System Controller,
Not Active Controller Mode” in the Sub-Chapter “Operating Modes” of Chapter 9.

To use an IEEE 488 Event Custom Control:

1. Click on the IEEE 488 tool in the toolbox and insert it on the form.

2. Enable the properties that specify the events you wish to trap.

3. Open the Code window for the IEEE 488 Event Custom Control.

4. For each property you enabled, open the Procedure window that corresponds to the property and
write code enabling the program to perform the actions needed when the IEEE 488 event occurs.
When the IEEE 488 event occurs during program execution, the function associated with that
event will be called.

The upcoming example uses the programs of the ADC488 to issue an IEEE 488 SRQ when it needs
servicing. The IEEE 488 Event Custom Control will be programmed to trap the SRQ and the ADC488
will be serviced.

In every Visual Basic program using Driver488/W31, a file of declarations must be merged into the
program, typically to the GLOBAL.BAS file. In the following example, those declarations have been
omitted from the listing for the sake of brevity.

With the associated source files, the following program can be built using the file EXAMPLE3.MAK
found on the Driver488/W31 disk.

This example has several declarations that will be used later:

Declare Function FindWindow Lib “User” (ByVal data1$, ByVal data2$) As
Integer

Declare Function SendMessage Lib “User” (ByVal winHandle%, ByVal
message%, ByVal wp%, ByVal lp As Long) As Integer

The following declarations are included in the General section of the form, and are assumed through
the remainder of the discussion:

Dim nl As String * 2
Dim mystring As String
Dim substat As IeeeStatus
Dim adc As Integer
Dim response As String * 256
Dim intResp(500) As Integer
Dim voltage As Single
Dim sum As Single
Dim noterm As terms
Dim sample As String * 7

Event Description
SRQ The Service Request bus line is asserted.
Peripheral An addressed status change has occurred and the interface is a Peripheral.
Controller An addressed status change has occurred and the interface is an Active Controller.
Trigger The interface has received a device Trigger command.
Clear The interface has received a device Clear command.
Talk An addressed status change has occurred and the interface is a Talker.
Listen An addressed status change has occurred and the interface is a Listener.
Idle An addressed status change has occurred and the interface is neither a Talker nor a

Listener.
ByteIn The interface has received a data byte.
ByteOut The interface has been configured to output a data byte.
Error A Driver488/W31 error has occurred.
Change The interface has changed its addressed state. The Controller/Peripheral or

Talker/Listener/Idle states of the interface have changed.

10F. Visual Basic II. SOFTWARE GUIDES - 10. Driver488/W31

II-238 Personal488 User’s Manual, Rev. 3.0

When the IEEE 488 Event Custom Control has been placed in your application, the following service
routine is made available. The particular subroutine is invoked when the ADC generates an SRQ on
“acquisition complete”.

Sub Event4881_Srq ()
‘Clear SRQ condition
rv% = spoll (adc)

‘Reset the buffer pointer of the ADC488
rv% = ioOutput (adc, “B0X”)

‘Get 100 readings from the ADC488
TextWindow.Text = “”
For i% = 1 to 100

rv% = Enter(adc, response)
TextWindow.Text = TextWindow.Text + response

Next i%
End Sub

The sole button on the form opens the pre-configured ADC then initializes it by clearing it. Next, the
IEEE 488 event handling is setup by affiliating the Handle property of the Event4881 control to the
newly opened ADC handle. For the bus event to be captured and sent to the custom control, the ADC
handle must be left open.

Sub Command1_Click ()
‘Now opening a device named ADC
adc = OpenName (“ADC”)
If (adc = -1) Then

MsgBox “Cannot initialize device ADC”
End

End If

To activate this event (SRQ), the SRQ property of the IEEE controller must be set to True. At design-
time, select the IEEE 488 tool icon on your form, then select SRQ in the properties area. Set the SRQ
property to True.

Note that upon closing the handle, all event handling associated with this control is disabled. You must
keep the device open during the time in which its events are of interest. That is, with an ADC488, you
would open the device, assign the handle to the Event Custom Control’s Handle property, configure
the adc with ioOutput commands, and then wait for the SRQ event to be triggered. The SRQ event
handler would read data from the ADC488 and then close the device, allowing other tasks access, and
eliminating the event notification. The data read from the ADC488, is displayed in the Driver488/W31
Custom Control Example window, as shown in the figure.

Data read from the ADC488

II. SOFTWARE GUIDES - 10. Driver488/W31 10F. Visual Basic

Personal488 User’s Manual, Rev. 3.0 II-239

Finally, the ADC488 is setup to complete an acquisition and assert SRQ.

‘Clear ADC
rv% = ioClear (adc)

‘Set up event handling for trapping the SRQ
Event4881.Handle = adc
Event4881.SRQ = -1

“Enable ADC to SRQ on acquisition complete
rv% = ioOutput (adc, ”M128X")

‘Setup the ADC488:
‘100 uSec scan interval (I3)
‘No pre-trigger scans, 100 post-trigger scans (N100)
‘Continuous trigger on GET (T1)
rv% = ioOutput (adc, “13N100T1X”)

‘Trigger the ADC488
rv% = Trigger (adc)

Reading Driver Status
Your application may interrogate Driver488/W31 at any time to determine its status and other
information. Status information is returned in a structure provided by the application and can be
displayed by the function shown below.

rv% = Status(ieee%, substat)
Call showstat (substat)

Another function to display the information contained in the Status structure could be:

Sub showstat (substat As IeeeStatus)
nl = Chr$(13) + Chr$(10)
mystring = “”
mystring = mystring + “SC:” + Str$ (substat.SC) + nl
mystring = mystring + “CA:” + Str$ (substat.CA) + nl
mystring = mystring + “PrimAddr:” + Str$ (substat.PrimAddr) + nl
mystring = mystring + “SecAddr:” + Str$ (substat.SecAddr) + nl
mystring = mystring + “SRQ:” + Str$ (substat.SRQ) + nl
mystring = mystring + “addrChange:” + Str$ (substat.addrChange) + nl
mystring = mystring + “talker :” + Str$ (substat.talker) + nl
mystring = mystring + “listener:” + Str$ (substat.listener) + nl
mystring = mystring + “triggered:” + Str$ (substat.triggered) + nl
mystring = mystring + “cleared:” + Str$ (substat.cleared) + nl
mystring = mystring + “transfer:” + Str$ (substat.transfer) + nl
mystring = mystring + “byteIn :” + Str$ (substat.byteIn) + nl
mystring = mystring + “byteOut :” + Str$ (substat.byteOut) + nl
TextWindow.Text = TextWindow.Text + RTrim$ (mystring)

End Sub

External Device Initialization
Refer to the device manufacturer’s documentation for specific requirements for initializing your
IEEE 488 instrument. In the case of the ADC488, appropriate initialization involves sending it a
ioClear command and placing it into Remote mode:

rv% = ioClear(adc)
rv% = Remote(adc)

For our hypothetical application, we also wish to have the ADC488 generate a service request should it
detect a command error. This involves sending a command string consisting of textual data to the
ADC488:

rv% = ioOutput (adc, “M8X”)

We may also wish to perform other initialization and configuration. In this case, we set up the
ADC488 (adc) in the following configuration:

10F. Visual Basic II. SOFTWARE GUIDES - 10. Driver488/W31

II-240 Personal488 User’s Manual, Rev. 3.0

‘Setup the ADC488:
‘Differential inputs (A0)
‘Scan group channel 1 (C1)
‘Compensated ASCII floating point output format (G0)
‘Channel 1 range to +/ 10V (R3)
‘One shot trigger on talk (T6)

The command to perform this configuration combines the above strings and adds the Execute (X)
command for the ADC488:

rv% = ioOutput(adc, “A0C1G0R3T6X”)

Basic Data Acquisition
With both Driver488/W31 and the external device ready for action, we next might try taking a simple
reading using the ADC488. Here, we use the serial poll (SPoll) capabilities of Driver488/W31 to
determine when a response is ready and to format the reply. The reply is appended to the existing
contents of the control TextWindow so that it will not erase previous responses.

‘Wait for the ready bit of the ADC488 to be asserted
While ((spoll(adc) And 32) = 0)
Wend

‘Display the reading
response = “”
mystring = “”
rv% = enter(adc, response)
voltage = Val(response)
mystring = mystring + “ADC488 channel #1 reading value is ” +
Str$(voltage) + nl
TextWindow.Text = TextWindow.Text + mystring

‘Now acquire and display an average of 10 readings
sum = 0
For I% = 0 to 9

response = “”
rv% = enter (adc, response)
voltage = Val (response)
sum = sum + voltage

Next I%
sum = sum / 10

mystring = “”
mystring = mystring + “The average of 10 readings is” + Str$(sum) + nl
TextWindow.Text = TextWindow.Text + mystring

Block Data Acquisition
First, we set up the ADC488 (adc) in the following configuration:

We then wait for the ADC488 to start the acquisition process. Once the acquisition is complete, which
is determined by the MSB of the ADC488’s serial poll response, the buffer pointer of the ADC488 is
reset (B0).

rv% = iooutput(adc, “G10I3N100T1X”)

‘Wait for the ready bit of the ADC488 to be asserted
While ((spoll(adc) And 32) = 0)
Wend

‘Trigger the ADC488
rv% = Trigger(adc)

‘Wait for the acquisition complete bit of the ADC488 to be asserted

‘Setup the ADC488:
‘Compensated binary output format (G10)
‘100 uSec scan interval (I3)
‘No pre-trigger scans, 100 post-trigger scans (N100)
‘Continuous trigger on GET (T1)

II. SOFTWARE GUIDES - 10. Driver488/W31 10F. Visual Basic

Personal488 User’s Manual, Rev. 3.0 II-241

While ((Spoll(adc) And 128) = 0)
Wend

‘Reset the buffer pointer of the ADC488
rv% = ioOutput(adc, “B0X”)

Next, we fill the buffer with 100 readings from the ADC488. Since the data being returned from the
ADC 488 is in a binary format, the noterm terminator structure is used to disable scanning for
terminators such as carriage return and line feed.

noterm.eoi = 0
noterm.nChar = 0
rv% = EnterXI(adc, intResp(0), 200, 1, noterm, 0, 0)

The EnterX function will use a DMA transfer if available. Because DMA transfers are performed
entirely by the hardware, the program can continue with other work while the DMA transfer function
occurs. For example, the program will process the previous set of data while collecting a new set of
data into a different buffer. However, before processing the data we must wait for the transfer to
complete. For illustration purposes, we query the Driver488/W31 status both before and after waiting.

‘Display DRIVER488/W31 status
rv% = Status(ieee%, substat)
Call showstat(substat)

‘Wait for completion of input operation
rv% = ioWait(adc)

‘Display DRIVER488/W31 status
rv% = Status(ieee%, substat)
Call showstat(substat)

Now we process the buffer:

‘Print the received characters
mystring = “”
For i% = 0 To 99

mystring = mystring + Str$(intResp(i%))+nl
Next i%

The readings are stored in the local variable mystring in the above example. They could, however be
placed into a text-type control. Refer to the Driver488/W31 status display in the Driver488/W31 ADC
Example Program window, shown in the following figure:

The functions described so far in this Sub-Chapter provide enough functionality for a basic data
acquisition program. The program listing which appears at the end of this Sub-Chapter, covers the
examples used. Additional functions provided by Driver488/W31 are described in the “Section III:
Command References” of this manual

Driver488/W31 Status Display

10F. Visual Basic II. SOFTWARE GUIDES - 10. Driver488/W31

II-242 Personal488 User’s Manual, Rev. 3.0

Dynamic Data Exchange (DDE)
Dynamic Data Exchange (DDE) is a feature built into Microsoft Windows where by unrelated
application programs can communicate.

In test and measurement, there are several potential applications for DDE. For example, a very small
program can be written to collect data for another specialized program to process, like a spreadsheet
program. Programs such as Microsoft Excel have a wide variety of graphics, analysis, and report
writing capabilities. Supplying data to Excel directly from an instrument can be a very powerful
solution to a laboratory application.

This example will explain the concept of DDE from a programmer’s perspective using Visual Basic as
the development environment. Driver488/W31 will be used to collect instrument data that will be
automatically transferred to an unrelated application program.

Application
Data that is transferred from one application to another, first goes through the clipboard. This is
important to know when debugging a DDE application. To see what is being transferred from
application to application at run time, just open the Clipboard in the Windows Program Manager.

Every DDE data transfer requires a Client and a Server; the Client receives the data while the Server
supplies it. Visual Basic has three controls that can act as a client: A picture box, a text box, and a
label. Most controls on a form can act as a source for data, but only a form can act as a server.

Windows provides two kinds of application links: Hot links and cold links. Hot links update the data in
the client application as soon as the data is available on the server. Cold links require the operator to
request that the client be updated. Cold links give more control to the operator as to when the data
transfer takes place.

Let us see how Microsoft Excel and Microsoft Word for Windows set up a DDE link:

1. If you have them, start them both.

2. In Word, type in a short string of text.

3. Select the text, then click the Copy item under the Edit menu.

4. Bring the Excel spreadsheet into the foreground by clicking on its window.

5. Select a cell, then click Paste Link under its Edit menu. The link is now complete, and any
changes made in the string in the word processor will be reflected in the spreadsheet cell.

Server Links
Visual Basic provides two methods by which its applications can be linked to other applications:
Design-time and run-time links. A design-time link is performed while in the Visual Basic
development environment. Meanwhile, a run-time link is performed when your Visual Basic program
is running. Run-time links are more flexible than design-time links in that the application which will be
linked does not need to be chosen at design time.

Design-Time Links

To create a design-time link between your application and Microsoft Excel:

1. Place a text box in your application’s form.

2. Select the text box by clicking on it with the mouse cursor.

3. Now go up into the Visual Basic Edit menu and select Copy.

4. If Excel is not running, start it now.

5. Select a cell in the Excel spreadsheet, then select Paste Link under the Edit menu. The hot link is
now complete. Anything typed into your application’s text box will also show up in the
spreadsheet cell. This link will be maintained when your application is running.

II. SOFTWARE GUIDES - 10. Driver488/W31 10F. Visual Basic

Personal488 User’s Manual, Rev. 3.0 II-243

During this process, some properties of the controls in your application were altered by Visual Basic.
These include the LinkMode and the LinkTopic. For more information on the use and meaning of
Link properties, consult your Visual Basic User Manual or Help system.

Run-Time Links

To create a run-time link:

1. Your program must set itself up as a server via the LinkMode property. Your application may
have several forms, the form which contains the control that will supply the data must have its
LinkMode property set to SERVER. This property can be set at design time by selecting the
LinkMode property of your form and setting it to SERVER, or at run time by placing the following
command in the Load event service routine of your form:

LinkMode = SERVER

Note: The string SERVER is defined in CONSTANT.TXT which should be added to your project if
you wish to use it.

2. To take your application out of server mode at run time, issue the following command in the
service routine of your choice:

LinkMode = NONE

3. After your application has been setup as a server, the data in its controls is immediately accessible
to other applications.

4. Start your application then launch Excel.

5. Select a cell in the spreadsheet. We can now type in an application link by specifying: the
application to link, the form within the application, and the control within the form.

For example, if your application is named PROJECT1, with one form named FORM1, containing one
text box named TEXT1, type the following into a cell in your Excel spreadsheet:

=PROJECT1|FORM1!TEXT1

You have now formed a hot link Anything typed in text box TEXT1 will appear in the spreadsheet
cell.

Posting Link Information

One drawback to this run-time linking approach is that a user of your program would need to know the
names of your application’s controls (like TEXT1) to complete the link. To eliminate this requirement,
your application can be programmed to post the link information in the clipboard. When programs like
Excel recognize the presence of this information in the clipboard, they enable a command called Paste
Link under their Edit menu. Paste Link will automatically place the string that we typed above into the
selected cell.

To program your application to post the link information:

1. In your application, create a button or a menu item called Copy Link. Under your new control’s
Click event, type in the following:

ClipBoard.Clear
ClipBoard.SetText “PROJECT1|Form1!text1", &HBF00

The first line clears the present contents of the clipboard. The second line places the control
identifier which includes the application name, the form name and the control name, into the
clipboard and tags it as a link specifier via the last parameter (&HBF00).

2. After starting your application, click the Copy Link control.

3. Select a cell in the Excel spreadsheet and click the Paste Link item under the Edit menu. The
following string:

=PROJECT1|Form1!text1

is automatically placed in the cell completing the link.

10F. Visual Basic II. SOFTWARE GUIDES - 10. Driver488/W31

II-244 Personal488 User’s Manual, Rev. 3.0

Posting Link Information with Focus

If your application has several text boxes from which DDE information can be sourced, you will want
to allow your Copy Link control to post the name of the text box that presently has the Focus.

To do this, here is one way:

1. Declare a global string called CtrlName as a storage space for the name of the text box that
presently has the Focus.

2. Under the GotFocus event for each of the text boxes, type the following commands:

Sub Text1_GotFocus()
CtrlName = “text1"
CopyLink.Enabled = TRUE

End Sub

Sub Text2_GotFocus()
CtrlName = “text2"
CopyLink.Enabled = TRUE

End Sub

Sub Text3_GotFocus()
CtrlName = “text3"
CopyLink.Enabled = TRUE

End Sub

These service routines will maintain the global variable CtrlName with the name of the presently
selected text box. They also allow user access to your Copy Link button.

3. Under the LostFocus event for each of the text boxes, type the following commands:

Sub Text1_LostFocus()
CtrlName = “text1"
CopyLink.Enabled = FALSE

End Sub

Sub Text2_LostFocus()
CtrlName = “text2"
CopyLink.Enabled = FALSE

End Sub

Sub Text3_LostFocus()
CtrlName = “text3"
CopyLink.Enabled = FALSE

End Sub

These service routines will disable user access to your Copy Link control when no text boxes have
the Focus.

4. In your Copy Link service routine, type the following:

Sub CopyLink_Click ()
ClipBoard.Clear
ClipBoard.SetText “PROJECT1|Form1!” + CtrlName, &HBF00

End Sub

This service routine will post the name of the text box that presently has the Focus. When you
move to the Excel spreadsheet and perform a Paste Link, the proper text box specification will
appear.

Acquisition Engine
One of the most common DDE applications in the data acquisition world, is sending collected data
from an instrument directly to a spreadsheet or analysis package.

Since spreadsheets and analysis programs typically do not have any means by which to setup
instruments and collect data, an independent program must be written to perform those functions,
namely, the Acquisition Engine. Using Driver488/W31, we will write a program that controls the 16-
channel digitizer, the ADC488/16A.

II. SOFTWARE GUIDES - 10. Driver488/W31 10F. Visual Basic

Personal488 User’s Manual, Rev. 3.0 II-245

The ADC488/16A Acquisition Engine will have one form that sets up some of the parameters of the
instrument and provides a means of collecting and displaying the data. We will also include a means
for posting a server link specification in the clipboard, so Excel can perform a Paste Link operation.

Note: A similar example is also used within the QUIKTEST utility. For more information on this
utility, turn to the next Sub-Chapter “Utility Programs” in this Chapter.

All of the initialization happens in the following Form_Load service routine.

Sub Form_Load ()
LinkMode = 1
Chan.AddItem “1"
Chan.AddItem ”2"
Chan.AddItem “3"
Chan.AddItem ”4"
Chan.AddItem “5"
Chan.AddItem ”6"
Chan.AddItem “7"
Chan.AddItem ”8"
Chan.AddItem “9"
Chan.AddItem ”10"
Chan.AddItem “11"
Chan.AddItem ”12"
Chan.AddItem “13"
Chan.AddItem ”14"
Chan.AddItem “15"
Chan.AddItem ”16"
Chan.ListIndex = 0
Range(0).value = -1
text1.text = “”
StartFlag = 0
NL = Chr$(13) + Chr$(10)

End Sub

First the LinkMode is set to SERVER (1). Then the combo box is initialized with the channel numbers
available from the ADC488/16A. After some form control initialization, the constant NL (new line) is
defined as a string consisting of a carriage return and line feed. This will be used to put a new line
between readings.

Although the ADC488/16A has many programmable
features, for the sake of brevity, this application will only
exercise a few. This application provides controls to
adjust the channel voltage range and the desired channel.
The control where the collected data is returned is a text
box with its Multiline and ScrollBar properties set
to TRUE at design time.

A very small bit of code resides behind the option
buttons. The option buttons are configured as a control
array. The Click event is serviced by the same code
which sets the value of the global variable Rng to the
index number of the option control.

Sub Range_Click (index As Integer)
Rng = index

End Sub

When the Acquire button is pressed, executing the Acquire_Click routine, the pre-configured device
ADC488 is opened and cleared. Then a string of ADC488 commands are sent to the device using the
settings from the combo box and the variable Rng. Lastly, the global variable StartFlag is set to 1
(start).

ADC488/16A Acquisition Engine Form

10F. Visual Basic II. SOFTWARE GUIDES - 10. Driver488/W31

II-246 Personal488 User’s Manual, Rev. 3.0

Sub Acquire_Click ()
Handle = OpenName(“ADC488")
Err = ioClear(Handle)
cmd$ = ”C" + Str$(Chan.ListIndex + 1) + “R” + Str$(Rng) + “T0X”
Err = ioOutput(Handle, cmd$)
StartFlag = 1

End Sub

The acquisition actually takes place in the Timer service routine. If the acquisition took place in the
Acquire_Click service routine, it might never relinquish control to the user again, collecting readings
forever.

At design time, the timer interval was set to 500 which translates to a 500 ms period. The service
routine for the timer checks the StartFlag. If the value is 1, the routine collects data from the
ADC488/16A via the Enter command. After getting a reading, the new reading is appended to the
existing string using NL as a data separator:

Sub Timer1_Timer ()
If StartFlag = 1 Then

Err = Enter(Handle, resp)
text1.text = text1.text + NL + resp

End If
End Sub

The Stop button executes the Stopper_Click routine, setting the StartFlag back to 0, ending the
acquisition, then closes the device ADC488 via its Handle:

Sub Stopper_Click ()
StartFlag = 0
Err = ioClose(Handle)

End Sub

The Copy Link button executes the CopyLink_Click routine, posting the server link information in
the clipboard. First the clipboard is cleared, then the link information is inserted.

Sub CopyLink_Click ()
Clipboard.Clear
Clipboard.SetText “ADC488|Form1|text1”’ &HBF00

End Sub

While this application is running, pressing the Copy
Link button seems to have no effect. After starting the
Excel program, we select several cells in a column,
then click Paste Link under the Edit menu. Returning
to the application, we click the Acquire button. The
data immediately begins flowing into the text box.
Soon after, the Excel spreadsheet column begins to
reflect the new data from the application, as indicated
in the following two screens.

Acquisition Engine Form with Data

II. SOFTWARE GUIDES - 10. Driver488/W31 10F. Visual Basic

Personal488 User’s Manual, Rev. 3.0 II-247

From Excel, this can be turned into a cold link, where
the column of the spreadsheet is updated only when the
user requests an update. In Excel, click Links... under
the File menu. A list of the present links is displayed.
Selecting the newly active link and clicking the option
button, brings up a dialog box with a check box for
enabling and disabling automatic link updates.

If the ADC488 application is terminated, the data in the
spreadsheet will become static. If we ask for the data
to be updated, the Excel spreadsheet will make an
attempt to start the application.

The following program listing includes the ADC488
Acquisition Engine program. This program was
designed to outline the basic concepts of DDE. For
further information on DDE, consult your Visual Basic
User Manual or Help system.

Sample Programs

Data Acquisition Sample Program
GLOBAL.BAS Declarations

Declare Function FindWindow Lib “User” (ByVal data1$, ByVal data2$)
As Integer

Declare Function SendMessage Lib “User” (ByVal winHandle%, ByVal
message%, ByVal wp%, ByVal lp As Long) As Integer

Declarations included in Form

Dim nl As String * 2
Dim mystring As String
Dim substat As IeeeStatus
Dim adc As Integer
Dim response as String * 256
Dim intResp(500) As Integer
Dim voltage As Single
Dim noterm As terms
Dim sample As String * 7

Source Code

Sub Command1_Click ()
nl = Chr$(13) + Chr$(10)

TextWindow.Text = “”

‘open driver . . .
ieee% = OpenName (“IEEE”)
If (ieee% = -1) Then

MsgBox “Cannot initialize IEEE system”
End

End If

‘Open device named ADC

Excel Spreadsheet with ADC488/16A Data

10F. Visual Basic II. SOFTWARE GUIDES - 10. Driver488/W31

II-248 Personal488 User’s Manual, Rev. 3.0

rv% = ioError (ieee%, TURNOFF)
devhandle% = OpenName (“wave”)
adc = OpenName (“ADC”)
If (adc = -1) Then

adc = MakeDevice (devhandle%, “ADC”)
If (adc = -1) Then

MsgBox “Can not initialize device ADC”
End

 End If
End If

response = “”
rv% = GetError (ieee%, response)
rv% = BusAddress (adc, 14, -1)

‘Get DRIVER488/W31 status
rv% = Hello (ieee%, response)
mystring = “”

For i% = 1 To Len (RTrim$ (response))
If Asc (Mid$(response, i%, 1)) = 10 Then

mystring = mystring + nl
 Else

mystring = mystring + Mid% (response, i%, 1)
 End If

Next i%
mystring = mystring + nl

TextWindow.Text = TextWindow.Text + RTrim$ (mystring)
TextWindow.Text = TextWindow.Text + nl

‘Display DRIVER488/W31 status
rv% = Status (ieee%, substat)
Call showstat (substat)

‘Clear ADC
response = “”
rv% = ioClear (adc)

‘Setup the ADC488:
‘Differential inputs (A0)
‘Scan group channel 1 (C1)
‘Compensated ASCII floating-point output format (G0)
‘Channel 1 range to +/- 10V (R3)
‘One-shot trigger on talk (T6)
‘rv% = iooutput (adc, “A0C1G0R3T6X”)

‘Wait for the ready bit of the ADC488 to be asserted
While ((spoll (adc) And 32) = 0)
Wend

‘Display the reading
response = “”
mystring = “”
rv% = enter(adc, response)
voltage = Val (response)
mystring = mystring + “ADC488 channel #1 reading value is ” +
Str$(voltage) + nl
TextWindow.Text = TextWindow.Text + mystring

‘Now acquire and display an average of 10 readings
sum = 0
For i% = 0 To 9

response = “”
rv% = enter (adc, response)
voltage = Val (response)
sum = sum + voltage

II. SOFTWARE GUIDES - 10. Driver488/W31 10F. Visual Basic

Personal488 User’s Manual, Rev. 3.0 II-249

Next i%
sum = sum / 10

mystring = “”
mystring = mystring + “The average of 10 readings is ” + Str$(sum) +
nl
TextWindow.Text = TextWindow.Text + mystring

‘Setup the ADC488:
‘Compensated binary output format (G10)
‘100 uSec scan interval (I3)
‘No pre-trigger scans, 100 post-trigger scans (N100)
‘Continuous trigger on GET (T1)
rv% = iooutput (adc, “G10I3N100T1X”)

‘Wait for ready bit of the ADC488 to be asserted
While ((spoll (adc) And 32) = 0)
Wend

‘Trigger the ADC488
rv% = Trigger (adc)

‘Wait for the ready bit of the ADC488 to be asserted
While ((spoll (adc) And 32) = 0)
Wend

‘Reset the buffer pointer of the ADC488
rv% = iooutput (adc, “B0X”)

‘Take 100 readings from the ADC488
noterm.eoi = 0
noterm.nChar = 0
rv% = EnterXI(adc, intResp(0), 200, 1, noterm, 0, 0)
If rv% = -1 Then
TextWindow.Text = TextWindow.Text + “Error in data transfer!”
End
End If

‘Display DRIVER488/W31 status
rv% = Status (ieee%, substat)
Call showstat (substat)

‘Wait for completion of input operation
rv% = ioWait (adc)

‘Display DRIVER488/W31 status
rv% = Status (ieee%, substat)
Call showstat (substat)
‘Print the received characters
mystring = “”
For i% = 0 to 99

mystring = mystring + Str$(intResp(i%) + nl
‘Next i%
mystring = mystring + nl
TextWindow.Text = TextWindow.Text + mystring

End Sub

Sub Form_Unload (Cancel As Integer)
‘Unload the IEEE driver
loaderName$ = “Driver488/W31 Loader”
winName$ = “Driver488/W31”
Hdriver% = FindWindow(loaderName$, winName$)
asdf = SendMessage (Hdriver%, &H2, 0, 0)

End Sub

Sub showstat (substat As IeeeStatus)
nl = Chr$(13) + Chr$(10)

10F. Visual Basic II. SOFTWARE GUIDES - 10. Driver488/W31

II-250 Personal488 User’s Manual, Rev. 3.0

mystring = “”
mystring = mystring + “SC :” + Str$ (substat.SC) + nl
mystring = mystring + “CA :” + Str$ (substat.CA) + nl
mystring = mystring + “PrimAddr :” + Str$ (substat.PrimAddr) + nl
mystring = mystring + “SecAddr :” + Str$ (substat.SecAddr) + nl
mystring = mystring + “SRQ :” + Str$ (substat.SRQ) + nl
mystring = mystring + “addrChange:” + Str$(substat.addrChange)+ nl
mystring = mystring + “talker :” + Str$ (substat.talker) + nl
mystring = mystring + “listener :” + Str$ (substat.listener) + nl
mystring = mystring + “triggered:” + Str$ (substat.triggered) + nl
mystring = mystring + “cleared :” + Str$ (substat.cleared) + nl
mystring = mystring + “transfer :” + Str$ (substat.transfer) + nl
mystring = mystring + “byteIn :” + Str$ (substat.byteIn) + nl
mystring = mystring + “byteOut :” + Str$ (substat.byteOut) + nl
TextWindow.Text = TextWindow.Text + RTrim$ (mystring)

End Sub

Function cvi (stringarg$) As Single
Static hb As Integer
Static lb As Integer
Static temp As Single
hb = Asc(Right$(stringarg$, 1)

lb = Asc(Left$(stringarg$, 1)
temp = ((hb And &H7F) * 256) + lb
If (hb And &H80) Then

temp = -temp
End If
cvi = temp

End Function

IEEE 488 Event Custom Control Sample Program
Declarations Included with Form

Dim adc As Integer
Dim response As String * 256

Source Code

Sub Event4881_SRQ ()
‘Clear SRQ condition
rv% = spoll(adc)

‘Reset the buffer pointer of the ADC488
rv% = ioOutput(adc, “B0X”)

‘Get 100 readings from the ADC488
TextWindow.Text = “”
For i% = 1 To 100
rv% = Enter(adc, response)
TextWindow.Text = TextWindow.Text + Chr$(13) + Chr$(10) + response
Next i%
rv% = ioClose(adc)

End Sub

Sub Command1_Click ()
‘Now opening a device named ADC
adc = OpenName(“ADC”)
If (adc = -1) Then

MsgBox “Can not initialize device ADC”
 End

End If

‘Clear ADC

II. SOFTWARE GUIDES - 10. Driver488/W31 10F. Visual Basic

Personal488 User’s Manual, Rev. 3.0 II-251

rv% = ioClear(adc)

‘Set up event handling for trapping the SRQ
Event4881.Handle = adc
Event4881.SRQ = -1

‘Enable ADC to SRQ on acquisition complete
rv% = ioOutput(adc, “M128X”)

‘Setup the ADC488:
‘100 uSec scan interval (I3)
‘No pre-trigger scans, 100 post-trigger scans (N100)
‘Continuous trigger on GET (T1)
rv% = ioOutput(adc, “I3N100T1X”)

‘Trigger the ADC488
rv% = Trigger(adc)
End Sub

Acquisition Engine Sample Program
GLOBAL.BAS Declarations

Global NL As String
Global resp As String * 255
Global StartFlag As Integer
Global Handle As Integer
Global Rng As Integer

Source Code

Sub Form_Load ()
LinkMode = 1
Chan.AddItem “1"
Chan.AddItem ”2"
Chan.AddItem “3"
Chan.AddItem ”4"
Chan.AddItem “5"
Chan.AddItem ”6"
Chan.AddItem “7"
Chan.AddItem ”8"
Chan.AddItem “9"
Chan.AddItem ”10"
Chan.AddItem “11"
Chan.AddItem ”12"
Chan.AddItem “13"
Chan.AddItem ”14"
Chan.AddItem “15"
Chan.AddItem ”16"
Chan.ListIndex = 0
Range(0).value = -1
text1.text = “”
StartFlag = 0
NL = Chr$(13) + Chr$(10)

End Sub

Sub Acquire_Click ()
Handle = OpenName(“ADC”)
Err = ioClear(Handle)
cmd$ = “C” + Str$(Chan.ListIndex + 1) + “R” + Str$(Rng) + “T0X”
Err = ioOutput(Handle, cmd$)
StartFlag = 1

End Sub

Sub CopyLink_Click ()

10F. Visual Basic II. SOFTWARE GUIDES - 10. Driver488/W31

II-252 Personal488 User’s Manual, Rev. 3.0

ClipBoard.Clear
ClipBoard.SetText “ADC488|Form1!text1", &HBF00

End Sub

Sub Range_Click (index As Integer)
Rng = index

End Sub

Sub Stopper_Click ()
StartFlag = 0
Err = ioClose(Handle)

End Sub

Sub Timer1_Timer ()
If StartFlag = 1 Then

Err = Enter(Handle, resp)
text1.text = text1.text + NL + resp

End If
End Sub

Command Summary
To obtain a summary of the Visual Basic commands for Driver488/W31, turn to the “Section III:
Command References” of this manual.

Introduction
The Driver488/W31 software disk includes two utility programs: WINTEST and QUIKTEST. These
programs were designed as an exercise for the user and to verify proper installation of the driver.
WINTEST uses the Driver488/W31 C syntax while QUIKTEST uses Visual Basic. This Sub-Chapter
describes each utility in detail.

WINTEST
WINTEST is a utility program included with Driver488/W31. Its primary application is to exercise the
driver and instruments on the bus via Driver488/W31 commands, which are accessible from the menu
bar. Since the lines of code that are generated and executed by WINTEST use the Driver488/W31 C
language syntax, WINTEST is most useful for C programmers.

 10G. Utility Programs

Topics

• Introduction... II-251
• WINTEST .. II-251

Opening a Device Handle for Communication II-252
Handle Lists ... II-252
WINTEST Session.. II-253

• QUIKTEST.. II-254
Application Files ... II-254
Installation .. II-254
Operation of the Application... II-255
Cutting & Pasting to Other Applications.. II-255
Dynamic Data Exchange (DDE).. II-255
Loading the Project into Visual Basic ... II-256

• Licensing .. II-256

II. SOFTWARE GUIDES - 10. Driver488/W31 10G. Utility Programs

Personal488 User’s Manual, Rev. 3.0 II-253

Under the menu items of the WINTEST application are all of the commands in Driver488/W31. The
commands are categorized in 8 groups:

Menu Item Group Description
Device Commands dealing with accessing and configuring instruments
DataTransfer Commands that send and receive data from instruments
Send Low-level commands for sending commands and data to instruments
Query Polling commands
Error Driver query and error handling commands
Events Commands dealing with enabling and disabling bus events
Bus Bus and instrument management commands
Config Driver configuration commands

As the application’s main window opens on the screen, a response window is also opened with the
response from Driver488/W31’s Hello command placed in it. This window returns the response from
any input command used during the session.

Note: DO NOT close this response window for the duration of your WINTEST session. There is
no mechanism in the application to re-open this window.

Opening a Device Handle for Communication
To perform any of the
commands under the menu
items, it is first necessary to
open a device. Within the
WINTEST main window is a
menu item labeled Device, as
shown in the figure. The field
labeled devHandle holds a
table of all of the devices that
were configured during the
driver configuration process.
Next to each device name, is a
number in brackets []. This
number corresponds to the
present value of the handle
associated with the device
name. A value of -1 means
that the device has not been
opened. Any positive value
means that the device is open and available.

To open a device, select the desired device, then click the OpenName button. All of the commands
under the menus will use the presently selected device handle shown in the devHandle field. If the
selected device is not open, an error will be returned. To close the selected device, click the Close
button.

Handle Lists
Several of the Driver488/W31 commands operate on lists of handles (i.e. ClearList). To create a
list, select a device in the devHandle field that you wish to place in the list, then click the List button.
Repeat this process for all of the devices that you want in the list.

Non-list commands will still use the handle of the device that is presently showing in the devHandle
field, but list-type commands will use the handles of all of the devices tagged as list handles. All of the
devices tagged as list items must be open to successfully complete a list command.

Selecting a Device Handle

10G. Utility Programs II. SOFTWARE GUIDES - 10. Driver488/W31

II-254 Personal488 User’s Manual, Rev. 3.0

WINTEST Session
Start WINTEST. In the
devHandle field is the table
of preconfigured devices. If
no changes were made to the
factory default, the table
should include IEEE and
Wave. The handle IEEE is
always in the device table for
interface-related commands.

As shown in the following
figure, select Wave in the
devHandle field, then click
the OpenName button. The
number in brackets next to the
name Wave changes from -1
to a positive number as the
command is executed and the
device is opened. The complete function call appears in the Function Call field and the call also
appears in the executed command list.

In the executed command list, the number to the left in parenthesis, is the value returned by the function
call during execution. Generally, if the command completed successfully, the number is 0, and if the
command caused an error, the number is -1. For more information on the command return values,
refer to the “Section III: Command References” of this manual.

To clear the device named
Wave, select Clear under the
Bus menu item. Then, create
a new device using the
MakeDevice command under
the Device menu item. A
dialog box will pop up that
shows the C structure for the
required user input. In this
case, the name of the new
device is required. Fill in the
name and click OK. The
command and the returned
value will now be in the
command list, as shown in the
figure. Your new device now
appears in the devHandle
field. Select BusAddress
under the Config menu item to
set the address of your newly created device.

As you fill in the pop-up dialog boxes, WINTEST uses your input to adjust the parameters in the
function call. These completed syntactically-correct lines of C code can be selected, cut and pasted
into your C editor at any time.

Opening a Device

Creating a New Device

II. SOFTWARE GUIDES - 10. Driver488/W31 10G. Utility Programs

Personal488 User’s Manual, Rev. 3.0 II-255

To get data from your new
device, select Enter
Commands under the
DataTransfer menu item. A
sub menu showing the
controls for the Enter
commands will display a
dialog box, as indicated in
the figure. Since the Enter
command uses a subset of
the parameters of the
EnterX command, the
dialog box displays all of
the controls for the EnterX command, while disabling those not appropriate for the Enter command.

Click OK to get a reading. A dialog box pops up showing the results. The Enter command returns
the number of bytes successfully transferred. Notice the byte count in parenthesis to the left of the
command in the command list.

For a complete explanation of the Driver488/W31 commands and their uses, refer to the “Section III:
Command References” of this manual.

QUIKTEST
QUIKTEST is a simple application designed to exercise Driver488/W31, and the instruments connected
to the interface card. QUIKTEST is a good tool for verifying that your driver and interface card are
properly installed. QUIKTEST can also be used to experiment with your instruments to see how they
respond to different sequences of commands. Included on the disk, is an executable version of
QUIKTEST and the Visual Basic source code files, form files, and makefile.

Application Files
The executable version of QUIKTEST includes the following: The source code files, the form files, the
make file, and the Visual Basic (VB) run-time Dynamic Link Library (DLL), as shown in the table:

File Name Description
QUIKTEST.EXE The executable version of the application
QUIKTEST.MAK The VB makefile, used to build the executable
QUIKTEST.FRM A VB form file, which generates the main window of the application
DEVICE.FRM A VB form file, which generates the pop-up window used to create and

edit bus devices
GLOBAL.BAS A VB source code file containing global declarations and variables
IOTVB10.BAS A VB interface file included with Driver488/W31
MYCODE.BAS A VB source code file containing application-specific routines
VBRUN100.DLL The VB run-time DLL supplied by Microsoft

Installation
To run the application, only the QUIKTEST.EXE and VBRUN100.DLL files are required. Copy the
VBRUN100.DLL file into your \WINDOWS directory. The QUIKTEST file can be copied anywhere or run
from the floppy. However, the application will generally respond quicker if it is executed from the
hard drive.

Displaying the Enter Commands

10G. Utility Programs II. SOFTWARE GUIDES - 10. Driver488/W31

II-256 Personal488 User’s Manual, Rev. 3.0

Operation of the Application
Designed for simplicity, the
application has very few controls.
To begin communicating with
your instruments, you must first
create a device. When creating a
device, you can either use a
device name that you have pre-
configured or a new name. Press
the Create button, as shown in the
figure, then fill in the parameters
in the pop-up Device Window.

After a device has been created,
most of the main window controls
will be enabled. If your
instrument has data available,
pressing the Read button will
collect the data and place it in the adjacent Results window. Commands can be sent to the selected
device at any time. Simply type in the command string into the Output Data/Commands field, then
click on the Send button, or hit <Enter>.

When collecting data via the Read button, the data is placed at the destination selected in the Data
Destination field. If the destination is a file, it is usually a good idea to specify the entire path. The
example in the following figure, shows the Data Destination for Screen and file as Test.dat. A more
complete destination for Screen and file would be C:\Test.dat.

As additional devices are created,
they will be added to the
Instruments list. No two
instruments can be created using
the same name. Only one
instrument in the Instruments list
can be selected at any one time.
All of the controls in the main
window pertain directly to the
selected instrument. For
example, after creating create two
devices, the last device created
will be selected. Now click on
the Serial Poll menu item. The
response will immediately pop-up
on the screen. Now select the
other device and repeat the Serial Poll. The response of that device will now be on the screen.

Cutting & Pasting to Other Applications
The Results field of the QUIKTEST main window supports many of the features of a standard text
editor. The cursor can be placed anywhere in the text, text can be added or deleted, and text can be
selected, cut or copied. Under the Edit Readings menu item, is the Copy command for copying
selected text to the clipboard. Text sent the clipboard can subsequently be pasted into almost any
Windows application.

Dynamic Data Exchange (DDE)
The QUIKTEST application has the ability to send collected instrument results directly to other
Windows applications via the Windows Dynamic Data Exchange (DDE) capabilities.

For example, to send collected data to a Microsoft Excel spreadsheet:

Creating a Device

Collecting Data

II. SOFTWARE GUIDES - 10. Driver488/W31 10G. Utility Programs

Personal488 User’s Manual, Rev. 3.0 II-257

1. Select Copy under the Edit Results menu item.

2. Start the Excel application, then select a range of cells within a column.

3. Within the Excel application, select Paste Link under the Edit menu item. The DDE “link” is now
complete.

4. Next, click on the QUIKTEST application window to bring it to the foreground.

5. Finally, send the necessary commands to your instrument for it to supply readings continuously, by
selecting Continuous in the Readings Control field, and clicking on the Read button. As the
readings appear in the Results field of the QUIKTEST window, they should also appear in the
selected cells of the Excel spreadsheet.

For detailed information on performing Dynamic Data Exchange, refer to the topic “Dynamic Data
Exchange (DDE)” found in the previous Sub-Chapter “Visual Basic” of this Chapter.

Loading the Project into Visual Basic
To inspect the source code of this application or change its functionality, the Visual Basic development
package from Microsoft is required.

Start the Visual Basic application. Select Open Project under the File menu item. Select the makefile
QUIKTEST.MAK. All of the forms and source files will now be accessible for inspection and/or change.

The majority of the source code pertains to the managing of the device table. Operating the action
buttons is typically quite simple. However, it is important to understand how the application performs
the collection of data:

• The Read button merely sets a flag when it is clicked.

• A Timer control actually collects the readings.

• If the readings were actually collected by the clicking of the Read button, continuous data
collection would never service the mouse, since the act of collecting data would not allow any user
events to ever be serviced.

For more information on data collection, see the topic “Dynamic Data Exchange (DDE)” found in
the previous Sub-Chapter “Visual Basic” of this Chapter. Or more specifically, this information is
found under the sub-topic “Acquisition Engine.”

Licensing
You may copy, change, and paste from these utility programs freely. Although owned by IOtech,
purchasers of Driver488/W31 are granted unlimited privileges for copying and/or altering WINTEST
and/or QUIKTEST. All other parts of Driver488/W31, however, are licensed software and cannot be
copied or reproduced without the expressed written consent from IOtech, Inc.

 10H. Command Reference

For Driver488/SUB, W31, W95, & WNT
To obtain a detailed description of the command references for Driver488/SUB and Driver488/W31,
turn to Section III in this manual entitled “Command References.” The commands for Driver488/W95
and Driver488/WNT are provided as guides, pending current software revisions. Refer to your
operating system header file for the latest available information specific to your application. The
commands are presented in alphabetical order for ease of use.

11A. Introduction II. SOFTWARE GUIDES - 11. Driver488/W95

II-258 Personal488 User’s Manual, Rev. 3.0

 11. Driver488/W95

Note: Driver488/WIN95 and Driver488/NT from previous manuals, have been renamed
Driver488/W95 and Driver488/WNT, respectively.

Note: The differences among Driver488 for Windows 3.x, Windows 95 and Windows NT are
slight. However, because additional changes are being made to Driver488/W95 and
Driver488/WNT at the time this manual is being revised, refer to your operating system
header file (and README.TXT text file, if present) to obtain the current material on these
driver versions.

To obtain a detailed description of the command references for Driver488/SUB and Driver488/W31,
turn to Section III in this manual entitled “Command References.” The commands for Driver488/W95
and Driver488/WNT are provided as guides, pending current software revisions. Refer to your
operating system header file for the latest available information specific to your application. The
commands are presented in alphabetical order for ease of use.

II. SOFTWARE GUIDES - 12. Driver488/WNT 12A. Introduction

Personal488 User’s Manual, Rev. 3.0 II-259

 12. Driver488/WNT

Note: Driver488/WIN95 and Driver488/NT from previous manuals, have been renamed
Driver488/W95 and Driver488/WNT, respectively.

Note: The differences among Driver488 for Windows 3.x, Windows 95 and Windows NT are
slight. However, because additional changes are being made to Driver488/W95 and
Driver488/WNT at the time this manual is being revised, refer to your operating system
header file (and README.TXT text file, if present) to obtain the current material on these
driver versions.

To obtain a detailed description of the command references for Driver488/SUB and Driver488/W31,
turn to Section III in this manual entitled “Command References.” The commands for Driver488/W95
and Driver488/WNT are provided as guides, pending current software revisions. Refer to your
operating system header file for the latest available information specific to your application. The
commands are presented in alphabetical order for ease of use.

III-260 Personal488 User’s Manual, Rev. 3.0

Section III:

 COMMAND REFERENCES

Personal488 User’s Manual, Rev. 3.0 III-261

Driver488/DRV Software Guides

III-262 Personal488 User’s Manual, Rev. 3.0

 III. COMMAND REFERENCES

Chapters

13. Overview.. III-261
14. Command Summaries... III-262
15. Command References ... III-282

 13. Overview
This Section on the Driver488 “Command References” contains the detailed descriptions of the
Application Program Interface (API) command references pertaining to Driver488/DRV,
Driver488/SUB, Driver488/W31, Driver488/W95, and Driver488/WNT. Although changes are
currently being made to Driver488/W95 and to Driver488/WNT, the commands which apply to these
drivers are close to those that apply to Driver488/W31. The Driver488/W31 command reference may
be used as a detailed reference for these other two drivers. But for accuracy, refer to your operating
system file header to obtain the actual syntax for your particular driver.

COMMAND REFERENCES 15. Driver488/DRV

Personal488 User’s Manual, Rev. 3.0 III-263

 14. Command Summaries

Sub-Chapters

14A. Driver488/SUB, C Languages ...III-262
14B. Driver488/SUB, QuickBASIC...III-266
14C. Driver488/SUB, Pascal ..III-270
14D. Driver488/W31, C Languages ...III-274
14E. Driver488/W31, Visual Basic ..III-278

 14A. Driver488/SUB, C Languages

Topics

• Function Descriptions ...III-262
• The Commands ..III-264
• Syntax Parameters..III-264
• Defined Constants...III-265
• Structure Definitions ...III-265

Function Descriptions
Command Description
Abort (IntfHandle) Assert IFC
Arm (IntfHandle,Condition) Arm OnEvent for specified event(s)
AutoRemote (IntfHandle,Flag) Assert REN on Output
Buffered (IntfHandle) Return number of buffered bytes
BusAddress (Handle,Prim,Sec) Set IEEE address of interface or device
CheckListener (IntfHandle Prim,

Sec)
Check for device at specified bus address

Clear (Handle) Issue Selected Device Clear (SDC) or Device
Clear (DCL)

ClearList (DevHandles) Clear devices in list
Clock Frequency (IntfHandle, Freq) Specify clock interface frequency
Close (Handle) Close specified handle
ControlLine (IntfHandle) Get bus line status from IEEE 488 or serial bus
Disarm (IntfHandle, Condition) Disarm event handling for specified condition
DmaChannel (IntfHandle, DmaChan) Specify DMA channel
Enter (IntfHandle,Data) Read data from specified device
EnterMore (IntfHandle,Data) Read data from specified device without forcing

address
EnterN (IntfHandle,Data,Count) Read count bytes from specified device
EnterNMore (IntfHandle,Data,Count) Read count bytes without forcing address
EnterX (DevHandle, Data, Count,

ForceAddr, Term, Async,
Read data adjusting all parameters

14A. Driver488/SUB, C Languages III. COMMAND REFERENCES - 14. Command Summaries

III-264 Personal488 User’s Manual, Rev. 3.0

CompStat)
Error (Handle, Display) Control display of error messages
FindListeners (IntfHandle, Prim,

Listener, Limit)
Find devices configurable to listen at specific

address
Finish (IntfHandle) Reassert ATN (see Resume)
GetError (Handle, ErrText) Get error code and error text
GetErrorList (DevHandles, ErrText,

ErrHandle)
Find device in error and identify

Hello (IntfHandle, Message) Verify communication and get revision number
IntLevel (IntfHandle,IntLev) Specify hardware interrupt level of I/O adapter
IOAddress (IntfHandle, IOAddr) Specify I/O port base address of I/O adapter
KeepDevice (DevHandle) Make specified external device permanent
LightPen (IntfHandle, LightPen) Enable or disable detection of interrupts via light

pen status
Listen (IntfHandle, Prim, Sec) Send Listen Address
Local (Handle) Unassert REN (IntfHandle) or issue GTL

(DevHandle)
LocalList (DevHandles) Issue GTL to devices in list
Lol (IntfHandle) Issue LLO bus command
MakeDevice (DevHandle, Name) Create identical copy of existing device
MyListenAddr (IntfHandle) Send My Listen Address
MyTalkAddr (IntfHandle) Send My Talk Address
OnEvent

(IntfHandle,Handler,Argument)
Specify function to be called upon Armed event

OepnName (Name) Open specified device and return device handle
Output (DevHandle,Data) Send data to specified device
OutputN (DevHandle,Data,Count) Send count bytes to specified device
OutputMore (DevHandle,Data) Send count bytes to specified device without

forcing address
OutputNMore (DevHandle,Data,Count) Send count bytes without forcing address
OutputX (DevHandle,Data,Count,

LastForceAddr,Term,Async,CompStat)
Send data to specified device adjusting all

parameters
PassControl (DevHandle) Allow Interface to give control to another

controller on bus
PPoll (IntfHandle) Perform IEEE 488 parallel poll operation
PPollConfig (DevHandle,PPresponse) Configure Parallel Poll response of bus device
PPollDisable (DevHandle) Disable Parallel Poll response of a bus driver
PPollDisableList (DevHandles) Disable Parallel Poll response of several bus

devices
PPollUnconfig (IntfHandle) Disable the Parallel Poll response of all bus

devices
Remote (Handle) Assert REN if IntfHandle, address to Listen if

DevHandle
RemoteList (DevHandles) Address specified external devices to Listen
RemoveDevice (DevHandle) Remove Driver488 device
Request (IntfHandle, SPstatus) Request service from Active Controller by

asserting SRQ
Reset (IntfHandle) Provide warm start of interface, clear all error

conditions
Resume (IntfHandle,Monitor) Unassert ATN
SendCmd (IntfHandle,Bytes,Length) Send command strings with ATN asserted
SendData (DevHandle,Bytes,Length) Send command strings with ATN unasserted
SendEoi (IntfHandle,Bytes,Length) Same as SendData with eoi on last byte
SPoll (DevHandle) Serial Poll device
SPoll (IntfHandle) Get SRQ state
SPollList Serial Poll devices until parameters are met

III. COMMAND REFERENCES - 14. Command Summaries 14A. Driver488/SUB, C Languages

Personal488 User’s Manual, Rev. 3.0 III-265

(DevHandles,SPResult,UntilFlag)
Status (IntfHandle,StatusVal) Return details of state of the driver
Stop (IntfHandle) Halt any asynchronous transfer that may be in

progress
SysController (IntfHandle,SysCont) Specify if interface is to be System Controller
Talk (IntfHandle,Prim,Sec) Send specified Talk Address
Term (Handle,TermP,TermType) Set terminators for interface or device
TimeOut (Handle, Timeout) Set time that must elapse before time out error

declared
Trigger (Handle) Issue Group Execute Trigger
TriggerList (DevHandles) Issue GET to devices in list
UnListen (IntfHandle) Send the Unlisten (UNL) command
UnTalk (IntfHandle) Send the Untalk (UNT) command
Wait (IntfHandle) Wait until asynchronous transfer has completed

The Commands
To obtain a more detailed description of the command references for Driver488/SUB, turn to Chapter
15 “Command References” in this Section. The commands are presented in alphabetical order for ease
of use.

Syntax Parameters
The symbol * (asterisk) refers to a Pointer.

Name Type Description
Argument void far * 32-bit argument
Async bool Flag to indicate async transfer
Bytes unsigned char * Pointer to characters to transfer
CompStat int * Completion status from Driver
Condition ArmCondT Arm/Disarm bit mask
Count long Long count specifier
Data char far * Pointer to a character array
DevHandle DevHandleT External device handle
DevHandles DevHandleT * Pointer to array of handles
Display bool Error message display is ON or OFF
DmaChan int Hardware DMA channel
ErrHandle DevHandleT * Pointer to handle that caused error
ErrText char * Pointer to error text
Flag bool ON or OFF specifier
ForceAddr bool Force address flag
Freq int Clock frequency
Handle DevHandleT Either a DevHandle or an IntfHandle
Handler UserHandlerFP Pointer to OnEvent Handler
IntLev int Hardware Interrupt level
IntfHandle DevHandleT Interface handle
Last bool Terminator on last byte indicator
Length int Number of Bytes
LightPen bool Light Pen emulation is ON or OFF
Limit short Max number of listeners
Listener unsigned short * Pointer to listener list
Message char * Pointer to character array
Monitor bool Data monitor ON or OFF
Name char * Pointer to name string
Ppresponse int Configuration byte

14A. Driver488/SUB, C Languages III. COMMAND REFERENCES - 14. Command Summaries

III-266 Personal488 User’s Manual, Rev. 3.0

Prim char IEEE 488 primary address
SPResult unsigned char * Array of SPOLL results
Sec char IEEE 488 secondary address
SPstatus int Service request status
StatusVal IeeeStatusT * Pointer to status structure
SysCont bool System Controller flag for IEEE 488 interface
TermP TermT * Pointer to terminator structure
TermType int Terminator type: TERMIN or TERMOUT
Timeout long Timeout value in milliseconds
UntilFlag char SpollList operating mode

Defined Constants
Bus Command Constants Miscellaneous Constants
bcUNT 1 IN 1
bcUNL 2 OUT 2
bcMTA 3 ON 1
bcMLA 4 OFF 0
bcTALK 5 ALL -1
bcLISTEN 6 SAME -2

WHILE_SRQ -2
UNTIL_RSV -3
TRUE 1
FALSE 0
MAXHANDLES 50
NOIEEEADRESS -1
NODEVICE -1
NONODE NULL
TERMIN 1
TERMOUT 2

Structure Definitions

typedef struct {
bool SC;
bool CA;
uchar Primaddr;
uchar Secaddr;
bool SRQ;
bool addrChange;
bool talker;
bool listener;
bool triggered;
bool cleared;
bool transfer;
bool byteIn;
bool byteOut;

} IeeeStatusT;

typedef struct {
bool EOI;
int Char; bool
EightBits;
int termChar[2];

} TermT;

III. COMMAND REFERENCES - 14. Command Summaries 14B. Driver488/SUB, QuickBASIC

Personal488 User’s Manual, Rev. 3.0 III-267

Function Descriptions
Command Description
ioAbort% (IntfHandle%) Assert IFC
ioAddress% (IntfHandle%,IOAddr%) Specify I/O port base address of I/O adapter
ioArm% (IntfHandle%,Condition%) Arm OnEvent for specified event(s)
ioAutoRemote% (IntfHandle%,Flag%) Assert REN on Output
ioBuffered& (IntfHandle%) Return number of buffered bytes
ioBusAddress% (Handle%,Prim%,Sec%) Set IEEE address of interface or device
ioCheckListener%

(IntfHandle%,Prim%, Sec%)
Check for device at specified bus address

ioClear% (Handle%) Issue Selected Device Clear (SDC) or Device
Clear (DCL)

ioClearList% (IntHandles%) Clear devices in list
ioClockFrequency% (IntfHandle%,

Freq%)
Specify clock interface frequency

ioClose% (Handle%) Close specified handle
ioControlLine% (IntfHandle%) Get bus line status from IEEE 488 or serial bus
ioDisarm% (IntfHandle%,Condition%) Disarm event handling for specified condition
ioDmaChannel%

(IntfHandle%,DmaChan%)
Specify DMA channel

ioEnter% (IntfHandle%,Data$) Read data from specified device
ioEnterMore& (IntfHandle%,Data$) Read data from specified device without forcing

address
ioEnterN&

(IntfHandle%,Data$,Count&)
Read count bytes from specified device

ioEnterNMore&
(IntfHandle%,Data$,Count&)

Read count bytes without forcing address

ioEnterX& (DevHandle%,Data$,Count&,
ForceAddr%,Term,Async%,CompStat%)

Read data adjusting all parameters

ioError% (Handle%,Display%) Control display of error messages
ioFindListeners% (IntfHandle%,

Prim%, Listener%,Limit%)
Find devices configurable to listen at specific

address
ioFinish% (IntfHandle%) Reassert ATN (see Resume)
ioGetError (Handle%,ErrText$) Get error code and error text
ioGetErrorList%

(DevHandles%(),ErrText$,ErrHandle%)
Find device in error and identify

ioHello% (IntfHandle%,Message$) Verify communication and get revision number
ioIntLevel% (IntfHandle%,IntLev%) Specify hardware interrupt level of I/O adapter
ioKeepDevice% (DevHandle%) Make specified external device permanent
ioLightPen%

(IntfHandle%,LightPen%)
Enable or disable detection of interrupts via light

pen status
ioListen% (IntfHandle%,Prim%,Sec%) Send Listen Address

 14B. Driver488/SUB, QuickBASIC

Topics

• Function Descriptions ...III-266
• The Commands ..III-268
• Syntax Parameters..III-268
• Defined Constants...III-269
• Structure Definitions ...III-269

14B. Driver488/SUB, QuickBASIC III. COMMAND REFERENCES - 14. Command Summaries

III-268 Personal488 User’s Manual, Rev. 3.0

ioLocal% (DevHandle%) Unassert REN (IntfHandle) or issue GTL
(DevHandle)

ioLocalList% (DevHandles%) Issue GTL to devices in list
ioLol% (IntfHandle%) Issue LLO bus command
ioMakeDevice% (DevHandle%,Name$) Create identical copy of existing device
ioMyListenAddr% (IntfHandle%) Send My Listen Address
ioMyTalkAddr% (IntfHandle%) Send My Talk Address
ioOpenName% (Name$) Open specified device and return device handle
ioOutput (DevHandle%,Data$) Send data to specified device
ioOutputN

(DevHandle%,Data$,Count&)
Send count bytes to specified device

ioOutputMore (DevHandle%,Data$) Send count bytes to specified device without
forcing address

ioOutputNMore
(DevHandle%,Data$,Count&)

Send count bytes without forcing address

ioOutputX
(DevHandle%,Data$,Count&,
Last%,ForceAddr%,Term,Async%,
CompStat%)

Send data to specified device adjusting all
parameters

ioPassControl (DevHandle%) Allow Interface to give control to another
controller on bus

ioPPoll% (IntfHandle%) Perform IEEE 488 parallel poll operation
ioPPollConfig%

(DevHandle%,Ppresponse%)
Configure Parallel Poll response of bus device

ioPPollDisable% (DevHandle%) Disable Parallel Poll response of a bus driver
ioPPollDisableList% (DevHandles%) Disable Parallel Poll response of several bus

devices
ioPPollUnconfig% (IntfHandle%) Disable the Parallel Poll response of all bus

devices
ioRemote% (DevHandle%) Assert REN if IntfHandle, address to Listen if

DevHandle
ioRemoteList% (DevHandle%) Address specified external devices to Listen
ioRemoveDevice% (DevHandle%) Remove Driver488 device
ioRequest% (IntfHandle%,

Spstatus%)
Request service from Active Controller by

asserting SRQ
ioReset% (IntfHandle%) Provide warm start of interface, clear all error

conditions
ioResume% (UntfHandle%,Monitor%) Unassert ATN
ioSendCmd%

(IntfHandle%,Bytes$,Length%)
Send command strings with ATN asserted

ioSendData%
(DevHandle%,Bytes$,Length%)

Send command strings with ATN unasserted

ioSendEoi%
(IntfHandle%,Bytes$,Length%)

Same as SendData with EOI on last byte

ioSPoll% (DevHandle%) Serial Poll device
ioSPoll% (IntfHandle%) Get SRQ state
ioSPollList% (DevHandles%(),

SPResult%(),UntilFlag%)
Serial Poll devices until parameters are met

ioStatus% (IntfHandle%,StatusVal) Return details of state of the driver
ioStop% (IntfHandle%) Halt any asynchronous transfer that may be in

progress
ioSysController%

(IntfHandle%,SysCont%)
Specify if interface is to be System Controller

ioTalk% (IntfHandle,Prim%,Sec%) Send specified Talk Address
ioTerm% (Handle%,TermP,TermType%) Set terminators for interface or device
ioTimeOut% (Handle%,Timeout&) Set time that must elapse before time out error

declared
ioTrigger% (Handle%) Issue Group Execute Trigger

III. COMMAND REFERENCES - 14. Command Summaries 14B. Driver488/SUB, QuickBASIC

Personal488 User’s Manual, Rev. 3.0 III-269

ioTriggerList% (DevHandles%()) Issue GET to devices in list
ioUnListen% (IntfHandle%) Send the Unlisten (UNL) command
ioUnTalk% (IntfHandle%) Send the Untalk (UNT) command
ioWait% (IntfHandle%) Wait until asynchronous transfer has completed

The Commands
To obtain a more detailed description of the command references for Driver488/SUB, turn to Chapter
15 “Command References” in this Section. The commands are presented in alphabetical order for ease
of use.

Syntax Parameters
Name Type Description
Async% integer Flag to indicate async transfer
Bytes$ string String containing characters to transfer
CompStat% integer Completion status from Driver
Condition% integer Arm/Disarm bit mask
Count& long Long count specifier
Data$ string Buffer used to send or receive data
DevHandle% integer External device handle
DevHandles%() integer array Array of handles
Display% integer Error message display is ON or OFF
DmaChan% integer Hardware DMA channel
ErrHandle% integer Handle that caused error
ErrText$ string Buffer containing error text
Flag% integer ON or OFF specifier
ForceAddr% integer Force address flag
Freq% integer Clock frequency
Handle% integer Either a DevHandle or an IntfHandle
IntLev% integer Hardware Interrupt level
IntfHandle% integer Interface handle
IOAddr% integer I/O base address
Last% integer Terminator on last byte indicator
Length% integer Number of Bytes
LightPen% integer Light Pen emulation is ON or OFF
Limit% integer Max number of listeners
Listener%() integer array Array of FindListener results
Message$ string Buffer used to receive data
Monitor% integer Data monitor ON or OFF
Name$ string Name of external device or DOS device
Ppresponse% integer Configuration byte
Prim% integer IEEE 488 primary address
SPResult%() integer array Array of SPOLL results
Sec% integer IEEE 488 primary address
Spstatus% integer Service request status
StatusVal IeeeStatus Status structure
SysCont% integer System Controller flag for IEEE 488 interface
TermP terms Terms TYPE
TermType% integer Terminator type: TERMIN or TERMOUT
Timeout& integer Timeout value in milliseconds
UntilFlag% integer SpollList operating mode

14B. Driver488/SUB, QuickBASIC III. COMMAND REFERENCES - 14. Command Summaries

III-270 Personal488 User’s Manual, Rev. 3.0

Defined Constants

Structure Definitions

TYPE IeeeStatus
SC AS integer
CA AS integer
Primaddr AS integer
Secaddr AS integer
SRQ AS integer
addrChange AS integer
talker AS integer
listener AS integer
triggered AS integer
cleared AS integer
transfer AS integer
byteIn AS integer
byteOut AS integer

END TYPE

TYPE terms
EOI; AS integer
Char; AS integer
EightBits; AS integer
term1 AS integer
term2 AS integer

END TYPE

Arm/Disarm Bit Mask ControlLine Bit Mask for Serial Bus
acError &H800 clDSR &H20
acSRQ &H400 clRI &H10
acPeripheral &H200 clDCD &H08
acController &H100 clCTS &H04
acTrigger &H080 clDTR &H02
acClear &H040 clRTS &H01
acTalk &H020
acListen &H010 Bus Commands
acIdle &H008 bcUNT 1
acByteIn &H004 bcUNL 2
acByteOut &H002 bcMTA 3
acChange &H001 bcMLA 4

bcTALK 5
bcLISTEN 6

Completion Status Bit Mask
ccCount &H001 Miscellaneous
ccBuffer &H002 IN 1
ccTerm &H004 OUT 2
ccEnd &H008 ON 1
ccChange &H0010 OFF 0
ccStop &H0020 ALL -1
ccDone &H4000 SAME -2
ccError &H8000 WHILE_SRQ -2

UNTIL_RSV -3
TRUE 1

ControlLine Bit Mask for IEEE 488 Bus FALSE 0
clEOI &H80 MAXHANDLES 50
clSRQ &H40 NOIEEEADRESS -1
clNRFD &H20 NODEVICE -1
clDAC &H10 NONODE NULL
clDAV &H08 TERMIN 1
clATN &H04 TERMOUT 2

III. COMMAND REFERENCES - 14. Command Summaries 14C. Driver488/SUB, Pascal

Personal488 User’s Manual, Rev. 3.0 III-271

Function Descriptions
Command Description
ioAbort (IntfHandle) Assert IFC
ioAddress (IntfHandle, IOAddr) Specify I/O port base address of I/O adapter
ioArm (IntfHandle,Condition) Arm OnEvent for specified event(s)
ioAutoRemote (IntfHandle,Flag) Assert REN on Output
ioBuffered (IntfHandle) Return number of buffered bytes
ioBusAddress (Handle,Prim,Sec) Set IEEE address of interface or device
ioCheckListener (IntfHandle Prim,

Sec)
Check for device at specified bus address

ioClockFrequency (IntfHandle,
Freq)

Specify clock interface frequency

ioClose (Handle) Close specified handle
ioControlLine (IntfHandle) Get bus line status from IEEE 488 or serial bus
ioDisarm (IntfHandle, Condition) Disarm event handling for specified condition
ioDmaChannel (IntfHandle, DmaChan) Specify DMA channel
ioEnter (IntfHandle,Data) Read data from specified device
ioEnterMore (IntfHandle,Data) Read data from specified device without forcing

address
ioEnterN (IntfHandle,Data,Count) Read count bytes from specified device
ioEnterNMore

(IntfHandle,Data,Count)
Read count bytes without forcing address

ioEnterX (DevHandle, Data, Count,
ForceAddr, Term, Async,
CompStat)

Read data adjusting all parameters

ioError (Handle, Display) Control display of error messages
ioFindListeners (IntfHandle, Prim,

Listener, Limit)
Find devices configurable to listen at specific

address
ioFinish (IntfHandle) Reassert ATN (see Resume)
ioGetError (Handle, ErrText) Get error code and error text
ioGetErrorList (DevHandles,

ErrText, ErrHandle)
Find device in error and identify

ioHello (IntfHandle, Message) Verify communication and get revision number
ioIntLevel (IntfHandle,IOAddr) Specify hardware interrupt level of I/O adapter
ioKeepDevice (DevHandle) Make specified external device permanent
ioLightPen (IntfHandle, LightPen) Enable or disable detection of interrupts via light

pen status
ioListen (IntfHandle, Prim, Sec) Send Listen Address
ioLocal (Handle) Unassert REN (IntfHandle) or issue GTL

(DevHandle)
ioLocalList (DevHandles) Issue GTL to devices in list
ioLol (IntfHandle) Issue LLO bus command

 14C. Driver488/SUB, Pascal

Topics

• Function Descriptions ...III-270
• The Commands ..III-272
• Syntax Parameters..III-272
• Defined Constants...III-272
• Structure Definitions ...III-273

14C. Driver488/SUB, Pascal III. COMMAND REFERENCES - 14. Command Summaries

III-272 Personal488 User’s Manual, Rev. 3.0

ioMakeDevice (DevHandle, Name) Create identical copy of existing device
ioMyListenAddr (IntfHandle) Send My Listen Address
ioMyTalkAddr (IntfHandle) Send My Talk Address
ioOnEvent

(IntfHandle,Handler,Argument)
Specify function to be called upon Armed event

ioOpenName (Name) Open specified device and return device handle
ioOutput (DevHandle,Data) Send data to specified device
ioOutputN (DevHandle,Data,Count) Send count bytes to specified device
ioOutputMore (DevHandle,Data) Send count bytes to specified device without

forcing address
ioOutputNMore

(DevHandle,Data,Count)
Send count bytes without forcing address

ioOutputX (DevHandle,Data,Count,
Last ForceAddr, Term, Async,
CompStat)

Send data to specified device adjusting all
parameters

ioPassControl (DevHandle) Allow Interface to give control to another
controller on bus

ioPPoll (IntfHandle) Perform IEEE 488 parallel poll operation
ioPPollConfig

(DevHandle,PPresponse)
Configure Parallel Poll response of bus device

ioPPollDisable (DevHandle) Disable Parallel Poll response of a bus driver
ioPPollDisableList (DevHandles) Disable Parallel Poll response of several bus

devices
ioPPollUnconfig (IntfHandle) Disable the Parallel Poll response of all bus

devices
ioRemote (Handle) Assert REN if IntfHandle, address to Listen if

DevHandle
ioRemoteList (DevHandle) Address specified external devices to Listen
ioRemoveDevice (DevHandle) Remove Driver488 device
ioRequest (IntfHandle, SPstatus) Request service from Active Controller by

asserting SRQ
ioReset (IntfHandle) Provide warm start of interface, clear all error

conditions
ioResume (UntfHandle,Monitor) Unassert ATN
ioSendCmd

(IntfHandle,Bytes,Length)
Send command strings with ATN asserted

ioSendData
(DevHandle,Bytes,Length)

Send command strings with ATN unasserted

ioSendEoi
(IntfHandle,Bytes,Length)

Same as SendData with eoi on last byte

ioSPoll (DevHandle) Serial Poll device
ioSPoll (IntfHandle) Get SRQ state
ioSPollList

(DevHandles,SPResult,UntilFlag)
Serial Poll devices until parameters are met

ioStatus (IntfHandle,StatusVal) Return details of state of the driver
ioStop (IntfHandle) Halt any asynchronous transfer that may be in

progress
ioSysController

(IntfHandle,SysCont)
Specify if interface is to be System Controller

ioTalk (IntfHandle,Pri,Sec) Send specified Talk Address
ioTerm (Handle,TermP,TermType) Set terminators for interface or device
ioTimeOut (Handle,TermP,TermType) Set time that must elapse before time out error

declared
ioTrigger (Handle) Issue Group Execute Trigger
ioTriggerList (DevHandles) Issue GET to devices in list
ioUnListen (IntfHandle) Send the Unlisten (UNL) command
ioUnTalk (IntfHandle) Send the Untalk (UNT) command
ioWait (IntfHandle) Wait until asynchronous transfer has completed

III. COMMAND REFERENCES - 14. Command Summaries 14C. Driver488/SUB, Pascal

Personal488 User’s Manual, Rev. 3.0 III-273

The Commands
To obtain a more detailed description of the command references for Driver488/SUB, turn to Chapter
15 “Command References” in this Section. The commands are presented in alphabetical order for ease
of use.

Syntax Parameters
Name Type Description
Argument var (untyped) 32 bit argument
Async boolean Flag to indicate async transfer
BuffString string Buffer containing characters to transfer
Bytes var (untyped) Pointer to characters to transfer
CompStat var (untyped) Completion status from Driver
Condition integer Arm/Disarm bit mask
Count longint Long count specifier
Data var (untyped) Pointer to a character array
DataString var string

DevHandle integer External device handle
DevHandles DevPtr Pointer to array of handles
Display boolean Error message display is ON or OFF
DmaChan integer Hardware DMA channel
ErrHandle var integer Pointer to handle that caused error
ErrText var string Pointer to error text
Flag boolean ON or OFF specifier
ForceAddr boolean Force address flag
Freq integer Clock frequency
Handle integer Either a DevHandle or an IntfHandle
Handler HandlerProcPtr Pointer to OnEvent Handler
IntLev integer Hardware Interrupt level
IntfHandle integer Interface handle
IOAddr integer

Last boolean Terminator on last byte indicator
Length integer Number of Bytes
LightPen boolean Light Pen emulation is ON or OFF
Limit integer Max number of listeners
Listener var (untyped) Pointer to listener list
Message var string Pointer to character array
Monitor boolean Data monitor ON or OFF
Name string Pointer to name string
Ppresponse integer Configuration byte
Prim integer IEEE 488 primary address
SPResult var (untyped) Array of SPOLL results
Sec integer IEEE 488 primary address
SPstatus integer Service request status
StatusVal var (untyped) Pointer to status structure
SysCont boolean System Controller flag for IEEE 488 interface
Term var (untyped) Terminator structure
TermType integer Terminator type: TERMIN or TERMOUT
Timeout longint Timeout value in milliseconds
UntilFlag integer SpollList operating mode

14C. Driver488/SUB, Pascal III. COMMAND REFERENCES - 14. Command Summaries

III-274 Personal488 User’s Manual, Rev. 3.0

Defined Constants

Structure Definitions

type
IeeeStatusRec = record

SC :boolean;
CA :boolean;
Primaddr :integer;
Secaddr :integer;
SRQ :boolean;
addrChange :boolean;
talker :boolean;
listener :boolean;
triggered :boolean;
cleared :boolean;
transfer :boolean;
byteIn :boolean;
byteOut :boolean;

end;

type
termrec = packed record

EOI :boolean;
nChar :integer;
EightBits :boolean;
termChar :termsvals;

end;

Arm/Disarm Bit Mask ControlLine Bit Mask for Serial Bus
acError $800 clDSR $20
acSRQ $400 clRI $10
acPeripheral $200 clDCD $08
acController $100 clCTS $04
acTrigger $080 clDTR $02
acClear $040 clRTS $01
acTalk $020
acListen $010 Bus Commands
acIdle $008 bcUNT 1
acByteIn $004 bcUNL 2
acByteOut $002 bcMTA 3
acChange $001 bcMLA 4

bcTALK 5
bcLISTEN 6

Completion Status Bit Mask
ccCount $0001 Miscellaneous Commands
ccBuffer $0002 IN 1
ccTerm $0004 OUT 2
ccEnd $0008 ON 1
ccChange $0010 OFF 0
ccStop $0020 ALL -1
ccDone $4000 SAME -2
ccError $8000 WHILE_SRQ -2

UNTIL_RSV -3
TRUE 1

ControlLine Bit Mask for IEEE 488 Bus FALSE 0
clEOI $80 MAXHANDLES 50
clSRQ $40 NOIEEEADRESS -1
clNRFD $20 NODEVICE -1
clDAC $10 NONODE NULL
clDAV $08 TERMIN 1
clATN $04 TERMOUT 2

III. COMMAND REFERENCES - 14. Command Summaries 14D. Driver488/W31, C Languages

Personal488 User’s Manual, Rev. 3.0 III-275

Function Descriptions
Command Description
Abort (IntfHandle) Assert IFC
Arm (IntfHandle,Condition) Arm OnEvent for specified event(s)
AutoRemote (IntfHandle,Flag) Assert REN on Output
Buffered (IntfHandle) Return number of buffered bytes
BusAddress (Handle,Prim,Sec) Set IEEE address of interface or device
CheckListener (IntfHandle Prim,

Sec)
Check for device at specified bus address

Clear (Handle) Issue Selected Device Clear (SDC) or Device
Clear (DCL)

ClearList (DevHandles) Clear devices in list
Clock Frequency (IntfHandle, Freq) Specify clock interface frequency
Close (Handle) Close specified handle
ControlLine (IntfHandle) Get bus line status from IEEE 488 or serial bus
Disarm (IntfHandle, Condition) Disarm event handling for specified condition
DmaChannel (IntfHandle, DmaChan) Specify DMA channel
Enter (IntfHandle,Data) Read data from specified device
EnterMore (IntfHandle,Data) Read data from specified device without forcing

address
EnterN (IntfHandle,Data,Count) Read count bytes from specified device
EnterNMore (IntfHandle,Data,Count) Read count bytes without forcing address
EnterX (DevHandle, Data, Count,

ForceAddr, Term, Async,
CompStat)

Read data adjusting all parameters

Error (Handle, Display) Control display of error messages
FindListeners (IntfHandle, Prim,

Listener, Limit)
Find devices configurable to listen at specific

address
Finish (IntfHandle) Reassert ATN (see Resume)
GetError (Handle, ErrText) Get error code and error text
GetErrorList (DevHandles, ErrText,

ErrHandle)
Find device in error and identify

Hello (IntfHandle, Message) Verify communication and get revision number
IntLevel (IntfHandle,IntLev) Specify hardware interrupt level of I/O adapter
IOAddress (IntfHandle, IOAddr) Specify I/O port base address of I/O adapter
KeepDevice (DevHandle) Make specified external device permanent
LightPen (IntfHandle, LightPen) Enable or disable detection of interrupts via light

pen status
Listen (IntfHandle, Prim, Sec) Send Listen Address
Local (Handle) Unassert REN (IntfHandle) or issue GTL

(DevHandle)

 14D. Driver488/W31, C Languages

Topics

• Function Descriptions ...III-274
• The Commands ..III-276
• Syntax Parameters..III-276
• Defined Constants...III-276
• Structure Definitions ...III-277

14D. Driver488/W31, C Languages III. COMMAND REFERENCES - 14. Command Summaries

III-276 Personal488 User’s Manual, Rev. 3.0

LocalList (DevHandles) Issue GTL to devices in list
Lol (IntfHandle) Issue LLO bus command
MakeDevice (DevHandle, Name) Create identical copy of existing device
MyListenAddr (IntfHandle) Send My Listen Address
MyTalkAddr (IntfHandle) Send My Talk Address
OnEvent

(IntfHandle,Handler,Argument)
Specify function to be called upon Armed event

OpenName (Name) Open specified device and return device handle
Output (DevHandle,Data) Send data to specified device
OutputN (DevHandle,Data,Count) Send count bytes to specified device
OutputMore (DevHandle,Data) Send count bytes to specified device without

forcing address
OutputNMore (DevHandle,Data,Count) Send count bytes without forcing address
OutputX (DevHandle,Data,Count,

LastForceAddr, Term, Async,
CompStat)

Send data to specified device adjusting all
parameters

PassControl (DevHandle) Allow Interface to give control to another
controller on bus

PPoll (IntfHandle) Perform IEEE 488 parallel poll operation
PPollConfig (DevHandle,PPresponse) Configure Parallel Poll response of bus device
PPollDisable (DevHandle) Disable Parallel Poll response of a bus driver
PPollDisableList (DevHandles) Disable Parallel Poll response of several bus

devices
PPollUnconfig (IntfHandle) Disable the Parallel Poll response of all bus

devices
Remote (Handle) Assert REN if IntfHandle, address to Listen if

DevHandle
RemoteList (DevHandles) Address specified external devices to Listen
RemoveDevice (DevHandle) Remove Driver488 device
Request (IntfHandle, SPstatus) Request service from Active Controller by

asserting SRQ
Reset (IntfHandle) Provide warm start of interface, clear all error

conditions
Resume (IntfHandle,Monitor) Unassert ATN
SendCmd (IntfHandle,Bytes,Length) Send command strings with ATN asserted
SendData (DevHandle,Bytes,Length) Send command strings with ATN unasserted
SendEoi (IntfHandle,Bytes,Length) Same as SendData with EOI on last byte
SPoll (DevHandle) Serial Poll device
SPoll (IntfHandle) Get SRQ state
SPollList

(DevHandles,SPResult,UntilFlag)
Serial Poll devices until parameters are met

Status (IntfHandle,StatusVal) Return details of state of the driver
Stop (IntfHandle) Halt any asynchronous transfer that may be in

progress
SysController (IntfHandle,SysCont) Specify if interface is to be System Controller
Talk (IntfHandle,Prim,Sec) Send specified Talk Address
Term (Handle,TermP,TermType) Set terminators for interface or device
TimeOut (Handle, Timeout) Set time that must elapse before time out error

declared
Trigger (Handle) Issue Group Execute Trigger
TriggerList (DevHandles) Issue GET to devices in list
UnListen (IntfHandle) Send the Unlisten (UNL) command
UnTalk (IntfHandle) Send the Untalk (UNT) command
Wait (IntfHandle) Wait until asynchronous transfer has completed

III. COMMAND REFERENCES - 14. Command Summaries 14D. Driver488/W31, C Languages

Personal488 User’s Manual, Rev. 3.0 III-277

The Commands
To obtain a more detailed description of the command references for Driver488/W31, turn to Chapter
15 “Command References” in this Section. The commands are presented in alphabetical order for ease
of use.

Syntax Parameters
The symbol * (asterisk) refers to a Pointer.

Name Type Description
Argument void far * 32 bit argument
Async bool Flag to indicate async transfer
Bytes unsigned char * Pointer to characters to transfer
CompStat int * Completion status from Driver
Condition ArmCondT Arm/Disarm bit mask
Count long Long count specifier
Data char far * Pointer to a character array
DevHandle DevHandleT External device handle
DevHandles DevHandleT * Pointer to array of handles
Display bool Error message display is ON or OFF
DmaChan int Hardware DMA channel
ErrHandle DevHandleT * Pointer to handle that caused error
ErrText char * Pointer to error text
Flag bool ON or OFF specifier
ForceAddr bool Force address flag
Freq int Clock frequency
Handle DevHandleT Either a DevHandle or an IntfHandle
Handler UserHandlerFP Pointer to OnEvent Handler
IntLev int Hardware Interrupt level
IntfHandle DevHandleT Interface handle
Last bool Terminator on last byte indicator
Length int Number of Bytes
LightPen bool Light Pen emulation is ON or OFF
Limit short Max number of listeners
Listener unsigned short * Pointer to listener list
Message char * Pointer to character array
Monitor bool Data monitor ON or OFF
Name char * Pointer to name string
Ppresponse int Configuration byte
Prim char IEEE 488 primary address
SPResult unsigned char * Array of SPOLL results
Sec char IEEE 488 secondary address
SPstatus int Service request status
StatusVal IeeeStatusT * Pointer to status structure
SysCont bool System Controller flag for IEEE 488 interface
TermP TermT * Pointer to terminator structure
TermType int Terminator type: TERMIN or TERMOUT
Timeout long Timeout value in milliseconds
UntilFlag char SpollList operating mode

14D. Driver488/W31, C Languages III. COMMAND REFERENCES - 14. Command Summaries

III-278 Personal488 User’s Manual, Rev. 3.0

Defined Constants
Bus Command Constants Miscellaneous Constants:
bcUNT 1 IN 1
bcUNL 2 OUT 2
bcMTA 3 ON 1
bcMLA 4 OFF 0
bcTALK 5 ALL -1
bcLISTEN 6 SAME -2

WHILE_SRQ -2
UNTIL_RSV -3
TRUE 1
FALSE 0
MAXHANDLES 50
NOIEEEADRESS -1
NODEVICE -1
NONODE NULL
TERMIN 1
TERMOUT 2

Structure Definitions

typedef struct {
bool SC;
bool CA;
uchar Primaddr;
uchar Secaddr;
bool SRQ;
bool addrChange;
bool talker;
bool listener;
bool triggered;
bool cleared;
bool transfer;
bool byteIn;
bool byteOut;

} IeeeStatusT;

typedef struct {
bool EOI;
int Char; bool
EightBits;
int termChar[2];

} TermT;

III. COMMAND REFERENCES - 14. Command Summaries 14E. Driver488/W31, Visual Basic

Personal488 User’s Manual, Rev. 3.0 III-279

Function Descriptions
Command Description
Abort (IntfHandle) Assert IFC
Arm (IntfHandle,Condition) Arm OnEvent for specified event(s)
AutoRemote (IntfHandle,Flag) Assert REN on Output
Buffered (IntfHandle) Return number of buffered bytes
BusAddress (Handle,Prim,Sec) Set IEEE 488 address of interface or device
CheckListener (IntfHandle Prim,

Sec)
Check for device at specified bus address

Clear (Handle) See ioClear
ClearList (ListFirstElement (0)) Clear devices in list
Clock Frequency (IntfHandle, Freq) Specify clock interface frequency
Close (Handle) See ioClose
ControlLine (IntfHandle) Get bus line status from IEEE 488 or serial bus
Disarm (IntfHandle, Condition) Disarm event handling for specified condition
DmaChannel (IntfHandle, DmaChan) Specify DMA channel
Enter (IntfHandle,Data) See ioEnter
EnterI (IntfHandle,Data) Read binary data from specified device
EnterMore (IntfHandle,Data) Read data from specified device without forcing

address
EnterN (IntfHandle,Data,Count) Read count bytes from specified device
EnterNI (IntfHandle,Data,Count) Read count bytes from specified device (binary)
EnterNMore (IntfHandle,Data,Count) Read count bytes without forcing address
EnterNMoreI

(IntfHandle,Data,Count)
Read count bytes without forcing address (binary)

EnterXI(DevHandle, Data, Count,
ForceAddr, Term, Async,
CompStat)

Read binary data adjusting all parameters

Error (Handle, Display) See ioError
FindListeners (IntfHandle, Prim,

ListFirstElement (0), Limit)
Find devices configurable to listen at specific

address
Finish (IntfHandle) Reassert ATN (see Resume)
GetError (Handle, ByValErrText) Get error code and error text
GetErrorList (ListFirstElement(0),

ByValErrText, ErrHandle)
Find device in error and identify

Hello (IntfHandle, ByValMessage) Verify communication and get revision number
IntLevel (IntfHandle,IntLev) Specify hardware interrupt level of I/O adapter
IOAddress (IntfHandle, IOAddr) Specify I/O port base address of I/O adapter
ioClear (Handle) Issue Selected Device Clear (SDC) or Device

Clear (DCL)
ioClose (Handle) Close specified handle

 14E. Driver488/W31, Visual Basic

Topics

• Function Descriptions ...III-278
• The Commands ..III-280
• Syntax Parameters..III-280
• Defined Constants...III-281
• Structure Definitions ...III-281

14E. Driver488/W31, Visual Basic III. COMMAND REFERENCES - 14. Command Summaries

III-280 Personal488 User’s Manual, Rev. 3.0

ioEnter () Read data from specified device
ioError (Handle, Display) Control display of error messages
ioLocal (Handle) Unassert REN (IntfHandle) or issue GTL

(DevHandle)
ioOutput (DevHandle, Data) Send data to specified device
ioReset (IntfHandle) Provide warm start of interface, clear all error

conditions
ioResume (IntfHandle, Monitor) Unassert ATN
ioStop (IntfHandle) Halt any asynchronous transfer that may be in

progress
ioWait (IntfHandle) Wait until asynchronous transfer has completed
KeepDevice (DevHandle) Make specified external device permanent
Listen (IntfHandle, Prim, Sec) Send Listen Address
Local (Handle) See ioLocal
LocalList (ListFirstElement) Issue GTL to devices in list
Lol (IntfHandle) Issue LLO bus command
MakeDevice (DevHandle, ByValName) Create identical copy of existing device
MyListenAddr (IntfHandle) Send My Listen Address
MyTalkAddr (IntfHandle) Send My Talk Address
OpenName (ByValName) Open specified device and return device handle
Output (DevHandle,Data) See ioOutput
OutputI (DevHandle,Data) Send binary data to the specified device
OutputN (DevHandle,Data,Count) Send count bytes to specified device
OutputNI (DevHandle,Data,Count) Send count bytes to specified device (Binary)
OutputMore (DevHandle,Data) Send count bytes to specified device without

forcing address
OutputNMore (DevHandle,Data,Count) Send count bytes without forcing address
OutputNMoreI

(DevHandle,Data,Count)
Send count bytes without forcing address

(Binary)
OutputX (DevHandle,Data,Count,

LastForceAddr, Term, Async,
CompStat)

Send data to specified device adjusting all
parameters

OutputXI (DevHandle,Data,Count,
LastForceAddr, Term, Async,
CompStat)

Send binary data to specified device adjusting all
parameters

PassControl (DevHandle) Allow Interface to give control to another
controller on bus

PPoll (IntfHandle) Perform IEEE 488 parallel poll operation
PPollConfig (DevHandle,PPresponse) Configure Parallel Poll response of bus device
PPollDisable (DevHandle) Disable Parallel Poll response of a bus driver
PPollDisableList (ListFirstElement

(0))
Disable Parallel Poll response of several bus

devices
PPollUnconfig (IntfHandle) Disable the Parallel Poll response of all bus

devices
Remote (Handle) Assert REN if IntfHandle, address to Listen if

DevHandle
RemoteList (ListFirstElement (0)) Address specified external devices to Listen
RemoveDevice (DevHandle) Remove Driver488 device
Request (IntfHandle, SPstatus) Request service from Active Controller by

asserting SRQ
Reset (IntfHandle) See ioReset
Resume (IntfHandle,Monitor) See ioResume
SendCmd (IntfHandle,Bytes,Length) Send command strings with ATN asserted
SendData (DevHandle,Bytes,Length) Send command strings with ATN unasserted
SendEoi (IntfHandle,Bytes,Length) Same as SendData with EOI on last byte
SPoll (DevHandle) Serial Poll device

III. COMMAND REFERENCES - 14. Command Summaries 14E. Driver488/W31, Visual Basic

Personal488 User’s Manual, Rev. 3.0 III-281

SPoll (IntfHandle) Get SRQ state
SPollList (ListFirstElement(0),

ResultFirstElement(0),UntilFlag
)

Serial Poll devices until parameters are met

Status (IntfHandle,StatusVal) Return details of state of the driver
Stop (IntfHandle) See ioStop
SysController (IntfHandle,SysCont) Specify if interface is to be System Controller
Talk (IntfHandle,Prim,Sec) Send specified Talk Address
Term (Handle,TermVal,TermType) Set terminators for interface or device
TimeOut (Handle, Timeout) Set time that must elapse before time out error

declared
Trigger (Handle) Issue Group Execute Trigger
TriggerList (ListFirstElement (0)) Issue GET to devices in list
UnListen (IntfHandle) Send the Unlisten (UNL) command
UnTalk (IntfHandle) Send the Untalk (UNT) command
Wait (IntfHandle) See ioWait

The Commands
To obtain a more detailed description of the command references for Driver488/W31, turn to Chapter
15 “Command References” in this Section. The commands are presented in alphabetical order for ease
of use.

Syntax Parameters

Name Type Description
Async integer Flag to indicate async transfer
Bytes string String containing characters to transfer
ByVal ErrText string Buffer containing error text
ByVal Message string Buffer used to receive Hello message
ByVal Name string Name of external device or DOS device
CompStat integer Completion status from Driver
Count long Long count specifier
Data string Buffer used to send or receive data
DevHandle integer External device handle
Display integer Error message display is TURN ON or TURN

OFF
DmaChan integer Hardware DMA channel
ErrHandle integer Handle that caused error
Flag integer ON or OFF specifier
ForceAddr integer Force address flag
Freq integer Clock frequency
Handle integer Either a DevHandle or an IntfHandle
IntLev integer Hardware Interrupt level
IntfHandle integer Interface handle
IOAddr integer I/O base address
Last integer Terminator on last byte indicator
Length integer Number of Bytes
Limit integer Max number of listeners
ListFirstElement(0) integer array First element of the array of handles
Monitor integer Data monitor ON or OFF
PPresponse integer Configuration byte
Prim integer IEEE 488 primary address
ResultFirstElement(0) integer First element of the array of results
Sec integer IEEE 488 secondary address

14E. Driver488/W31, Visual Basic III. COMMAND REFERENCES - 14. Command Summaries

III-282 Personal488 User’s Manual, Rev. 3.0

SPstatus integer Service request status
StatusVal IeeeStatus Status TYPE
TermType integer Terminator type: TERMIN or TERMOUT
TermVal terms Terminator TYPE
Timeout integer Timeout value in milliseconds
UntilFlag integer SpollList operating mode

Defined Constants
Completion Status Bit Mask ControlLine Bit Mask for IEEE 488 Bus
ccCount &H0001 clEOI &H80
ccBuffer &H0002 clSRQ &H40
ccTerm &H0004 clNRFD &H20
ccEnd &H0008 c1NDAC &H10
ccChange &H0010 clDAV &H08
ccStop &H0020 clATN &H04
ccDone &H4000
ccError &H8000 ControlLine Bit Mask for Serial Bus

clDSR &H20
clRI &H10
clDCD &H08
clCTS &H04

Miscellaneous Commands clDTR &H02
TURNON 1 clRTS &H01
TURNOFF 2
ALL -1 Bus Commands
WHILESRQ -2 bcUNT 1
UNTILRSV -3 bcUNL 2
NOIEEEADRESS -1 bcMTA 3
NODEVICE% -1 bcMLA 4
TERMIN 1 bcTALK 5
TERMOUT 2 bcLISTEN 6

Structure Definitions

TYPE IeeeStatus
SC AS Integer
CA AS Integer
Primaddr AS Integer
Secaddr AS Integer
SRQ AS Integer
addrChange AS Integer
talker AS Integer
listener AS Integer
triggered AS Integer
cleared AS Integer
transfer AS Integer
byteIn AS Integer
byteOut AS Integer

END TYPE

TYPE Terms
EOI AS Integer
nChar AS Integer
EightBits AS Integer
term1 AS Integer
term2 AS Integer

END TYPE

III. COMMAND REFERENCES - 14. Command Summaries 14E. Driver488/W31, Visual Basic

Personal488 User’s Manual, Rev. 3.0 III-283

 15A. Driver488/DRV Commands
This Sub-Chapter contains the command references for Driver488/DRV, using the QuickBASIC
language. The commands are presented in alphabetical order on the following pages for ease of use.
For more information on the format of the command descriptions, turn to the Sub-Chapter “Command
Descriptions” of Chapter 8.

Bus Management Commands Page Low-Level Bus Commands Page
ABORT III-283 SEND III-305
AUTO REMOTE III-284
CHECK LISTENER III-285
CONTROL LINE III-286 Event Handling Commands Page
FIND LISTENERS III-292 ARM III-283
PASS CONTROL III-301 DISARM III-286
PPOLL CONFIG or PPC III-301
PPOLL DISABLE or PPD III-302
PPOLL UNCONFIG or PPU III-302 I/O Management Commands Page
REQUEST III-303 BUFFERED III-284
RESET III-304 FINISH III-293

RESUME III-304
Instrument Management
Commands

Page STOP III-309

CLEAR III-285 WAIT III-311
LOCAL III-296
LOCAL LOCKOUT or LOL III-296
REMOTE III-302 Interface Management Commands Page
TRIGGER III-310 CLOCK FREQUENCY III-285

DMA CHANNEL III-287
Device Management Commands Page EOL III-290
BUS ADDRESS III-284 INT LEVEL III-293
KEEP DEVICE III-295 IO ADDRESS III-293
KEEP DOS NAME III-295 SYS CONTROLLER III-309
MAKE DEVICE III-297 TERM III-309
MAKE DOS NAME III-297 TIME OUT III-310
REMOVE DEVICE III-303
REMOVE DOS NAME III-303

Error Management Commands Page
Device I/O Commands Page ERROR III-291
ENTER (Controller Mode) III-287 FILL III-291
ENTER # count BUFFER (Controller) III-288
ENTER (Peripheral Mode) III-288
ENTER # count BUFFER (Peripheral) III-289 Miscellaneous Commands Page
OUTPUT (Controller Mode) III-297 HELLO III-293
OUTPUT # count BUFFER (Control.) III-298 IOCTL (BASIC Statement) III-294
OUTPUT (Peripheral Mode) III-298 IOCTL$ (BASIC Statement) III-294
OUTPUT # count BUFFER (Periph.) III-300 LIGHT PEN III-296
PPOLL III-301 STATUS III-307
SPOLL III-306
SPOLLLIST III-307

 15. Command References

Sub-Chapters

15A. Driver488/DRV Commands..III-282
15B. Driver488/SUB, W31, W95, & WNT Commands..............III-312

15A. Driver488/DRV Commands III. COMMAND REFERENCES - 15. Command References

III-284 Personal488 User’s Manual, Rev. 3.0

ABORT
SYNTAX ABORT[addr]

RESPONSE None

MODE SC or *SC•CA
BUS STATES IFC, *IFC (SC mode)

ATN, MTA (*SC•CA mode)
SEE ALSO SYS CONTROLLER

EXAMPLE PRINT#1,"ABORT"

As the System Controller (SC), whether Driver488 is the Active Controller or not, the ABORT command
causes the Interface Clear (IFC) bus management line to be asserted for at least 500 microseconds. By
asserting IFC, Driver488 regains control of the bus even if one of the devices has locked it up during a
data transfer. Asserting IFC also makes Driver488 the Active Controller. If a Non System Controller
was the Active Controller then it is forced to relinquish control to Driver488. ABORT forces all IEEE
488 device interfaces into a quiescent state.

If Driver488 is a Non System Controller in the Active Controller state (*SC•CA), it asserts attention
(ATN), which stops any bus transactions, and then sends its Talk address to “Untalk” any other Talkers
on the bus. It does not (and cannot) assert IFC.

ARM
SYNTAX ARM interrupt [[,]interrupt...]

RESPONSE None

MODE Any

BUS STATES None

SEE ALSO DISARM, LIGHT PEN; OnEvent (Sub-Chapter 15B)

EXAMPLE 100 ON PEN GOSUB 1000 Set up service routine.
110 PEN ON Enable interrupt polling.
PRINT#1,"ARMSRQ" Detect Service Request
1000 PRINT#1,"SPOLL16" Get Serial Poll status from
1010 INPUT#2,STATUSBYTE device and act accordingly.
1999 RETURN Done with interrupt.

The following ARM conditions are supported:

Condition Description
SRQ The Service Request bus line is asserted.
Peripheral An addressed status change has occurred and the interface is a Peripheral.
Controller An addressed status change has occurred and the interface is an Active Controller.
Trigger The interface has received a device Trigger command.
Clear The interface has received a device Clear command.
Talk An addressed status change has occurred and the interface is a Talker.
Listen An addressed status change has occurred and the interface is a Listener.
Idle An addressed status change has occurred and the interface is neither a Talker nor a

Listener.
ByteIn The interface has received a data byte.
ByteOut The interface has been configured to output a data byte.
Error A Driver488 error has occurred.
Change The interface has changed its addressed state. The Controller/Peripheral or

Talker/Listener/Idle states of the interface have changed.

The ARM command allows Driver488 to signal to the user specified function when one or more of the
specified conditions occurs. ARM sets a flag corresponding to each implementation of the conditions
indicated by the user.

III. COMMAND REFERENCES - 15. Command References 15A. Driver488/DRV Commands

Personal488 User’s Manual, Rev. 3.0 III-285

Once an interrupt is ARMed, it remains ARMed until it is DISARMed, or until Driver488 is reset. BASIC
automatically suppresses light pen interrupt detection during the execution of an interrupt service
routine, so the interrupt service routine is never re-entrantly invoked. In languages that explicitly poll
the light pen status, polling should not be done during the interrupt service routine.

AUTO REMOTE
SYNTAX AUTO REMOTE [{ON|OFF}]

RESPONSE None

MODE SC

BUS STATES None

SEE ALSO LOCAL, REMOTE, ENTER, OUTPUT

EXAMPLE PRINT#1,"AUTO REMOTE ON"

The AUTO REMOTE command enables or disables the automatic assertion of the Remote Enable (REN)
line by OUTPUT. When AUTO REMOTE is enabled, OUTPUT automatically asserts REN before
transferring any data. When AUTO REMOTE is disabled, there is no change to the REN line.
AUTO REMOTE is on by default.

BUFFERED
SYNTAX BUFFERED

RESPONSE Integer from 0 to 1,048,575 (or 220-1)

MODE Any

BUS STATES None

SEE ALSO ENTER, OUTPUT

EXAMPLE PRINT#1,"ENTER16#1024 BUFFER &H1000:0 EOI"
PRINT#1,"BUFFERED"
INPUT#2,N
PRINT N,"bytes were actually received."

The BUFFERED command returns the number of characters transferred by the latest ENTER, OUTPUT,
SEND DATA, or SEND EOI command. If a CONTINUE transfer is in progress, then the result is the
number of characters that have been transferred at the moment the command is issued. This command
is most often used after an ENTER #count BUFFER term to determine if the full number of characters
was received, or if the transfer terminated upon detection of TERM. It is also used to find out how many
characters have currently been sent during an asynchronous DMA transfer.

BUS ADDRESS
SYNTAX BUS ADDRESS [name] prim-addr[sec-addr]

name is the name of an external device. If name is not specified, then BUS
ADDRESS sets the bus address of the interface.

primary is the IEEE 488 bus primary address of the specified device.
secondary is the IEEE 488 bus secondary address of the specified device.

RESPONSE None

MODE Any

BUS STATE None

SEE ALSO MakeDevice

EXAMPLE PRINT#1, “BUS ADDRESS DMM 1400"

The BUS ADDRESS command sets the IEEE 488 bus address of the IEEE 488 hardware interface or an
external device. Every IEEE 488 bus device has an address that must be unique within any single
IEEE 488 bus system. The default IEEE 488 bus address for Driver488 is 21, but this may be changed
if it conflicts with some other device.

15A. Driver488/DRV Commands III. COMMAND REFERENCES - 15. Command References

III-286 Personal488 User’s Manual, Rev. 3.0

CHECK LISTENER
SYNTAX CHECK LISTENER pri-addr[sec-addr]

pri-addr is a primary device address in the range 0 to 30.
Sec-addr is an optional two-digit secondary device address in the range 00 to 31.

RESPONSE 1 if listener found

0 if listener not found

MODE CA

BUS STATES ATN•MTA, UNL, LAG, (check for NDAC asserted)
SEE ALSO FIND LISTENER, BUS ADDRESS

EXAMPLE PRINT#1”CHECKLISTENER 1501”
INPUT#2,N
IF N=1 THEN PRINT “LISTENER FOUND”
IF N=0 THEN PRINT “LISTENER NOT FOUND”

The CHECK LISTENER command checks for the existence of a device on the IEEE 488 bus at the
specified address.

CLEAR
SYNTAX CLEAR [addr[,addr…]]

addr is a device address (primary with optional secondary) or an external
device name.

RESPONSE None

MODE CA

BUS STATES ATN•DCL (all devices)
ATN•UNL, MTA, LAG, SDC (selected devices)

SEE ALSO RESET

EXAMPLES PRINT#1,CLEAR” Issue a Device Clear to all devices.
PRINT#1,”CLEAR12,18” Issue a Selected Device Clear to devices 12 and 18.
PRINT#1,”CLEAR DMM” Issue a Selected Device Clear to the device DMM.

The CLEAR command causes the Device Clear (DCL) bus command to be issued by Driver488. If the
optional addresses are included, the Selected Device Clear (SDC) command is issued to all specified
devices. IEEE 488 bus devices that receive a Device Clear or Selected Device Clear command
normally reset to their power-on state.

CLOCK FREQUENCY
SYNTAX [CLOCK]FREQUENCY frequency

frequency is the actual clock rate in megahertz rounded up to the nearest whole
number of megahertz.

RESPONSE None

MODE Any

BUS STATES None

SEE ALSO RESET

EXAMPLE PRINT#1, “CLOCK FREQUENCY 8”

The CLOCK FREQUENCY command specifies the IEEE 488 adapter internal clock frequency. The clock
frequency depends upon the design and jumper settings of the interface board. The specified clock
frequency must be the actual clock rate in megahertz rounded up to the nearest whole number of
megahertz. For example, the MP488 and MP488CT boards use a fixed clock frequency of 8 MHz.

III. COMMAND REFERENCES - 15. Command References 15A. Driver488/DRV Commands

Personal488 User’s Manual, Rev. 3.0 III-287

CONTROL LINE
SYNTAX CONTROL LINE

RESPONSE Bit-mapped number from 0 to 255 representing the state of the
control lines.

MODE Any

BUS STATES None

SEE ALSO TIME OUT

EXAMPLE PRINT#1,”CONTROL LINE”
INPUT#2,”CL”

The CONTROL LINE command may be used on either IEEE 488 devices or Serial devices. If the
device specified is an IEEE 488 device, this command returns the status of the IEEE 488 bus control
lines as an 8-bit unsigned value (bits 2 and 1 are reserved for future use), as shown below:

8 7 6 5 4 3 2 1
EOI SRQ NRFD NDAC DAV ATN 0 0

If the device refers to a Serial device, this command returns the status of the Serial port control lines as
an 8-bit unsigned value (bits 8 and 7 are reserved for future use), as shown below:

8 7 6 5 4 3 2 1
0 0 DSR RI DCD CTS DTR RTS

A fuller description of the above bus line abbreviations are provided below:

DISARM
SYNTAX DISARM[interrupt[,interrupt…]]

interrupt is one of the following events: SRQ, Peripheral, Controller,
Trigger, Clear, Talk, Listen, Idle, Bytein, Byteout, or Change.

RESPONSE None

MODE Any

BUS STATES None

SEE ALSO ARM, LIGHT PEN; OnEvent (Sub-Chapter 15B)

EXAMPLES PRINT#1,”DISARM” Disable all interrupts
PRINT#1,”DISARM SRQ” Do not respond to SRQ

The DISARM command prevents Driver488 from setting the light pen status or invoking an event handle
and interrupting the computer system, even when the specified conditions occur. The user’s program

Bus State Bus Lines Data Transfer (DIO) Lines
8 7 6 5 4 3 2 1

IEEE 488 Interface
ATN Attention (&H04) 0 0 0 0 0 1 0 0
EOI End-Or-Identify (&H80) 1 0 0 0 0 0 0 0
SRQ Service Request (&H40) 0 1 0 0 0 0 0 0
DAV Data Valid (&H08) 0 0 0 0 1 0 0 0
NDAC Not Data Accepted (&H10) 0 0 0 1 0 0 0 0
NRFD Not Ready For Data (&H20) 0 0 1 0 0 0 0 0

Serial Interface
DTR Data Terminal Ready (&H02) 0 0 0 0 0 0 1 0
RI Ring Indicator (&H10) 0 0 0 1 0 0 0 0
RTS Request To Send (&H01) 0 0 0 0 0 0 0 1
CTS Clear To Send (&H04) 0 0 0 0 0 1 0 0
DCD Data Carrier Detect (&H08) 0 0 0 0 1 0 0 0
DSR Data Set Ready (&H20) 0 0 1 0 0 0 0 0

15A. Driver488/DRV Commands III. COMMAND REFERENCES - 15. Command References

III-288 Personal488 User’s Manual, Rev. 3.0

can still check for the conditions by using the STATUS command. If the DISARM command is invoked
without specifying any interrupts, then all interrupts are disabled. The ARM command may be used to
re-enable interrupt detection.

DMA CHANNEL
SYNTAX DMA CHANNEL {channel|NONE}

channel is the DMA channel to be used by the I/O adapter.
RESPONSE None

MODE Any

BUS STATES None

SEE ALSO INT LEVEL, TIME OUT

EXAMPLE PRINT#1,”DMA CHANNEL 5”

The DMA CHANNEL command specifies which DMA channel, if any, is to be used by the I/O interface
card. The PC has four DMA channels, but channel 0 is used for memory refresh and is not available
for peripheral data transfer. Channel 2 is usually used by the floppy-disk controller and is also
unavailable. Channel 3 is used by the hard disk controller in PCs, but is usually not used in AT
compatible machines. So, channel 1 (and possibly channel 3) is available for DMA transfers. The AT
compatible computers have three 16-bit DMA channels: 5, 6, and 7. The MP488CT can use these
channels for high speed transfer. The DMA CHANNEL value must match the hardware switch settings on
the I/O adapter card.

ENTER (Controller Mode)
SYNTAX ENTER[addr][;][#count][;][term][term][EOI]

addr is a device address (primary with optional secondary) or external device
name.

count is the number of characters to read.
Term and EOI override the normal bus input terminator.

RESPONSE Device-dependent data. If count is specified, then the exact
count of characters is returned without EOL being
appended. If not, the response ends when the input
terminator is detected and EOL is appended to the returned
data.

MODE CA

BUS STATES ATN•UNL, MLA,TAG, *ATN, data (With addr)
*ATN, data (Without addr)

SEE ALSO OUTPUT, TERM, EOL, BUFFERED

EXAMPLES PRINT#1,”ENTER16”
INPUT#2,A$

Read data from device 16

PRINT#1,”ENTER16”LINE
INPUT#2,A$

Read an entire line of data from device 16 even if it
contains commas or other punctuations

PRINT#1,”ENTER16;CR”
INPUT#2,A$

Read data from device 16 until CR is detected

PRINT#1,”ENTER16$000”
INPUT#2,A$

Read data until a NULL is detected

PRINT#1,”ENTER16LFEOI”
INPUT#2,A$

Read data until LF or EOI is detected.

PRINT#1,”ENTER0702
INPUT#2,A$

Read data from device 7

PRINT#1,”ENTER12#5”
A$=INPUT$(5,#2)

Read 5 bytes from device 12. INPUT$ returns 5 bytes from
file #2

PRINT#1,”ENTER#20”
A$=INPUT$(20,#2)

Read 20 more bytes. INPUT$ returns 20 bytes from file #2

PRINT#1,”ENTER DMM”
INPUT#2,VOLTAGE

Read data from device DMM

PRINT#1,”ENTER COM1”
INPUT#2,A$

Read data from device COM1

III. COMMAND REFERENCES - 15. Command References 15A. Driver488/DRV Commands

Personal488 User’s Manual, Rev. 3.0 III-289

The ENTER command reads data from the I/O adapter. If a device address (with optional secondary
address) or name is specified, then Driver488 is addressed to Listen, and that device is addressed to
Talk. If no address is specified, then Driver488 must already be configured to receive data, either as a
result of an immediately preceding ENTER command, or as a result of one of the SEND commands. If
the character count count is specified, then that exact number of characters is read from the device.
Otherwise, ENTER terminates reception on detection of the input terminator, that may be overridden by
specifying the terminator in the ENTER command. The received terminator is then replaced with the
EOL IN terminator before being returned to the user’s program.

ENTER (Peripheral Mode)
SYNTAX ENTER[;][#count][;][term][term][EOI]

count is the number of characters to read.
Term and EOI override the normal bus input terminator.

RESPONSE Device-dependent data. If count is specified, then exactly
count characters are returned without EOL being appended.
Otherwise the response ends when the input terminator is
detected at which time EOL is appended to the returned
data.

MODE *CA

BUS STATES Determined by the Controller

SEE ALSO OUTPUT, TERM, EOL, BUFFERED

EXAMPLES PRINT#1,”ENTER”
INPUT#2,A$

Read data into A$ until the default bus input terminator is
detected

PRINT#1,”ENTER CR”
INPUT#2,A$

Read data until CR is detected

PRINT#1,”ENTER$00”
INPUT#2,A$

Read data until a NULL is detected

PRINT#1,”ENTER LFEOI”
INPUT#2,A$

Read data until LF or EOI is detected

PRINT#1,”ENTER#10”
A$=INPUT$(10,#2)

Read 10 bytes. INPUT$ returns 10 bytes from file #2

In Peripheral mode, the ENTER command receives data from the I/O adapter under control of the Active
Controller. The Active Controller must put Driver488 into the Listen state and configure some bus
device to provide Driver488 with data. The Listen state can be checked with the STATUS command,
or can cause an interrupt with the ARM command. A time-out error occurs (if enabled) if Driver488
does not receive a data byte within the time out period after issuing the ENTER command.

ENTER #count BUFFER (Controller Mode)
SYNTAX ENTER[addr][;]#count[;]BUFFER buf-addr [CONTINUE] [term]

[term][EOI]

addr is a device address (primary with optional secondary) or external device
name.

count is the number of characters to read.
CONTINUE specifies asynchronous transmission.
Buf-addr is the memory buffer address.
Term and EOI override the normal bus input terminators.

RESPONSE None, returned data is placed directly into the specified
memory buffer.

MODE CA

BUS STATES ATN•UNL, MLA, TAG, *ATN, data (With addr)
*ATN, data (Without addr)

SEE ALSO OUTPUT, TERM, EOL, BUFFERED

EXAMPLES See next page.

15A. Driver488/DRV Commands III. COMMAND REFERENCES - 15. Command References

III-290 Personal488 User’s Manual, Rev. 3.0

EXAMPLES PRINT#1,"ENTER16#100 BUFFER
&H2000:0"

Read 100 characters into memory at &H20000.

PRINT#1, “ENTER16#100 BUFFER
&H20100 EOI”

Read 100 characters, or until EOI is detected into
memory at absolute location 20100.

PRINT#1,"BUFFERED"
INPUT#2,N
PRINT#1, “ENTER16#100 BUFFER

262144 CONTINUE”
Read 100 characters as before, but allow the

program to continue while the transfer is
taking place.

PRINT#1, “WAIT” Wait until the transfer has completed.
PRINT#1, “ENTER16#100 BUFFER

262144 CONTINUE EOI”
Read 100 characters as before, but stop if the EOI

(end or identify) signal is encountered.
PRINT#1,"WAIT" Wait until the transfer has completed.
PRINT#1,"BUFFERED”
INPUT#2,NBUFFERED

Get the number of characters actually read.

The ENTER #count BUFFER command reads data from the I/O adapter into a user-supplied memory
region. If a device address (with optional secondary address) or name is specified, Driver488 is
addressed to Listen, and that device is addressed to Talk. If no address is specified, Driver488 must
already be configured to receive data, either as a result of an immediately preceding ENTER command,
or as a result of one of the SEND commands.

The character count count must be specified and is the maximum number of characters that is
transferred. ENTER #count BUFFER does not detect the input terminator unless it is explicitly
specified in the command. Otherwise the specified number of characters is received. The number of
characters actually received can be checked with the BUFFERED command. The terminator characters,
if received, are placed into the memory buffer.

If CONTINUE is specified, Driver488 returns control to the user’s program as soon as possible, without
waiting for the transfer to be completed. It does, however, wait for the first byte to check for time-out
unless a time-out value of 0 had been specified by a TIMEOUT command. Because of hardware
limitations, the CONTINUE may not return until a substantial portion of the transfer is complete, if
configured for no interrupts.

CONTINUE transfers are not finished until Driver488 has had an opportunity to “clean up” and complete
the transfer. This “clean up” is usually automatic: Driver488 implicitly performs a WAIT command
before performing any bus command. The program can itself use the WAIT command to guarantee that
the transfer is complete.

All characters read, including the bus terminator, if any, are placed in the memory buffer; no terminator
translation is performed. The EOL IN terminator is not put into the memory buffer.

ENTER #count BUFFER (Peripheral mode)
SYNTAX ENTER[;] #count[;]BUFFERbuf-addr[CONTINUE][term][term][EOI]

count is the number of characters to ENTER.
buf-addr is the memory buffer address.
CONTINUE specifies asynchronous transmission.
term and EOI override the normal bus input terminators.

RESPONSE None, returned data is placed directly into the specified
memory buffer.

MODE *CA

BUS STATES Determined by the Controller.

SEE ALSO OUTPUT, TERM, EOL, BUFFERED

EXAMLES See next page.

III. COMMAND REFERENCES - 15. Command References 15A. Driver488/DRV Commands

Personal488 User’s Manual, Rev. 3.0 III-291

EXAMPLES PRINT#1,"ENTER#100 BUFFER
&H2000:0"

Read 100 characters into memory at &H20000.

PRINT#1,"ENTER#100 BUFFER
&H20100 EOI"

Read 100 characters, or until EOI is detected into
memory at absolute location 20100.

PRINT#1,"BUFFERED"
INPUT#2,NBUFFERED
PRINT#1,"ENTER# 100 BUFFER

262144 CONTINUE"
Read 100 characters as before, but allow the

program to continue while the transfer is taking
place.

PRINT#1,"WAIT" Wait until the transfer has completed.
PRINT#1,"ENTER#100 BUFFER

262144CONTINUE EOI"
Read 100 characters as before, but stop if the EOI

(end or identify) signal is encountered.
PRINT#1,"WAIT" Wait until the transfer has completed.
PRINT#1,"BUFFERED"
INPUT#2,NBUFFERED

Get the number of characters actually read.

In Peripheral mode, the ENTER #count BUFFER command receives data from the bus under control
of the Active Controller. The Active Controller must put Driver488 into the Listen state and
configure some other device to provide it with data. The Listen state can be checked with the
STATUS command, or can cause an interrupt via the ARM command. A time-out error occurs (if
enabled) if Driver488 does not receive a data byte within the time out period after issuing the
ENTER #count BUFFER command. The character count count must be specified, and is the
maximum number of characters that is transferred.

ENTER #count BUFFER does not detect the input terminator unless it is explicitly specified in the
command. Otherwise the specified number of characters is received. The number of characters
actually received can be checked with the BUFFERED command.

If CONTINUE is specified, then Driver488 returns control to the user’s program as soon as possible,
without waiting for the transfer to be completed. It does, however, wait for the first byte to check for
time-out unless a time-out value of 0 had been specified by a TIMEOUT command. Because of
hardware limitations, the CONTINUE may not return until a substantial portion of the transfer is
complete if Driver488 is configured for no interrupts.

CONTINUE transfers are not finished until Driver488 has had an opportunity to “clean up” and complete
the transfer. This “clean up” is usually automatic: Driver488 implicitly performs a WAIT command
before performing any bus command. The program can itself use the WAIT command to guarantee that
the transfer is complete.

All characters read, including the bus terminator, if any, are placed in the memory buffer. No
terminator translation is performed. The EOL IN terminator is not put into the memory buffer.

EOL
SYNTAX EOL [name][IN|OUT] {term [term]|NONE}

name is the name of an External Device. If name is not specified, then EOL acts
on the I/O adapter.

IN or OUT specifies whether the input or output terminators are being set. If
neither IN nor OUT is specified, then both terminators are set identically.

term is one of CR, LF, $char, or ‘X, specifying a terminator character.
NONE may be specified instead of term to indicate that no EOL terminators are

used.
RESPONSE None

MODE Any

BUS STATES None

SEE ALSO TERM, ENTER, OUTPUT

EXAMPLES See next page.

15A. Driver488/DRV Commands III. COMMAND REFERENCES - 15. Command References

III-292 Personal488 User’s Manual, Rev. 3.0

EXAMPLES PRINT#1,"EOL DMM CR LF" Set both input and output terminators to
carriage-return line-feed.

PRINT#1,"EOLTIMER OUT CR LF" Set output terminator to CR LF.
PRINT#1,"EOLTIMER IN CR" Set input terminator to CR only.
PRINT#1,"EOL DVM $0" Set both terminators to an ASCII NULL.
PRINT#1,"EOL WAVE IN NONE" Configure for no input terminator.

The EOL command sets the end-of-line terminators for input to the user’s program, output to Driver488,
or both. All output to Driver488, except OUTPUT #count, must be terminated by the EOL output
terminator. All input to the user’s program, except ENTER #count, is terminated by the EOL input
terminator. The default terminators for both input and output are set by INSTALL and are normally
CR LF, which is appropriate for most languages.

ERROR
SYNTAX ERROR {ON|OFF}

RESPONSE None

MODE Any

BUS STATES None

SEE ALSO STATUS; OnEvent, GetError, GetErrorList (Sub-Chapter 15B)

EXAMPLES PRINT#1,"ERROR OFF" Disable on-screen error message display.
PRINT#1,"ERROR ON" Re-enable error message display.

The ERROR command enables or disables automatic on-screen display of Driver488 error messages.
ERROR ON enables error message display, and ERROR OFF disables it. ERROR ON is the default
condition.

FILL
SYNTAX FILL [name] {OFF|ERROR|CR|LF|$char|’X}

name is the name of an external device. If name is not specified, then EOL acts on
the I/O adapter

OFF prevents response if none is available.
ERROR enables SEQUENCE - NO DATA AVAILABLE errors.
CR, LF, $char, or ‘X specify the character with which to “fill” the response.

RESPONSE None

MODE Any

BUS STATES None

SEE ALSO ENTER, OUTPUT, EOL

EXAMPLES PRINT#1,"FILL OFF" Do not detect NO DATA AVAILABLE errors. Do not
return fill characters.

INT#1,"FILL ERROR" Detect NO DATA AVAILABLE errors.Do not return
fill characters.

PRINT#1,"FILL $000" Do not detect NO DATA AVAILABLE errors. Fill
requests with nulls.

The FILL command controls the response of Driver488 to a request for data when none is available.
This type of request can occur in three ways: (1) a program error, such as a missing ENTER command,
results in a request for a response without first setting up Driver488 to provide that response; (2) the
I/O procedures supplied with the user’s programming language request more data than is actually
available; or (3) the OPEN command for input from Driver488 tries to read one character from
Driver488 to confirm that data is available even before any commands have been issued.

When such a request occurs, Driver488 can respond in three ways: (1) it can respond to the calling
routine that no data is available, (2) it can immediately signal an error, or (3) it can satisfy the request
by returning some specified character repeated as many times as necessary. The FILL command

III. COMMAND REFERENCES - 15. Command References 15A. Driver488/DRV Commands

Personal488 User’s Manual, Rev. 3.0 III-293

selects which response is to be used. In general, when Driver488 receives a request for data, it is
provided with the address in memory of a buffer that is to hold the response, and with the buffer length.

If FILL OFF is specified, then the buffer is filled with any available response, and the remainder of the
buffer (if it is larger than the response) is not changed. If no response is available, then the entire
buffer is left unchanged, but no error is indicated.

If FILL ERROR is specified, then the buffer is filled with any available response, and the remainder of
the buffer (if it is larger than the response) is not be changed. If no response is available, then the
entire buffer is left unchanged and a SEQUENCE - NO DATA AVAILABLE error occurs.

If FILL term is specified, where term is one of CR, LF, $char, or ‘X, the buffer is filled with any
available response, and the remainder of the buffer (if it is larger than the response) is filled with the
specified character. If no response is available, the entire buffer is filled with that character.

If the error is due to an actual programming error, it is to the user’s advantage to have Driver488
automatically detect this error. In this case, error detection should be enabled with the FILL ERROR
command. Normal I/O with Driver488 in both BASIC and Turbo Pascal 3.0 is performed on a
character-by-character basis and so neither language reads more data than is available. Thus,
FILL ERROR is appropriate for both languages. Note, however, that the OPEN for input command in
some versions of BASIC does try to read one character upon opening the file. For this reason, the files
should be opened in the following sequence:

100 OPEN “\DEV\IEEEOUT” FOR OUTPUT AS #1
110 IOCTL#1,"BREAK"
120 PRINT#1,"RESET"
130 OPEN “\DEV\IEEEIN” FOR INPUT AS #2
140 PRINT#1,"FILL OFF"

The RESET command guarantees that FILL$000 (the default condition, FILL with the null character) is
in effect when the OPEN statement tries to read the first character from Driver488. Driver488 responds
with a null character that BASIC ignores so that the first real response from Driver488 will be
corrupted.

In some languages, such as C, the I/O routines may try to read a fixed length block from Driver488.
Use of the BASIC GET file I/O also has this effect. The size of the block requested varies. It may be as
much as several thousand bytes, or it may be the record size or buffer length defined for the file. In any
case, if FILL is OFF, then no error is signaled, and the returned characters are placed into the first bytes
of the buffer. The remainder of the block is not modified. It is, though, sometimes useful to fill the
remainder of the block with some specific byte value. This is accomplished with the FILL term
command. FILL term forces Driver488 to return as many characters as are requested by the I/O
routines, even if they are dummy fill characters.

FIND LISTENERS
SYNTAX FIND LISTENERS pri-addr

RESPONSE The number of active listeners found, followed by those
addresses, separated by commas.

MODE Any

BUS STATES UNL, LAG

SEE ALSO CHECK LISTENER, BUS ADDRESS, STATUS

EXAMPLES PRINT#1,"FIND LISTENERS 12"
LINE INPUT#1,A$

0 No Listeners Found
1,12 Primary Address Listener Found
2,1200,1201 Secondary Address Listeners Found

The FIND LISTENERS command finds all of the devices configured to listen at the specified primary
address on the IEEE 488 bus. It takes the primary address to check, and returns the number of listeners
found and their addresses.

15A. Driver488/DRV Commands III. COMMAND REFERENCES - 15. Command References

III-294 Personal488 User’s Manual, Rev. 3.0

FINISH
SYNTAX FINISH

RESPONSE None

MODE CA

BUS STATES ATN

SEE ALSO RESUME, PASS CONTROL

EXAMPLE PRINT#1, “FINISH”

The FINISH command asserts ATN and releases any pending holdoffs after a RESUME function is called
with the monitor flag set. FINISH everything necessary for Driver488 to be ready for the next
operation.

HELLO
SYNTAX HELLO

RESPONSE Driver488 Revision X.X (C)199X IOtech, Inc.

MODE Any

BUS STATES None

SEE ALSO Status; OpenName, GetError (Sub-Chapter 15B)

EXAMPLE PRINT#1,"HELLO"
INPUT#2,A$
PRINT A$

Get the HELLO response and display it.

The HELLO command is used to verify communication with Driver488, and to read the software
revision number. When the command is sent, Driver488 returns a string similar to the following:

Driver488 Revision X.X (C)199X IOtech, Inc.

where X is the appropriate revision or year number.

INT LEVEL
SYNTAX INT LEVEL [channel|NONE]

channel is a valid interrupt channel.
RESPONSE None

MODE Any

BUS STATES None

SEE ALSO DMA CHANNEL, TIME OUT

EXAMPLES PRINT#1, “INT LEVEL 3"

The INT LEVEL command specifies the hardware interrupt level that is used by the I/O adapter.
Driver488 uses hardware interrupts, if available, to improve the efficiency of I/O adapter control and
communication. The interrupt level is specified by an integer in the range 2 through 15, where channel
availability within this range is determined by the system bus type and the adapter type. The interrupt
level value must match the hardware settings on the I/O adapter card.

IO ADDRESS
SYNTAX IO ADDRESS[io-addr]

ioaddr is the I/O base address to set.
RESPONSE None

MODE Any

BUS STATES None

SEE ALSO INT LEVEL, DMA CHANNEL, TIME OUT

EXAMPLES PRINT#1,"IOADDRESS &H02E1"

III. COMMAND REFERENCES - 15. Command References 15A. Driver488/DRV Commands

Personal488 User’s Manual, Rev. 3.0 III-295

The IO ADDRESS command specifies the I/O port base address of the I/O adapter. The base address is
set by a sixteen-bit integer, ioaddr, that is usually given as a hexadecimal number. For example, to
use the default I/O address, the command would be IO ADDRESS &H02E1.

The default I/O port base address for the IEEE 488 hardware interface is &H02E1 for the first interface,
&H22E1 for the second, &H42E1 for the third, and &H62E1 for the fourth interface. The default I/O
port base addresses for the serial hardware interface is &H03F8. Other standard I/O port base addresses
are &H02F8, &H03E8, &H02E8. The IO ADDRESS value must match the hardware switch settings on
the I/O adapter.

IOCTL (BASIC Statement)
SYNTAX IOCTL#2,"BREAK"

RESPONSE None

MODE Any

BUS STATES None

SEE ALSO IOCTL$

EXAMPLE IOCTL#2,"BREAK" Send the IOCTL message “BREAK” to the Driver488

The IOCTL command is a BASIC statement that can be used to reset Driver488 unconditionally. When
the message “BREAK” is sent to Driver488 via the IOCTL Write DOS function (&H4403, accessible
via the IOCTL BASIC statement), Driver488 stops any command currently executing, and prepares to
accept a new command. This can be used even when Driver488 is not expecting a command, but is
transferring data. Commands such as ABORT or RESET may then be used to reset the entire IEEE 488
bus.

IOCTL resets the EOL OUT terminators to their default values to guarantee that Driver488 is able to
recognize the next command correctly. No IOCTL commands other than BREAK are supported by
Driver488. The IOCTL command can be accomplished in other languages by using MS-DOS function
calls.

IOCTL$ (BASIC Statement)
SYNTAX A$=IOCTL$(#2)

A$ is a string variable that is set to one of the following:
0 if there is nothing to read,
1 if there is something to read,
2 if data should be written,
3 if the remainder of a command is expected.

RESPONSE None

MODE Any

BUS STATES None

SEE ALSO IOCTL

EXAMPLE 100 PRINT#1,"ENTER16"
110 A$=IOCTL$(#2)
120 IF A$="1" THEN PRINT INPUT$(1,#2): GOTO 110
130 PRINT “NO INPUT READY”

The IOCTL$ command is a BASIC statement that can be used to determine the communication state of
Driver488. When data is read from Driver488 using the IOCTL Read DOS command (&H4402, access
via the IOCTL$ BASIC function), Driver488 returns a single ASCII character, either 0, 1, 2, or 3. The
meaning of these responses is:

• 0: A response of 0 indicates that Driver488 is ready to receive a command. It has no data to read,
nor is it expecting data for output to the IEEE 488 bus.

15A. Driver488/DRV Commands III. COMMAND REFERENCES - 15. Command References

III-296 Personal488 User’s Manual, Rev. 3.0

• 1: A response of 1 indicates that Driver488 has a response ready to be read by the user’s program.
The program must read the response before sending a new command (except IOCTL “BREAK”) or
a SEQUENCE - DATA HAS NOT BEEN READ error occurs.

• 2: A response of 2 indicates that Driver488 is waiting for data to OUTPUT to the I/O adapter. The
user’s program must send the appropriate data with terminators as needed to Driver488 with
PRINT statements (or their equivalent in other languages). Attempting to read from Driver488
while it is waiting for data, causes a SEQUENCE - NO DATA AVAILABLE error.

• 3: A response of 3 indicates that Driver488 is waiting for the completion of a command. This is
similar to a response of 2 except that Driver488 is waiting for a command rather than for data to
OUTPUT.

The IOCTL$ command has two primary uses: In the Keyboard Controller Program it allows the
program to know when Driver488 has data available to read, and in BASIC Interrupt Service Routines
it prevents interrupts from being serviced while Driver488 is busy finishing a command.

Notice that IOCTL$ suppresses light pen interrupt emulation, so that the next time light pen status is
requested, it responds with a “no interrupt” status. Normal light pen interrupt emulation is then
restored. This is required to allow the BASIC ON PEN function to operate normally. The IOCTL$
command can be accomplished in other languages by using MS-DOS function calls.

KEEP DEVICE
SYNTAX KEEP DEVICE name

name is the name of an external device.
RESPONSE None

MODE Any

BUS STATES None

SEE ALSO MAKE DEVICE, REMOVE DEVICE

EXAMPLES PRINT#1, “KEEP DEVICE SCOPE”

The KEEP DEVICE command makes the specified Driver488 device permanent. Permanent Driver488
devices are not removed when Driver488 is closed. Driver488 devices are created by MAKE DEVICE
and are initially temporary. Unless KEEP DEVICE is used, all temporary Driver488 devices are
forgotten when Driver488 is closed. The only way to remove the device once it has been made
permanent by the KEEP DEVICE command, is to use the REMOVE DEVICE command.

KEEP DOS NAME
SYNTAX KEEP DOS NAME dosname

dosname is the name of the Driver488 DOS device.
RESPONSE None

MODE Any

BUS STATES None

SEE ALSO MAKE DOS NAME, REMOVE DOS NAME, KEEP DEVICE

EXAMPLES PRINT#1, “KEEP DOS NAME PLOTTER”

The KEEP DOS NAME command makes the specified Driver488 DOS device permanent. Permanent
Driver488 DOS devices are not removed when Driver488 is closed. Driver488 DOS devices are
created by MAKE DOS NAME and are initially temporary. Unless KEEP DOS NAME is used, all
temporary Driver488 DOS devices are forgotten when Driver488 is closed. The only way to remove
the DOS device once it has been made permanent by the KEEP DOS NAME command, is to use the
REMOVE DOS NAME command.

The Driver488 DOS device is attached to a Driver488 device that was specified when the Driver488
DOS device was created by MAKE DOS NAME. If that Driver488 device is not permanent, then
KEEP DOS NAME makes it permanent, and then makes the Driver488 DOS device permanent.

III. COMMAND REFERENCES - 15. Command References 15A. Driver488/DRV Commands

Personal488 User’s Manual, Rev. 3.0 III-297

LIGHT PEN
SYNTAX LIGHT PEN [ON|OFF]

RESPONSE None

MODE Any

BUS STATES None

SEE ALSO ARM, DISARM; OnEvent (Sub-Chapter 15B)

EXAMPLES PRINT#1, “LIGHT PEN ON”

The LIGHT PEN command enables or disables the detection of interrupts via setting the light pen
status. The default is light pen interrupt enabled.

LOCAL
System Controller Mode

SYNTAX LOCAL

RESPONSE None

MODE SC

BUS STATES *REN

SEE ALSO REMOTE, AUTO REMOTE

EXAMPLE PRINT#1,"LOCAL" Unassert the Remote Enable Line

Active Controller Mode
SYNTAX LOCAL addr[,addr...]

addr is a bus device address (primary with optional secondary) or a device name.
RESPONSE None

MODE CA

BUS STATES ATNUNL, MTA, LAG,GTL

SEE ALSO REMOTE, AUTO REMOTE

EXAMPLE PRINT#1,"LOCAL 12,16" Send Go To Local to devices 12 and 16.

In the System Controller mode, the LOCAL command without optional addresses causes Driver488 to
unassert the Remote Enable (REN) line. This causes devices on the bus to return to manual operation.
As the Active Controller, with bus addresses specified, bus devices are placed in the local mode by the
Go To Local (GTL) bus command. If addresses are specified, then the Remote Enable line is not
unasserted.

LOCAL LOCKOUT or LOL
SYNTAX LOCAL LOCKOUT or LOL
RESPONSE None

MODE CA

BUS STATES ATN•LLO
SEE ALSO LOCAL, LOCAL LIST, REMOTE

EXAMPLES PRINT#1,"LOCAL LOCKOUT" Send Local Lockout bus command.
PRINT#1,"LOL" Same as above.

The LOCAL LOCKOUT command causes Driver488 to issue a Local Lockout (LOL) IEEE 488 bus
command. Bus devices that support this command are thereby inhibited from being controlled
manually from their front panels.

15A. Driver488/DRV Commands III. COMMAND REFERENCES - 15. Command References

III-298 Personal488 User’s Manual, Rev. 3.0

MAKE DEVICE
SYNTAX MAKE DEVICE name = oldname

name is the name of the device that is created with the same configuration as the
existing device oldname.

RESPONSE None

MODE Any

BUS STATES None

SEE ALSO KEEP DEVICE, REMOVE DEVICE

EXAMPLE PRINT#1,”MAKE DEVICE DMM=SCOPE”
PRINT#1,”BUS ADDRESS DMM 16

Create a device named DMM,
attached to the same I/O adapter
as SCOPE and set its IEEE 488
bus address to 16.

The MAKE DEVICE command creates a new, temporary Driver488 device that is an identical copy of an
already existing Driver488 device. The new device is attached to the same I/O adapter of the existing
device and has the same terminators, timeouts, and other characteristics. If there are no appropriate
Driver488 devices, then the INSTALL program must be used to create one. The newly created device is
temporary, and is forgotten when Driver488 is closed. KEEP DEVICE may be used to make the device
permanent.

MAKE DOS NAME
SYNTAX MAKE DOS NAME dosname = devicename

dosname is the name of the newly created Driver488 DOS device that is
configured to communicate with the Driver488 device devicename

RESPONSE None

MODE Any

BUS STATES None

SEE ALSO KEEP DOS NAME, REMOVE DOS NAME, MAKE DEVICE

EXAMPLES PRINT#1, “MAKE DOS NAME METER = DMM”
OPEN “METER” FOR OUTPUT AS #3

The MAKE DOS NAME command creates a new, temporary Driver488 DOS device that is configured to
communicate with an already existing Driver488 device. The newly created DOS device is temporary,
and is forgotten when Driver488 is closed. KEEP DOS NAME may be used to make the device
permanent.

OUTPUT (Controller Mode)
SYNTAX OUTPUT [addr][#count][term][term][EOI];data

addr is a device address (primary with optional secondary) or external device
name.

count is the number of characters to output.
Term and EOI override the normal IEEE 488 bus output terminator
data is a string of characters to output, terminated by the EOL output terminator

(unless count is specified in which case no terminator is needed).
RESPONSE None

MODE CA

BUS STATES REN (if SC and AUTO REMOTE), *ATN, data (without addr)

REN (if SC and AUTO REMOTE), ATNyyMTA, UNL, LAG, *ATN, data
(with addr)

SEE ALSO ENTER, TERM, TIME OUT, EOL, BUFFERED

EXAMPLES See next page.

III. COMMAND REFERENCES - 15. Command References 15A. Driver488/DRV Commands

Personal488 User’s Manual, Rev. 3.0 III-299

EXAMPLES PRINT#1,"OUTPUT22;R0C0T1X" Send “R0C0T1X” to device 22.
PRINT#1,"OUTPUT;XYZ" And send it “XYZ”.
PRINT#1,"OUTPUT0602;DEF" Send “DEF” to device 6, secondary address 2.
PRINT#1,"OUTPUT06#26;

abcdefghijklmnopqrstuvwxyz"
Send the 26 letters of the alphabet without

terminators to device 6.
PRINT#1,"OUTPUT DMM;DC VOLTS" Send “DCVOLTS” to device DMM.

The OUTPUT command sends data to the I/O adapter. The Remote Enable (REN) line is first asserted if
Driver488 is the System Controller and AUTO REMOTE is enabled. Then, if a device address (with
optional secondary address) is specified, Driver488 is addressed to Talk and that device is addressed to
Listen. If no address is specified, Driver488 must already be configured to send data, either as a result
of an immediately preceding OUTPUT command or as the result of a SEND command. If the character
count count is specified, that exact number of characters is sent to the bus devices. Otherwise,
OUTPUT terminates data transfer upon detection of the EOL output terminator from the user’s program.
The EOL output terminator is replaced with the bus output terminator before being sent to the bus
devices.

OUTPUT (Peripheral Mode)
SYNTAX OUTPUT [#count][term][term][EOI];data

count is the number of characters to OUTPUT.
term and EOI override the normal IEEE 488 bus output terminators.
data is a string of characters to OUTPUT terminated by the EOL output terminator

unless count is specified.
RESPONSE None

MODE *CA

BUS STATES Determined by the Controller.

REN asserted if SYS CONTROLLER and AUTO REMOTE are enabled.

SEE ALSO ENTER, TERM, TIME OUT, BUFFERED

EXAMPLES PRINT#1,"OUTPUT;DCVOLTS" Send “DC VOLTS”
PRINT#1,"OUTPUT#5;ABCDE" Send “ABCDE” without bus terminators.

In Peripheral mode, the OUTPUT command sends data to the I/O adapter under control of the Active
Controller. The Active Controller must put Driver488 into the Talk state and configure some bus
device to accept the transferred data. The Talk state can be checked with the STATUS command, or
can cause an interrupt via the ARM command. A time-out error occurs, if enabled, if no bus device
accepts the data within the time out period after issuing the OUTPUT command. If the character count
count is specified, that exact number of characters is sent to the bus device. Otherwise, OUTPUT
terminates data transfer upon detection of the EOL output terminator from the user’s program. The EOL
output terminator is replaced with the bus output terminator before being sent to the bus devices. Even
as a Peripheral, Driver488 might be the System Controller. If it is and AUTO REMOTE is enabled, it
asserts Remote Enable (REN) before sending any data.

15A. Driver488/DRV Commands III. COMMAND REFERENCES - 15. Command References

III-300 Personal488 User’s Manual, Rev. 3.0

OUTPUT #count BUFFER (Controller Mode)
SYNTAX OUTPUT [addr]#count BUFFER buf-addr [CONTINUE] [term] [term]

[EOI]

addr is a device address (primary with optional secondary) or an external device
name.

count is the number of bytes to OUTPUT.
buf-addr is the memory buffer address.
CONTINUE specifies asynchronous transmission.
term and EOI override the normal IEEE 488 bus output terminator

RESPONSE None

MODE CA

BUS STATES REN (if SC), *ATN, data (without addr)

REN (if SC), ATN•MTA, UNL, LAG, *ATN, data (with addr)
SEE ALSO ENTER, TERM, TIME OUT, EOL, BUFFERED

EXAMPLES PRINT#1,"OUTPUT16#100 BUFFER
&H2000:0”

Send 100 characters from memory at &H20000.

PRINT#1,"OUTPUT16#100 BUFFER
&H20100 EOI”

Send 100 characters from memory at &H20100
asserting EOI with the last character.

PRINT#1,"OUTPUT0701 #100
BUFFER &H1000:0 EOI”

Send 100 characters to bus device 07.

PRINT#1,"OUTPUT16#100 BUFFER
&H2000:0 CONTINUE EOI”

Send 100 characters and allow the program to
continue while the transfer is taking place.

PRINT#1,"WAIT" Wait for the transfer to complete.
PRINT#1,"OUTPUT16#100 BUFFER

&H2000:100”
And send the next 100 bytes.

The OUTPUT #count BUFFER command sends data to I/O adapter devices from a user- supplied
memory region. The Remote Enable (REN) line is first asserted if Driver488 is the System Controller.
Then, if a device address (with optional secondary address) is specified, Driver488 is addressed to Talk
and that device is addressed to Listen. If no address is specified, Driver488 must already be configured
to send data, either as a result of an immediately preceding OUTPUT command, or as the result of a
SEND command.

The character count count must be specified and is the number of characters that is transferred.
OUTPUT #count BUFFER does not send any bus output terminators unless they are specified. The
number of characters actually sent can be checked with the BUFFERED command.

If CONTINUE is specified, then Driver488 returns control to the user’s program as soon as possible
without waiting for the transfer to be completed. It does, however, wait for the first byte to check for
time-out unless a time-out value of 0 had been specified by a TIME OUT command. Because of
hardware limitations, the CONTINUE may not return until a substantial portion of the transfer is
complete.

CONTINUE transfers are not finished until Driver488 has had an opportunity to “clean up” and complete
the transfer. This “clean up” is usually automatic: Driver488 implicitly performs a WAIT command
before performing any bus command. The program can itself use the WAIT command to guarantee that
the transfer is complete.

All characters in the memory buffer are sent exactly as stored. No detection of the EOL output
terminator is performed, and no terminator translation takes place.

III. COMMAND REFERENCES - 15. Command References 15A. Driver488/DRV Commands

Personal488 User’s Manual, Rev. 3.0 III-301

OUTPUT #count BUFFER (Peripheral Mode)
SYNTAX OUTPUT #count BUFFER buf-addr [CONTINUE] [term] [term] [EOI]

count is the number of characters to OUTPUT.
buf-addr is the memory buffer address.
CONTINUE specifies an asynchronous data transfer.
term and EOI override the normal IEEE 488 bus output terminators.

RESPONSE None

MODE *CA

BUS STATES Determined by the Controller.

REN asserted if SYS CONTROLLER and AUTO REMOTE are enabled.

SEE ALSO ENTER, TERM, TIME OUT, BUFFERED

EXAMPLES PRINT#1,"OUTPUT#100 BUFFER
&H2000:0"

Send 100 characters from memory at &H20000.

PRINT#1,"OUTPUT#100 BUFFER
&H20100 EOI"

Send 100 characters from memory at &H20100
asserting EOI with the last character.

PRINT#1,"OUTPUT#100 BUFFER
&H1000:0 EOI"

Send 100 characters, asserting EOI on the last
character.

PRINT#1,"OUTPUT#100 BUFFER
&H2000:0 CONTINUE EOI"

Send 100 characters and allow the program to
continue while the transfer is taking place.

PRINT#1,"WAIT" Send 100 characters and allow the program to
continue while the transfer is taking place.

In Peripheral mode, the OUTPUT #count BUFFER command sends data to the I/O adapter under
control of the Active Controller. The Active Controller must put Driver488 into the Talk state and
configure some bus device to accept the data that is transferred. The Talk state can be checked with
the STATUS command or it can cause an interrupt via the ARM command. A time-out error occurs, if
enabled, if the Controller does not accept the data within the time out period after issuing the
OUTPUT #count BUFFER command.

The character count count must be specified and is the number of characters that is transferred.
OUTPUT #count BUFFER does not send any bus output terminators unless they are specified. The
number of characters actually sent can be checked with the BUFFERED command.

If CONTINUE is specified, then Driver488 returns control to the user’s program as soon as possible
without waiting for the transfer to be completed. It does, however, wait for the first byte to check for
time-out unless a time-out value of 0 had been specified by a TIME OUT command. Because of
hardware limitations, the CONTINUE may not return until a substantial portion of the transfer is
complete, if Driver488 is configured for no interrupts.

CONTINUE transfers are not finished until Driver488 has had an opportunity to “clean up” and complete
the transfer. This “clean up” is usually automatic: Driver488 implicitly performs a WAIT command
before performing any bus command. The program can itself use the WAIT command to guarantee that
the transfer is complete. If EOI is specified, the last byte is not transferred until Driver488 has the
opportunity to perform this clean up.

All characters in the memory buffer are sent exactly as stored. No detection of the EOL output
terminator is performed, and no terminator translation takes place.

Even as a Peripheral, Driver488 might be the System Controller. If it is and if AUTO REMOTE is
enabled, then it asserts RemoteEnable (REN) before sending any data.

15A. Driver488/DRV Commands III. COMMAND REFERENCES - 15. Command References

III-302 Personal488 User’s Manual, Rev. 3.0

PASS CONTROL
SYNTAX PASS CONTROL addr

addr is a device address (primary with optional secondary) or the external device
name of the device to which control is passed.

RESPONSE None

MODE CA

BUS STATES ATN•UNL, MLA, TAG, UNL, TCT, *ATN
SEE ALSO ABORT, RESET, SEND

EXAMPLE 100 PRINT#1, "PASS CONTROL 22" Control is passed to device 22.
110 PRINT#1,"STATUS" Use STATUS to check control.
120 INPUT#1,A$ Wait until we are controller again
130 IF LEFT$(A$,1)"C" THEN 110

The PASS CONTROL command allows Driver488 to give control to another controller on the bus. After
passing control, Driver488 enters the Peripheral mode. If Driver488 was the System Controller, then it
remains the System Controller, but it is no longer the Active Controller. The Controller now has
command of the bus until it passes control to another device or back to Driver488. The System
Controller can regain control of the bus at any time by issuing an ABORT command.

PPOLL
SYNTAX PPOLL

RESPONSE Number in the range 0 to 255.

MODE CA

BUS STATES ATN•EOI <parallel poll response>, *EOI
SEE ALSO PPOLL CONFIG, PPOLL UNCONFIG, PPOLL DISABLE, SPOLL

EXAMPLE PRINT#1,"PPOLL" Conduct a Parallel Poll
INPUT#2,PPSTAT Receive the PPOLL status

The PPOLL (Parallel Poll) command is used to request status information from many bus devices
simultaneously. If a device requires service, it responds to a Parallel Poll by asserting one of the eight
IEEE 488 bus data lines (DIO1 through DIO8, with DIO1 being the least significant). In this manner,
up to eight devices may simultaneously be polled by the controller. More than one device can share
any particular DIO line. In this case, it is necessary to perform further Serial Polling to determine
which device actually requires service.

Parallel Polling is often used upon detection of a Service Request (SRQ), though it may also be
performed periodically by the controller. In either case, PPOLL responds with a number from 0 to 255
corresponding to the eight binary DIO lines. Refer to the manufacturer’s documentation for each
device to determine whether or not Parallel Poll capabilities are supported.

PPOLL CONFIG or PPC
SYNTAX PPOLL CONFIG addr;response or PPC addr;response

addr is a device address (primary with optional secondary) or an external device
name.

response is the decimal equivalent of the four binary bits S, P2, P1, and P0
where S is then Sense bit, while P2, P1, and P0 assign the DIO bus data line
used for the response.

RESPONSE None

MODE CA

BUS STATES ATN•UNL, MTA, LAG, PPC
SEE ALSO PPOLL, PPOLL UNCONFIG, PPOLL DISABLE

EXAMPLE See next page.

III. COMMAND REFERENCES - 15. Command References 15A. Driver488/DRV Commands

Personal488 User’s Manual, Rev. 3.0 III-303

EXAMPLE PRINT#1,
"PPC23;&H0D"

Configure device 23 to assert DIO6 when it desires service (ist =
1) and it is Parallel Polled (&H0D = 1101 binary; S=ist=1,
P2=1, P1=0, P0=1; 101 binary = 5 decimal = DIO6).

The PPOLL CONFIG command configures the Parallel Poll response of a specified bus device. Not all
devices support Parallel Polling and, among those that do, not all support the software control of their
Parallel Poll response. Some devices are configured by internal switches.

The Parallel Poll response is set by a four-bit binary number response: S, P2, P1, and P0. The most
significant bit of response is the Sense (S) bit. The Sense bit is used to determine when the device will
assert its Parallel Poll response. Each bus device has an internal individual status (ist). The Parallel
Poll response is asserted when this ist equals the Sense bit value S. The ist is normally a logic 1
when the device requires attention, so the S bit should normally also be a logic 1. If the S bit is 0, then
the device asserts its Parallel Poll response when its ist is a logic 0. That is, it does not require
attention. However, the meaning of ist can vary between devices, so refer to your IEEE 488 bus
device documentation. The remaining 3 bits of response: P2, P1, and P0, specify which DIO bus data
line is asserted by the device in response to a Parallel Poll. These bits form a binary number with a
decimal value from 0 through 7, specifying data lines DIO1 through DIO8, respectively.

PPOLL DISABLE or PPD
SYNTAX PPOLL DISABLE addr[,addr...] or PPD addr[,addr...]

addr is a device address (primary with optional secondary) or an external device
name.

RESPONSE None

MODE CA

BUS STATES ATN•UNL, MTA, LAG, PPC, PPD
SEE ALSO PPOLL, PPOLL CONFIG, PPOLL UNCONFIG

EXAMPLE PRINT#1,”PPOLL DISABLE
18,06,13”

Disable Parallel Poll of devices 18, 6, and 13.

The PPOLL DISABLE command disables the Parallel Poll response of selected bus devices.

PPOLL UNCONFIG or PPU
SYNTAX PPOLL UNCONFIG or PPU
RESPONSE None

MODE CA

BUS STATES ATN•PPU
SEE ALSO PPOLL, PPOLL CONFIG, PPOLL DISABLE

EXAMPLE PRINT#1,"PPOLL UNCONFIG"

The PPOLL UNCONFIG command disables the Parallel Poll response of all bus devices.

REMOTE
Bus Addresses Not Specified

SYNTAX REMOTE

RESPONSE None

MODE SC

BUS STATES REN

SEE ALSO Remote (Sub-Chapter 15B)

EXAMPLES PRINT#1,"REMOTE" Assert Remote Enable

15A. Driver488/DRV Commands III. COMMAND REFERENCES - 15. Command References

III-304 Personal488 User’s Manual, Rev. 3.0

Bus Addresses Specified
SYNTAX REMOTE addr[,addr...]

addr is a device address (primary with optional secondary) or an external device
name.

RESPONSE None

MODE SC•CA
BUS STATES REN, ATN•UNL, MTA, LAG
SEE ALSO LOCAL, LOCAL LOCKOUT, Remote (Sub-Chapter 15B)

EXAMPLES PRINT#1,"REMOTE16,28" Assert REN and address devices 16 and 28 to
listen.

The REMOTE command asserts the Remote Enable (REN) bus management line. If the optional bus
addresses are specified, REMOTE also address those devices to listen, placing them in the Remote state.

REMOVE DEVICE
SYNTAX REMOVE DEVICE [[,]name...]

name is the external device to remove.
RESPONSE None

MODE Any

BUS STATES None

SEE ALSO MAKE DEVICE, KEEP DEVICE, REMOVE DOS NAME

EXAMPLES PRINT#1, “REMOVE DEVICE DMM”

The REMOVE DEVICE command removes the specific temporary or permanent Driver488 device that
was created with either the MAKE DEVICE command or the INSTALL program. This command also
removes a device that was made permanent through a KEEP DEVICE command. Notice that REMOVE
DEVICE cannot be used to remove devices having DOS names. The REMOVE DOS NAME command
must first be used to remove any associated DOS names from such devices before the devices are
removed via the REMOVE DEVICE command.

REMOVE DOS NAME
SYNTAX REMOVE DOS NAME dosname

dosname is the name of the Driver488 DOS device to remove.
RESPONSE None

MODE Any

BUS STATES None

SEE ALSO MAKE DOS NAME, KEEP DOS NAME, REMOVE DEVICE

EXAMPLES PRINT#1, “REMOVE DOS NAME METER”

The REMOVE DOS NAME command removes the temporary or permanent Driver488 DOS device that
was created by either the MAKE DOS NAME command or the INSTALL program.

REQUEST
SYNTAX REQUEST[;] status

status is the service REQUEST status in the range 0 to 255.
RESPONSE None

MODE *CA

BUS STATES SRQ if rsv is set

*SRQ if rsv is not set

SEE ALSO STATUS, CONTROL LINE, PPOLL CONFIG

III. COMMAND REFERENCES - 15. Command References 15A. Driver488/DRV Commands

Personal488 User’s Manual, Rev. 3.0 III-305

EXAMPLES See next page.

EXAMPLES PRINT#1,"REQUEST“;64+2+4 Generate an SRQ (decimal 64) with DIO2
(decimal 2) and DIO3 (decimal 4) set in
the Serial Poll Response.

PRINT#1,"REQUEST 0" Clear SRQ and Serial Poll Response.

In Peripheral mode, Driver488 is able to request service from the Active Controller by asserting the
Service Request (SRQ) bus signal. The REQUEST command sets or clears the Serial Poll status
(including Service Request) of Driver488. REQUEST takes a numeric argument in the decimal range
0 to 255 (hex range &H0 to &HFF) that is used to set the Serial Poll status. When Driver488 is Serial
Polled by the Controller, it returns this byte on the DIO data lines.

The data lines are numbered DIO8 through DIO1. DIO8 is the most significant line and corresponds to
a decimal value of 128 (hex &H80). DIO7 is the next most significant line and corresponds to a
decimal value of 64 (hex &H40). DIO7 has a special meaning: It is the Request for Service (rsv) bit. If
rsv is set, then Driver488 asserts the Service Request (SRQ) bus signal. If DIO7 is clear (a logic 0),
then Driver488 does not assert SRQ. When Driver488 is Serial Polled, all eight bits of the Serial Poll
status are returned to the Controller. The rsv bit is cleared when Driver488 is Serial Polled by the
Controller. This causes Driver488 to stop asserting SRQ.

RESET
SYNTAX RESET

RESPONSE None

MODE Any

BUS STATES None

SEE ALSO ABORT, TERM, TIME OUT

EXAMPLE PRINT#1,”RESET”

The RESET command provides a warm start of the interface. It is equivalent to issuing the following
command process, including clearing all error conditions:

1. STOP

2. DISARM

3. Reset hardware. (Resets to Peripheral if not System Controller)
4. ABORT (if System Controller)
5. ERROR ON

6. FILL$0

7. LOCAL

8. REQUEST 0 (if Peripheral)
9. Clear Change, Trigger, and Clear event conditions.
10. Reset I/O adapter settings to installed values. (TIME OUT, INT LEVEL, and DMA CHANNEL)

RESUME
SYNTAX RESUME [MONITOR] [name]

name is either an I/O adapter or an external device. If name is an external device,
then the device’s output terminators are used. If name is a hardware interface,
then the default input terminators are used. If name is not specified, then
RESUME acts as if the hardware interface was specified.

MONITOR is a flag that when specified, Driver488 monitors the data.
RESPONSE None

MODE CA

BUS STATES *ATN

SEE ALSO FINISH

EXAMPLE PRINT#1,"RESUME" Unassert Attention Line.

15A. Driver488/DRV Commands III. COMMAND REFERENCES - 15. Command References

III-306 Personal488 User’s Manual, Rev. 3.0

The RESUME command unasserts the Attention (ATN) bus signal. Attention is normally kept asserted by
Driver488, but it must be unasserted to allow transfers to take place between two peripheral devices. In
this case, Driver488 sends the appropriate Talk and Listen addresses, and then must unassert
Attention with the RESUME command.

If MONITOR is specified, then Driver488 monitors the handshaking process but does not participate in
it. Driver488 takes control synchronously when the last terminator or EOI is encountered. At that
point, the transfer of data stops. The FINISH command must be called to assert Attention and release
any pending holdoffs to be ready for the next action.

SEND
SYNTAX SEND[;] subcommand[subcommand...]

RESPONSE None

MODE CA (any subcommands)

Any (DATA and EOI subcommands only)

BUS STATES User-defined

SEE ALSO OUTPUT

EXAMPLES PRINT#1,”SEND MTA UNL LISTEN16 DATA ‘T1S0R2X’”

is the same as

PRINT#1,”OUTPUT16;T1S0R2X”
PRINT#1,”SEND CMD 128,0,10 DATA 156,35 EOI ‘ABC’”

sends the following byte sequence:

Data
10000000
00000000
00001010
10011100
00100011
01000001
01000010
01000011

ATN
ATN
ATN
*ATN
*ATN
*ATN
*ATN
*ATN
*ATN

EOI
*EOI
*EOI
*EOI
*EOI
*EOI
*EOI
*EOI
EOI

The SEND command provides byte-by-byte control of data and command transfers on the bus and gives
greater flexibility than the other commands. This command can specify exactly which operations
Driver488 executes. The following subcommands are available within the SEND command:

SEND Subcommand Operation (Bus Command or Data Transfer)
UNT Send the Untalk bus command. ATN is asserted.
UNL Send the Unlisten bus command. ATN is asserted.
MTA Send the My Talk Address bus command. ATN is asserted.
MLA Send the My Listen Address bus command. ATN is asserted.
TALK addr Send the Talk Address Group (TAG) bus command. ATN is asserted.
LISTEN addr[,addr...] Send the Listen Address Group (LAG) bus command. ATN is asserted.
DATA {‘data’|number}

[,{‘data’|number}...]
Send character strings data or characters with numeric ASCII values char.

ATN unasserted.
EOI {‘data’|number}

[,{‘data’|number}...]
Send character strings data or characters with numeric ASCII values char.

ATN unasserted. EOI is asserted on the last character.
CMD {‘data’|number}

[,{‘data’|number}...]
Send character strings data or characters with numeric ASCII values char.

ATN asserted.

The DATA, EOI and CMD subcommands send data bytes or characters over the bus. The characters to be
sent are specified either as a quoted string (‘data’) or as individual ASCII values
(number[,number...]). For example, DATA‘R0X’ sends the characters R, 0, and X to the active
listeners, while DATA13,&H0A sends the carriage return and line feed. Multiple quoted strings or
ASCII valued bytes may be specified by separating them with commas. The EOI subcommand is
identical to the DATA subcommand except that the End-Or-Identify (EOI) signal is asserted on the
transfer of the last character.

III. COMMAND REFERENCES - 15. Command References 15A. Driver488/DRV Commands

Personal488 User’s Manual, Rev. 3.0 III-307

The CMD subcommand sends the data bytes with Attention (ATN) asserted. This ATN tells the bus
devices that the characters are to be interpreted as IEEE 488 bus commands, rather than as data. EOI is
not asserted during CMD transfers. For example, CMD &H3F is the same as UnListen (UNL). Note that it
is not possible to assert EOI during the transfer of a command byte, because EOI and ATN together
specify Parallel Poll (PPOLL).

The maximum length of the SEND command, including any subcommands, is 255 characters. If large
amounts of data must be transferred using the SEND command, then multiple SEND commands must be
used so that they are each less than 255 characters long. For example:

PRINT#1,”SEND UNT UNL MTA LISTEN 16 DATA 1,2,3,4,5,6”

is equivalent to:

PRINT#1,”SEND UNT UNL MTA LISTEN 16”
PRINT#1,”SEND DATA 1,2,3”
PRINT#1,”SEND DATA 4,5,6”

In this way, a long SEND command can be broken up into shorter commands.

SPOLL
SYNTAX SPOLL [addr]

addr is a device address (primary with optional secondary) or an external device
name.

RESPONSE 0 or 64 (without addr)

Number in the range 0 to 255 (with addr)

MODE CA

BUS STATES ATN•UNL, MLA, TAG, SPE, *ATN, ATN•SPD, UNT
SEE ALSO SPOLL LIST, PPOLL

EXAMPLES PRINT#1,”SPOLL 16” Serial Poll device 16
INPUT#2,SPSTAT Receive the SPOLL status
IF SPSTAT AND 64 THEN Test rsv...
PRINT#1,”SPOLL” Check the SRQ status
INPUT#2,SRQ Receive the SRQ status
IF SRQ<>0 THEN If SRQ is asserted then ...

In Active Controller mode, the SPOLL (Serial Poll) command performs a Serial Poll of the bus device
specified and responds with a number from 0 to 255 representing the decimal equivalent of the eight-
bit device response. If rsv (DIO7, decimal value 64) is set, then that device is signaling that it requires
service. The meanings of the other bits are device-specific.

Serial Polls are normally performed in response to assertion of the Service Request (SRQ) bus signal by
some bus device. In Active Controller mode, with no bus address specified, the SPOLL command
returns the internal SRQ status. If the internal SRQ status is set, it usually indicates that the SRQ line is
asserted. Driver488 then returns a 64. If it is not set, indicating that SRQ is not asserted, then
Driver488 returns a 0.

In Peripheral mode, the SPOLL command is issued without an address, and returns the Serial Poll
status. If rsv (DIO7, decimal value 64) is set, then Driver488 has not been Serial Polled since the
issuing last REQUEST command. The rsv is reset whenever Driver488 is Serial Polled by the
Controller.

15A. Driver488/DRV Commands III. COMMAND REFERENCES - 15. Command References

III-308 Personal488 User’s Manual, Rev. 3.0

SPOLL LIST
SYNTAX SPOLL LIST [UNTIL_RSV|WHILE_SRQ|ALL] addr[, addr...]

addr is a device name (primary with optional secondary) or an external device
name to be Serial Polled.

RESPONSE Number of devices serial polled followed by their responses
which are numbers in the range 0 to 255, separated by
commas.

MODE CA

BUS STATES ATN•UNL, MLA, TAG, SPE, *ATN, data, ATN•SPD, UNT
SEE ALSO SPOLL, PPOLL

EXAMPLES PRINT#1,"SPOLL LIST ALL 16,17" Serial Poll devices 16 and 17.
INPUT#2,SPSTAT Receive the SPOLL status.

2,64,12 Device 16 responded with 64, and 17
responded with 12.

PRINT#1 “SPOLL LIST UNTIL_RSV 16,17" Serial Poll first device 16.
INPUT#2, SPSTAT Receive the SPOLL status.

1,64 Device 16 responded with 64.

SPOLL LIST performs a Serial Poll of one or more bus devices, and responds with the number of
devices actually polled and their individual responses. An optional flag specifies the criteria Driver488
should use to terminate scanning the list of devices.

If UNTIL_RSV is chosen, Driver488 Serial Polls the devices until the first device whose rsv bit is set,
is found. If WHILE_SRQ is chosen, Driver488 Serial Polls the devices until the SRQ bus signal becomes
unasserted. If ALL is chosen, all the devices are Serial Polled. The default is ALL.

STATUS
SYNTAX STATUS[name]

RESPONSE Character string as described below.

MODE Any

BUS STATES None

SEE ALSO ARM, SPOLL, GetError (Sub-Chapter 15B)

EXAMPLE PRINT#1,"STATUS" Read Driver488 status.
INPUT#2,A$ Receive status.
PRINT A$ Display status.

The STATUS command returns various items detailing the current state of Driver488/DRV. They are
returned as one long character string, based on the following table:

STATUS Item
(Starting Col., No. of Cols.)

Values and Description

Operating model (1,1) C: Controller; P: Peripheral
System Controller (2,1) S: System Controller; N: Not System Controller
Primary Bus Address (3,2) 00 to 30: Two-digit decimal number
Secondary Bus Address (5,2) 00 to 31: Two-digit decimal number, or blank if no secondary address
Address Change (7,1) 0: Address change has not occurred; 1: Address change has occured
Addressed State (9,1) T: Talker; L: Listener; I:Idle
ByteIn (10,1) 0: No byte in; 1: Byte in
ByteOut (11,1) 0: No byte out; 1: Byte out
Service Request (12,1) 0: SRQ is not asserted.; 1: SRQ is asserted.
Error Code (14,3) nnn: Three-digit error code
Triggered (18,2) T0: Trigger command not received; T1: Trigger command received
Cleared (21,2) C0: Clear command not received; C1: Clear command received.
Transfer in Progress (24,2) P0: No transfer in progress; P1: Transfer in progress
Error Message (27,x) Text of error message (x = variable text)

III. COMMAND REFERENCES - 15. Command References 15A. Driver488/DRV Commands

Personal488 User’s Manual, Rev. 3.0 III-309

These STATUS items are more-fully described in the following paragraphs:

• The Operating Mode (C or P) indicates whether or not Driver488 is the Active Controller. If
Driver488 passes control to another device, the Operating Mode indicator changes from C to P.
When Driver488 regains control, the indicator is C again. If Driver488 is not the System
Controller, it is initially a Peripheral and thus the indicator is P. It does, of course, become C when
Driver488 receives control from the Active Controller.

• The System Controller Mode (S or N) indicates whether or not Driver488 is the System Controller.
If Driver488 is System Controller, the System Controller Mode indicator is S. If Driver488 is not
System Controller, then the System Controller Mode indicator is N. The System Controller Mode
may be configured from the INSTALL program or with the SYS CONTROLLER command.

• The Primary Bus Address (00 to 30) is the IEEE 488 bus device primary address assigned to
Driver488 or the specified device. The Secondary Bus Address (00 to 31) is the IEEE 488 bus
device secondary address assigned to the specified device. If there is no secondary address, this
field is blank.

• The Address Change (0 or 1) indicator is set whenever Driver488 become a Talker, Listener, or
the Active Controller, or when it becomes no longer a Talker, Listener, or the Active Controller. It
is reset when STATUS is read. The Addressed State (T, L, or I) is the current Talker/Listener state
of Driver488. As a Peripheral, Driver488 can check this status to see if it has been addressed to
Talk or addressed to Listen by the Active Controller. In this way, the desired direction of data
transfer can be determined.

• The ByteIn (0 or 1) indicator is set when the I/O adapter has received a byte that can be read by an
ENTER command. The ByteOut (0 or 1) indicator is set when the I/O adapter is ready to output
data. The Service Request (0 or 1) field, as an Active Controller, reflects the IEEE 488 bus SRQ
line signal. As a peripheral, this status reflects the rsv bit that can be set by the REQUEST
command and is cleared when the Driver488 is Serial Polled (SPOLL).

• The Error Code (000) indicator appears when no error has occurred. If it is non-zero, then the
Error Message (see below) is appended to the STATUS response. The Error Code is reset to 000
when STATUS is read.

• The Triggered (T0 or T1) and Cleared (C0 or C1) indicators are set when, as a Peripheral,
Driver488 is triggered or cleared. These two indicators are cleared when STATUS is read. The
Transfer in Progress (P1) indicator is set when a CONTINUE transfer is in progress. The Triggered
and Cleared indicators are not updated while CONTINUE transfers (P1) are in progress.

• The Error Message is a variable text description of the error status. For more details about the
individual errors, refer to Chapter 19 “Error Messages.”

The standard default setting yields the following power-up status response:

CS21 1 I000 000 T0 C0 P0 OK

where the following indicators describe each component of the Driver488/DRV status:

Indicator Driver488/DRV Status
C It is in the Controller state.
S It is the System Controller.
21 The value of its IEEE 488 bus address.
1 An Address Change has occurred.
I It is Idle (neither a Talker nor a Listener).
0 There is no ByteIn available.
0 It is not ready to send a ByteOut.
0 Service Request (SRQ) is not asserted.
000 There is no outstanding error.
T0 It has not received a bus device TRIGGER command (only applicable in the Peripheral mode).
C0 It has not received a CLEAR command (only applicable in the Peripheral mode).
P0 No CONTINUE transfer is in progress.
OK The error message is “OK”.

15A. Driver488/DRV Commands III. COMMAND REFERENCES - 15. Command References

III-310 Personal488 User’s Manual, Rev. 3.0

STOP
SYNTAX STOP[name]

RESPONSE None

MODE Any

BUS STATES ATN (Controller)

None (Peripheral)

SEE ALSO ENTER, OUTPUT, BUFFERED, STATUS

EXAMPLE PRINT#1,"STOP"

The STOP command halts any CONTINUE transfer that may be in progress. If the transfer has
completed already, then STOP has no effect. The actual number of characters transferred is available
from the BUFFERED command.

SYS CONTROLLER
SYNTAX SYS CONTROLLER [OFF|ON]

RESPONSE None

MODE Any

BUS STATES IFC if System Controller

SEE ALSO ABORT, RESET

EXAMPLES PRINT#1”SYS CONTROLLER OFF”

The SYS CONTROLLER command specifies whether or not the IEEE 488 interface card is to be the
System Controller. The System Controller has ultimate control of the IEEE 488, and there may be only
one System Controller on a bus.

If Driver488 is a Peripheral (that is, not System Controller), it may still take control of bus transactions
if the Active Controller passes control to Driver488. Driver488 may then control the bus and, when it
is done, pass control back to the System Controller or other computer, which then becomes the Active
Controller.

TERM
SYNTAX TERM[;] [devicename] [IN|OUT]term[term][EOI]

devicename refers to an external device name.
IN or OUT specifies whether the input or output terminators are being set. If

neither IN nor OUT is specified, then both terminators are set identically.
term is one of CR, LF, $char, or ‘X, specifying a terminator character.

RESPONSE None

MODE Any

BUS STATES None

SEE ALSO EOL, ENTER, OUTPUT, STATUS

EXAMPLES PRINT#1,"TERM CR LF EOI" Set both input and output bus terminators to
carriage return line feed, with EOI sent
on output and detected on input.

PRINT#1,"TERM OUT LF EOI" Set output term to LF with EOI.
PRINT#1,"TERM IN ‘Z" Set bus input term to the letter “Z”.
PRINT#1,"TERM OUT $0 EOI" Set output term to NULL with EOI.

The TERM command sets the end-of-line (EOL) terminators for input from, and output to, the I/O
adapter devices. All output to I/O adapter devices, except OUTPUT #count and
OUTPUT #count BUFFER, is terminated by the bus output terminator. All ENTER input from I/O
adapter devices, except ENTER #count and ENTER #count BUFFER, must be terminated by the bus
input terminator.

III. COMMAND REFERENCES - 15. Command References 15A. Driver488/DRV Commands

Personal488 User’s Manual, Rev. 3.0 III-311

During OUTPUT, Driver488 takes the EOL terminator it receives from the user’s program, and replaces
it with the bus output terminator before sending it to the I/O adapter device. Conversely, when
Driver488 receives the bus input terminator, it replaces it with the EOL input terminator before
returning it to the user’s program. The default terminators for both input and output are normally
CR LF EOI, which is appropriate for most bus devices.

EOI has a different meaning when specified for input than when it is specified for output. During input,
EOI specifies that input is terminated on detection of the EOI bus signal, regardless of which characters
have been received. During output, EOI specifies that the EOI bus signal is to be asserted during the
last byte transferred.

TIME OUT
SYNTAX TIME OUT [devicename] n[.[n][n][n]]

devicename is the name of the external device.
n[.[n][n][n]], the time out value, is the number of seconds to allow in the

range of 0.000 to 65535.999. If zero is specified, ignore time outs. A
leading 0 must be used for time out intervals below 1.000 second.

RESPONSE None

MODE Any

BUS STATES None

SEE ALSO RESET, MAKE DEVICE

EXAMPLES PRINT#1,"TIME OUT10" Reset to default (10 seconds).
PRINT#1,"TIME OUT0.5" Set time out interval to one-half second.
PRINT#1,"TIME OUT3600" Wait an hour before a time out error.
PRINT#1,"TIME OUT0" Ignore time outs.

The TIME OUT command sets the number of seconds that Driver488 waits for a transfer before
declaring a time out error. Driver488 checks for time out errors on every byte it transfers, except in the
case of CONTINUE transfers. While the first byte of a CONTINUE transfer is checked for time out errors,
subsequent bytes are not. The user’s program must check for timely completion of a CONTINUE
transfer.

Time out checking may be suppressed by specifying time out after zero seconds. The default time out
is 10 seconds. The time out interval may be specified to the nearest 0.001 seconds. However, due to
the limitations of the computer, the actual interval is always a multiple of 0.055 seconds (55
milliseconds) and there is an uncertainty of 0.055 seconds in the actual time out interval. Time out
intervals from 0.010 to 0.110 seconds are rounded to 0.110 seconds. Larger intervals are rounded
to the nearest multiple of 0.055 seconds (e.g., 0.165, 0.220, 0.275 seconds, etc.).

TRIGGER
SYNTAX TRIGGER [addr[,addr...]]

addr is a device address (primary with optional secondary) or an external device
name to be triggered.

RESPONSE None

MODE CA

BUS STATES ATN•GET (without addr)
ATN•UNL, MTA, LAG, GET (with addr)

SEE ALSO STATUS, SEND, TriggerList (Sub-Chapter 15B)

EXAMPLES PRINT#1,"TRIGGER" Trigger all current listeners.
PRINT#1,"TRIGGER02,04,16" Issue Group Execute Trigger (GET) to

devices 2, 4, and 16.

15A. Driver488/DRV Commands III. COMMAND REFERENCES - 15. Command References

III-312 Personal488 User’s Manual, Rev. 3.0

The TRIGGER command issues a Group Execute Trigger (GET) bus command to the specified devices.
If no addresses are specified, then the GET only affects those devices that are already in the Listen state
as a result of a previous OUTPUT or SEND command.

WAIT
SYNTAX WAIT

RESPONSE None

MODE Any

BUS STATES Determined by previous ENTER or OUTPUT command

SEE ALSO ENTER, OUTPUT, BUFFERED, STATUS

EXAMPLE PRINT#1,"WAIT" Wait for CONTINUE transfer to be done.

The WAIT command causes Driver488 to wait until any CONTINUE transfer has completed, before
returning to the user’s program. It can be used to guarantee that the data has actually been received
before beginning to process it, or that it has been sent before overwriting the buffer. It is especially
useful with ENTER when a terminator has been specified. In that case, the amount that is actually
received is unknown, and so the user’s program must check with Driver488 to determine when the
transfer is done. Time out checking, if enabled, is performed while WAITing.

III. COMMAND REFERENCES - 15. Command References 15B. Driver488/SUB, W31, W95, & WNT

Personal488 User’s Manual, Rev. 3.0 III-313

 15B. Driver488/SUB, W31, W95, & WNT Commands
This Sub-Chapter contains command reference for Driver488/SUB, Driver488/W31, Driver488/W95,
and Driver488/WNT, using the C language. The commands are presented in alphabetical order on the
following pages for ease of use. For more information on the format of the command descriptions, turn
to the Sub-Chapter “Command Descriptions” of Chapter 9.

Note: The differences among Driver488 for Windows 3.x, Windows 95 and Windows NT are
slight. However, because additional changes are being made to Driver488/W95 and
Driver488/WNT at the time this manual is being revised, refer to your operating system
header file (and README.TXT text file, if present) to obtain the current material on these
driver versions.

Bus Management Commands Page Low-Level Bus Commands Page
Abort III-313 Listen III-329
AutoRemote III-314 MyListenAddr III-331
CheckListener III-315 MyTalkAddr III-331
ControlLine (Driver488/SUB only) III-317 SendCmd III-344
ControlLine (Driver488/W31, W95) III-318 SendData III-344
FindListeners III-325 SendEoi III-345
Lol III-330 Talk III-348
PassControl III-340 UnListen III-351
PPollConfig III-340 UnTalk III-351
PPollDisable III-341
PPollDisableList III-341 Event Handling Commands Page
PPollUnconfig III-341 Arm III-313
Request III-343 Disarm III-318
Reset III-343 OnEvent (Driver488/SUB only) III-331

OnEvent (Driver488/W31, W95) III-332
Instrument Management
Commands

Page OnEventVDM (Driver488/W95) III-333

Clear III-316
ClearList III-316 I/O Management Commands Page
Local III-329 Buffered III-314
LocalList III-329 Finish III-325
Remote III-342 Resume III-344
RemoteList III-342 Stop III-348
Trigger III-350 Wait III-352
TriggerList III-351

Interface Management Commands Page
Device Management Commands Page ClockFrequency III-316
BusAddress III-315 DmaChannel III-319
Close III-317 IntLevel III-327
KeepDevice III-328 IOAddress III-328
MakeDevice III-330 LightPen III-328
MakeNewDevice III-330 SysController III-348
OpenName III-334 Term III-349
RemoveDevice III-342 TermQuery III-349

TimeOut III-350
Device I/O Commands Page TimeOutQuery III-350
Enter (Controller Mode) III-319
Enter (Peripheral Mode) III-321 Error Management Commands Page
EnterI (Controller Mode) III-322 Error III-324
EnterI (Peripheral Mode) III-324 GetError III-326
Output (Controller Mode) III-334 GetErrorList III-326
Output (Peripheral Mode) III-336
OutputI (Controller Mode) III-337 Miscellaneous Commands Page
OutputI (Peripheral Mode) III-339 Hello III-327
PPoll III-340 Status III-346
SPoll III-345
SPollList III-346

15B. Driver488/SUB, W31, W95, & WNT III. COMMAND REFERENCES - 15. Command References

III-314 Personal488 User’s Manual, Rev. 3.0

Abort
SYNTAX int pascal Abort(DevHandleT devHandle);

devHandle refers to either an IEEE 488 hardware interface or an external device.
If devHandle refers to an external device, the Abort command will act on
the hardware interface to which the external device is attached.

RETURNS -1 if error

MODE SC or *SC•CA
BUS STATES IFC, *IFC (SC)

ATN•MTA (*SCCA)
SEE ALSO SysController

EXAMPLE errorflag = Abort(ieee);

As the System Controller (SC), whether Driver488 is the Active Controller or not, the Abort command
causes the Interface Clear (IFC) bus management line to be asserted for at least 500 microseconds. By
asserting IFC, Driver488 regains control of the bus even if one of the devices has locked it up during a
data transfer. Asserting IFC also makes Driver488 the Active Controller. If a Non System Controller
was the Active Controller, it is forced to relinquish control to Driver488. Abort forces all IEEE 488
device interfaces into a quiescent state.

If Driver488 is a Non System Controller in the Active Controller state (*SC•CA), it asserts Attention
(ATN), which stops any bus transactions, and then sends its My Talk Address (MTA) to “Untalk” any
other Talkers on the bus. It does not (and cannot) assert IFC.

Arm
SYNTAX int pascal Arm(DevHandleT devHandle, ArmCondT condition);

devHandle refers to either an IEEE 488 hardware interface or an external device.
If devHandle refers to an external device, the Arm command acts on the
hardware interface to which the external device is attached.

condition is one of the following: acError, acSRQ, acPeripheral,
acController, acTrigger, acClear, acTalk, acListen,

acIdle, acByteIn, acByteOut, or acChange.
RETURNS -1 if error

MODE Any

BUS STATES None

SEE ALSO Disarm, OnEvent, LightPen

EXAMPLE errorflag = Arm(ieee, acSRQ|acTrigger|acChange);

The following Arm conditions are supported:

Condition Description
acSRQ The Service Request bus line is asserted.
acPeripheral An addressed status change has occurred and the interface is a Peripheral.
acController An addressed status change has occurred and the interface is an Active Controller.
acTrigger The interface has received a device Trigger command.
acClear The interface has received a device Clear command.
acTalk An addressed status change has occurred and the interface is a Talker.
acListen An addressed status change has occurred and the interface is a Listener.
acIdle An addressed status change has occurred and the interface is neither Talker nor Listener.
acByteIn The interface has received a data byte.
acByteOut The interface has been configured to output a data byte.
acError A Driver488 error has occurred.
acChange The interface has changed its addressed status. Its Controller/Peripheral or

Talker/Listener/Idle states of the interface have changed.

III. COMMAND REFERENCES - 15. Command References 15B. Driver488/SUB, W31, W95, & WNT

Personal488 User’s Manual, Rev. 3.0 III-315

The Arm command allows Driver488 to signal to the user specified function when one or more of the
specified conditions occurs. Arm sets a flag corresponding to each implementation of the conditions
indicated by the user. Arm conditions may be combined using the bitwise OR operator.

Once an interrupt is Armed, it remains Armed until it is Disarmed, or until Driver488 is reset. BASIC
automatically suppresses light pen interrupt detection during the execution of an interrupt service
routine, so the interrupt service routine is never re-entrantly invoked. In languages that explicitly poll
the light pen status, polling should not be done during the interrupt service routine.

If Pascal or C is being used, the OnEvent function must be called. This function acts similar to the
ON PEN command in BASIC. When the Armed condition occurs, the OnEvent function calls a
function specified by the user.

AutoRemote
SYNTAX int pascal AutoRemote(DevHandleT devHandle, bool flag);

devHandle refers to either an IEEE 488 hardware interface or an external device.
If devHandle refers to an external device, the AutoRemote command acts on
the hardware interface to which the external device is attached.

flag may be either OFF or ON
RETURNS -1 if error.

When the flag is non-zero, AutoRemote is enabled; a zero flag
disables the function.

MODE SC

BUS STATES None

SEE ALSO Local, Remote, Enter (see EnterX), Output (see OutputX)

EXAMPLE errorcode = AutoRemote(ieee,ON);

The AutoRemote command enables or disables the automatic assertion of the Remote Enable (REN)
line by Output. When AutoRemote is enabled, Output automatically asserts REN before transferring
any data. When AutoRemote is disabled, there is no change to the REN line. AutoRemote is on by
default.

Buffered
SYNTAX long pascal Buffered(DevHandleT devHandle);

devHandle refers to either an IEEE 488 hardware interface or an external device.
If devHandle refers to an external device, the Buffered command acts on the
hardware interface to which the external device is attached.

RETURNS -1 if error, otherwise long integer from 0 to 1,048,575(220-1)

MODE Any

BUS STATES None

SEE ALSO Enter (see EnterX), Output (see OutputX)

EXAMPLE result = Buffered(ieee);
printf(“%ld bytes were received.”,result);

The Buffered command returns the number of characters transferred by the latest Enter, Output,
SendData, or SendEoi command. If an asynchronous transfer is in progress, the result is the number
of characters that have been transferred at the moment the command is issued. This command is most
often used after a counted Enter, EnterN, EnterNMore, etc., to determine if the full number of
characters was received, or if the transfer terminated upon detection of term. It is also used to find out
how many characters have currently been sent during an asynchronous DMA transfer.

15B. Driver488/SUB, W31, W95, & WNT III. COMMAND REFERENCES - 15. Command References

III-316 Personal488 User’s Manual, Rev. 3.0

BusAddress
SYNTAX int pascal BusAddress (DevHandleT devHandle, char primary,

char secondary);

devHandle refers to either an IEEE 488 hardware interface or an external device.
primary is the IEEE 488 bus primary address of the specified device.
secondary is the IEEE 488 bus secondary address of the specified device. If the

specified device is an IEEE 488 hardware interface, this value must be -1
since there are no secondary addresses for the IEEE 488 hardware interface.
For no secondary address, a -1 must be specified.

RETURNS -1 if error

MODE Any

BUS STATES None

SEE ALSO MakeDevice

EXAMPLE errorcode = BusAddress(dmm,14,0);

The BusAddress command sets the IEEE 488 bus address of the IEEE 488 hardware interface or an
external device. Every IEEE 488 bus device has an address that must be unique within any single
IEEE 488 bus system. The default IEEE 488 bus address for Driver488 is 21, but this may be changed
if it conflicts with some other device.

CheckListener
SYNTAX int pascal CheckListener(DevHandleT devHandle, char primary,

char secondary);

devHandle refers to either an IEEE 488 hardware interface or an external device.
If devHandle refers to an external device, the CheckListener command
acts on the hardware interface to which the external device is attached.

primary is the primary bus address to check for a Listener (00 to 30)
secondary is the secondary bus address to check for a Listener (00 to 31). For

no secondary address, a -1 must be specified
RETURNS -1 if error,

otherwise it returns a 1 if a listener was found at the
specified address and a 0 if a listener was not found at
the specified address.

MODE CA

BUS STATES ATN•MTA, UNL, LAG, (check for NDAC asserted)
SEE ALSO FindListener, BusAddress

EXAMPLE result = CheckListener(ieee,15,4);
if (result == 1)
{
printf(“Device found at specified address.\n”);
}
if (result == 0)
{
printf(“Device not found at specified address.\n”);
}

The CheckListener command checks for the existence of a device on the IEEE 488 bus at the
specified address.

III. COMMAND REFERENCES - 15. Command References 15B. Driver488/SUB, W31, W95, & WNT

Personal488 User’s Manual, Rev. 3.0 III-317

Clear
SYNTAX int pascal Clear(DevHandleT devHandle);

devHandle refers to either an IEEE 488 hardware interface or an external device.
If devHandle refers to a hardware interface, then a Device Clear (DCL) is
sent. If devHandle refers to an external device, a Selected Device Clear
(SDC) is sent.

RETURNS -1 if error

MODE CA

BUS STATES ATN•DCL (all devices)
ATN•UNL, MTA, LAG, SDC (selected device)

SEE ALSO Reset, ClearList

EXAMPLES errorcode = Clear(ieee); Sends the Device Clear (DCL) command to the
interface board

errorcode = Clear(wave) Sends the Selected Device Clear (SDC) command to
the WAVE

errorcode = Clear(dmm) Sends the Selected Device Clear (SDC) command to
the DMM

The Clear command causes the Device Clear (DCL) bus command to be issued to an interface or a
Selected Device Clear (SDC) command to be issued to an external device. IEEE 488 bus devices that
receive a Device Clear or Selected Device Clear command normally reset to their power-on state.

ClearList
SYNTAX int pascal ClearList(DevHandlePT devHandles);

devHandles is a pointer to a list of device handles that refer to external devices.
If a hardware interface is in the list, DCL is sent instead of SDC.

RETURNS -1 if error

MODE CA

BUS STATES ATN•DCL (all devices)
ATN•UNL, MTA, LAG, SDC (selected device)

SEE ALSO Clear, Reset

EXAMPLES deviceList[0] = wave;
deviceList[1] = scope;
deviceList[2] = dmm;
deviceList[3] = NODEVICE;
errorcode = ClearList(deviceList);

Sends the Selected Device Clear
(SDC) command to a list of
devices.

The ClearList command causes the Selected Device Clear (SDC) command to be issued to a list of
external devices. IEEE 488 bus devices that receive a Selected Device Clear command normally reset
to their power-on state.

ClockFrequency
Driver488/SUB and Driver488/W31 only

SYNTAX int pascal ClockFrequency(DevHandleT devHandle,int freq);

devHandle refers to either an IEEE 488 Interface or an external device. If
devHandle refers to an external device, the ClockFrequency command acts
on the hardware interface to which the external device is attached.

freq is the actual clock rate rounded up to the nearest whole number of MHz.
RETURNS -1 if error

MODE Any

BUS STATES None

SEE ALSO Reset

15B. Driver488/SUB, W31, W95, & WNT III. COMMAND REFERENCES - 15. Command References

III-318 Personal488 User’s Manual, Rev. 3.0

EXAMPLE errorcode = ClockFrequency(ieee, 8);

The ClockFrequency command specifies the IEEE 488 adapter internal clock frequency. The clock
frequency depends upon the design and jumper settings of the interface board. The specified clock
frequency must be the actual clock rate in megahertz (MHz) rounded up to the nearest whole number of
megahertz. The MP488 and MP488CT boards use a fixed clock frequency of 8 MHz.

Note: This command is not applicable to the NB488.

Close
SYNTAX int pascal Close(DevHandleT devHandle);

devHandle refers to either an IEEE 488 interface or an external device.
RETURNS -1 if error

MODE Any

BUS STATES Completion of any pending I/O activities

SEE ALSO OpenName, MakeDevice, Wait

EXAMPLE errorcode = Close(wave);

The Close command waits for I/O to complete, flushes any buffers associated with the device that is
being closed, and then invalidates the handle associated with the device.

ControlLine
Driver488/SUB only

SYNTAX int pascal ControlLine(DevHandleT devHandle);

ControlLine returns a bit mapped number.
devHandle refers to the I/O adapter. If devHandle refers to an external device,

the ControlLine command acts on the hardware interface to which the
external device is attached.

RESPONSE -1 if error,

otherwise, a bit mapped integer indicating the value of the
control lines.

MODE Any

BUS STATES None

SEE ALSO TimeOut

EXAMPLES result = ControlLine(ieee);
printf(“The response is %X\n”,result);

The ControlLine command may be used on either IEEE 488 devices or Serial devices. If the device
specified is an IEEE 488 device, this command returns the status of the IEEE 488 bus control lines as
an 8-bit unsigned value (bits 2 and 1 are reserved for future use), as shown below:

8 7 6 5 4 3 2 1
EOI SRQ NRFD NDAC DAV ATN 0 0

If the device refers to a Serial device, this command returns the status of the Serial port control lines as
an 8-bit unsigned value (bits 8 and 7 are reserved for future use), as shown below:

8 7 6 5 4 3 2 1
0 0 DSR RI DCD CTS DTR RTS

A fuller description of the above bus line abbreviations are provided below:

III. COMMAND REFERENCES - 15. Command References 15B. Driver488/SUB, W31, W95, & WNT

Personal488 User’s Manual, Rev. 3.0 III-319

Bus State Bus Lines Data Transfer (DIO) Lines
8 7 6 5 4 3 2 1

IEEE 488 Interface
ATN Attention (&H04) 0 0 0 0 0 1 0 0
EOI End-Or-Identify (&H80) 1 0 0 0 0 0 0 0
SRQ Service Request (&H40) 0 1 0 0 0 0 0 0
DAV Data Valid (&H08) 0 0 0 0 1 0 0 0
NDAC Not Data Accepted (&H10) 0 0 0 1 0 0 0 0
NRFD Not Ready For Data (&H20) 0 0 1 0 0 0 0 0

Serial Interface
DTR Data Terminal Ready (&H02) 0 0 0 0 0 0 1 0
RI Ring Indicator (&H10) 0 0 0 1 0 0 0 0
RTS Request To Send (&H01) 0 0 0 0 0 0 0 1
CTS Clear To Send (&H04) 0 0 0 0 0 1 0 0
DCD Data Carrier Detect (&H08) 0 0 0 0 1 0 0 0
DSR Data Set Ready (&H20) 0 0 1 0 0 0 0 0

ControlLine
Driver488/W31 and Driver488/W95 only

SYNTAX int pascal ControlLine(DevHandleT devHandle);

ControlLine returns a bit mapped number.
devHandle refers to the I/O adapter. If devHandle refers to an external device,

the ControlLine command acts on the hardware interface to which the
external device is attached.

RESPONSE -1 if error,

otherwise, a bit mapped integer indicating the value of the
control lines.

MODE Any

BUS STATES None

SEE ALSO TimeOut, ControlLine (Driver488/SUB only)

EXAMPLES result = ControlLine(ieee);
printf(“The response is %X\n”,result);

The ControlLine command applies to IEEE 488 devices only. It returns the status of the IEEE 488
bus control lines as an 8-bit unsigned value (bits 2 and 1 are reserved for future use), as shown below:

8 7 6 5 4 3 2 1
EOI SRQ NRFD NDAC DAV ATN 0 0

Disarm
SYNTAX int pascal Disarm(DevHandleT devHandle, ArmCondT condition);

devHandle refers to either an IEEE 488 interface or an external device. If
devHandle refers to an external device, then the Disarm command acts on
the hardware interface to which the external device is attached.

condition specifies which of the conditions are no longer to be monitored. If
condition is 0, then all conditions are Disarmed.

RETURNS -1 if error

MODE Any

BUS STATES None

SEE ALSO Arm, OnEvent, LightPen

EXAMPLES errorcode=Disarm(ieee,acTalk|acListen|acChange);

15B. Driver488/SUB, W31, W95, & WNT III. COMMAND REFERENCES - 15. Command References

III-320 Personal488 User’s Manual, Rev. 3.0

errorcode=Disarm(ieee,0);

The Disarm command prevents Driver488 from setting the light pen status or invoking an event
handler and interrupting the PC, even when the specified condition occurs. The user’s program can
still check for the condition by using the Status command. If the Disarm command is invoked
without specifying any conditions, then all conditions are disabled. The Arm command may be used to
re-enable interrupt detection.

DmaChannel
Driver488/SUB and Driver488/W31 only

SYNTAX int pascal DmaChannel(DevHandleT devHandle, int channel);

devHandle refers to either an IEEE 488 interface or an external device. If
devHandle refers to an external device, the DmaChannel command acts on
the hardware interface to which the external device is attached.

channel is the DMA channel to be used by the I/O adapter, or -1 for NONE.
RESPONSE -1 if error

MODE Any

BUS STATES None

SEE ALSO IntLevel, TimeOut

EXAMPLE errorcode = DmaChannel(ieee, 5);

The DmaChannel command specifies which DMA channel, if any, is to be used by the I/O interface
card. The PC has four DMA channels, but channel 0 is used for memory refresh and is not available
for peripheral data transfer. Channel 2 is usually used by the floppy-disk controller and is also
unavailable. Channel 3 is used by the hard disk controller in PCs, but is usually not used in AT
compatible machines. So, channel 1 (and possibly channel 3) is available for DMA transfers. The AT
compatible computers have three 16-bit DMA channels: 5, 6, and 7. The MP488CT, MP488, and
AT488 interfaces can use these channels for high speed transfer. The DmaChannel value must match
the hardware jumper settings on the I/O adapter card.

Note: This command is not applicable to the NB488.

Enter (Controller Mode)
EnterX

SYNTAX long pascal EnterX(DevHandleT devHandle, char *data,long
count,bool forceAddr,TermT*term,bool async,int *compStat);

devHandle refers to either an IEEE 488 interface or an external device.
data is a pointer to the buffer into which the data is read.
count is the number of characters to read.
forceAddr is used to specify whether the addressing control bytes are to be

issued for each EnterX command.
term is a pointer to a terminator structure that is used to set up the input

terminators. If term is set to 0, the default terminator is used.
async is a flag that allows asynchronous data transfer.
compStat is a pointer to an integer containing completion status information.

RETURNS -1 if error,

otherwise, the number of bytes transferred. The memory buffer
pointed to by the data parameter is filled in with the
information read from the device.

MODE CA

BUS STATES ATN•UNL, MLA, TAG, *ATN, data (With external device handle)
*ATN, data (With interface handle)

SEE ALSO OutputX, Term, EOL, Buffered

EXAMPLE See next page.

III. COMMAND REFERENCES - 15. Command References 15B. Driver488/SUB, W31, W95, & WNT

Personal488 User’s Manual, Rev. 3.0 III-321

EXAMPLE term.EOI = TRUE;
term.nChar = 1;
term.EightBits = TRUE;
term.termChar[0] = ‘\r’;
bytecount=EnterX(timer,data,1024,0,&term,1,&stat);

The EnterX command reads data from the I/O adapter. If an external device is specified, then
Driver488 is addressed to Listen, and that device is addressed to Talk. If an interface is specified, then
Driver488 must already be configured to receive data and the external device must be configured to
Talk, either as a result of an immediately preceding EnterX command or as a result of one of the Send
commands. EnterX terminates reception on either the specified count of bytes transferred, or the
specified or default terminator being detected. Terminator characters, if any, are stripped from the
received data before the EnterX command returns to the calling application.

The forceAddr flag is used to specify whether the addressing control bytes are to be issued for each
EnterX command. If the device handle refers to an I/O adapter, then forceAddr has no effect and
command bytes are not sent. For an external device, if forceAddr is TRUE then Driver488 always
sends the UNL, MLA, and TAG command bytes. If forceAddr is FALSE, then Driver488 compares the
current device with the previous device that used that interface adapter board for an EnterX command.
If they are the same, then no command bytes are sent. If they are different, then EnterX acts as if the
forceAddr flag were TRUE and sends the command bytes. The forceAddr flag is usually set TRUE
for the first transfer of data from a device, and then set FALSE for additional transfers from the same
block of data from that device.

Additional Enter Functions

Driver488 provides additional Enter routines that are short form versions of the EnterX function.
The additional Enter functions are: Enter, EnterN, EnterMore, and EnterNMore. These functions
are discussed in detail below:

Enter
SYNTAX long pascal Enter(DevHandleT devHandle, char *data)

REMARKS Enter is equivalent to the following call to EnterX:
EnterX(devHandle,data,sizeof(data),1,0L,0,0L);

The Enter function passes the device handle and a pointer to the data buffer to the EnterX function.
It determines the size of the data buffer provided by the user and passes that value as the count
parameter. It specifies forceAddr is TRUE, causing Driver488 to re-address the device. The default
terminators are chosen by specifying a 0 as the term parameter. Asynchronous transfer is turned off by
sending 0 for the async parameter, and the completion status value is ignored by sending 0 for the
compStat parameter.

EnterN
SYNTAX long pascal EnterN(DevHandleT devHandle,char *data,int count)

REMARKS EnterN is equivalent to the following call to EnterX:
EnterX(devHandle,data,count,1,0L,0,0L);

The EnterN function passes the device handle, the pointer to the data buffer, and the size of the data
buffer to the EnterX function. It specifies forceAddr is TRUE, causing Driver488 to re-address the
device. The default terminators are chosen by specifying a 0 pointer as the term parameter.
Asynchronous transfer is turned off by sending 0 for the async parameter, and the completion status
value is ignored by sending 0 for the compStat parameter.

EnterMore
SYNTAX long pascal EnterMore(DevHandleT devHandle,char *data)

REMARKS EnterMore is equivalent to the following call to EnterX:
EnterX(devHandle,data,sizeof(data),0,0L,0,0L);

15B. Driver488/SUB, W31, W95, & WNT III. COMMAND REFERENCES - 15. Command References

III-322 Personal488 User’s Manual, Rev. 3.0

The EnterMore function passes the device handle and the pointer to the data buffer to the EnterX
function. It determines the size of the data buffer provided by the user and passes that value as the
count parameter. It specifies forceAddr is FALSE, therefore Driver488 does not address the device
if it is the same device as previously used. The default terminators are chosen by specifying a 0 as the
term parameter. Asynchronous transfer is turned off by sending 0 for the async parameter, and the
completion status value is ignored by sending 0 for the compStat parameter.

EnterNMore
SYNTAX long pascal EnterNMore(DevHandleT devHandle,char *data,int

count);

REMARKS EnterNMore is equivalent to the following call to EnterX:
EnterX(devHandle,data,count,0,0L,0,0L);

The EnterNMore function passes the device handle, the pointer to the data buffer, and the size of the
data buffer to the EnterX function. It specifies forceAddr is FALSE; therefore, Driver488 does not
address the device if it is the same device as previously used. The default terminators are chosen by
specifying a 0 as the term parameter. Asynchronous transfer is turned off by sending 0 for the async
parameter, and the completion status value is ignored by sending 0 for the compStat parameter.

Enter (Peripheral Mode)
EnterX

SYNTAX long pascal EnterX(DevHandleT devHandle, char *data, long
count,bool forceAddr,TermT*term,bool async,int *compStat);

devHandle refers to either an IEEE 488 interface or an external device.
data is a pointer to the buffer into which the data is read.
count is the number of characters to read.
forceAddr is ignored.
term is a pointer to a terminator structure that is used to set up the input

terminators. If term is set to 0, the default terminators are used.
async is a flag that allows asynchronous data transfer.
compStat is a pointer to an integer containing completion status information.

RETURNS -1 if error,

otherwise, the number of bytes transferred. The memory buffer
pointed to by the data parameter is filled in with the
information read from the device.

MODE *CA

BUS STATES Determined by the Controller

SEE ALSO Output, Term, Buffered, EOL (Sub-Chapter 15A)

EXAMPLE term.EOI = TRUE;
term.nChar = 1;
term.EightBits = TRUE;
term.termChar[0] = ‘\r’;
bytecount=EnterX(timer,data,1024,0,&term,1,&stat);

In Peripheral mode, the EnterX command receives data from the I/O adapter under control of the
Active Controller. The Active Controller must put Driver488 into the Listen state and configure some
bus device to provide Driver488 with data. The Listen state can be checked with the Status
command, or can cause an interrupt with the Arm command. A time-out error occurs (if enabled) if
Driver488 does not receive a data byte within the time out period after issuing the EnterX command.

Additional Enter Functions

Driver488 provides additional Enter routines that are short form versions of the EnterX function.
The additional Enter functions are: Enter and EnterN. In Peripheral mode, the device handle must

III. COMMAND REFERENCES - 15. Command References 15B. Driver488/SUB, W31, W95, & WNT

Personal488 User’s Manual, Rev. 3.0 III-323

always refer to an I/O adapter, and the forceAddr flag is ignored. Thus, EnterMore is equivalent to
Enter, and EnterNMore is equivalent to EnterN.

EnterI (Controller Mode)
Driver488/W31 (Visual Basic only)

EnterXI
SYNTAX EnterXI (ByVal devHandle% ,data%, ByVal count&, ByVal

forceAddr%, Term As terms, ByVal async%, compStat%)As Long

devHandle% refers to either an IEEE 488 interface or an external device.
data% is the first element in an integer array into which the data is read.
count& is the number of characters to read.
forceAddr% is used to specify whether the addressing control bytes are to be

issued for each EnterXI command.
term is a pointer to a terminator structure that is used to set up the input

terminators. If term is set to 0, the default terminator is used.
async% is a flag that allows asynchronous data transfer.
compStat% is a pointer to an integer containing completion status information.

RETURNS -1 if error,

otherwise the number of bytes transferred. The memory buffer
pointed to by the data parameter is filled in with the
information read from the device.

MODE CA

BUS STATES ATN•UNL, MLA, TAG, *ATN, data (With external device handle)
*ATN, data (With interface handle)

SEE ALSO Output, Term, Buffered, EOL (Sub-Chapter 15A)

EXAMPLE term.EOI = TRUE
term.nChar = 1
term.EightBits = TRUE
term.term1 = &HA
bytecount=EnterXI(timer,data%(0),1024,0,term,1,stat)

These EnterI commands for Visual Basic are identical to the standard Enter commands with the
exception of the return values being placed in integer variables rather than string variables.

The EnterXI command reads data from the I/O adapter. If an external device is specified, then
Driver488 is addressed to Listen, and that device is addressed to Talk. If an interface is specified, then
Driver488 must already be configured to receive data and the external device must be configured to
Talk, either as a result of an immediately preceding EnterXI command or as a result of one of the
Send commands. EnterXI terminates reception on either the specified count of bytes transferred, or
the specified or default terminator being detected. Terminator characters, if any, are stripped from the
received data before the EnterXI command returns to the calling application.

The forceAddr% flag is used to specify whether the addressing control bytes are to be issued for each
EnterXI command. If the device handle refers to an I/O adapter, then forceAddr% has no effect and
command bytes are not sent. For an external device, if forceAddr% is TRUE then Driver488 always
sends the UNL, MLA, and TAG command bytes. If forceAddr% is FALSE, then Driver488 compares the
current device with the previous device that used that interface adapter board for an EnterXI
command. If they are the same, then no command bytes are sent. If they are different, then EnterXI
acts as if the forceAddr% flag were TRUE and sends the command bytes. The forceAddr% flag is
usually set TRUE for the first transfer of data from a device, and then set FALSE for additional transfers
from the same block of data from that device.

Additional EnterI Functions

15B. Driver488/SUB, W31, W95, & WNT III. COMMAND REFERENCES - 15. Command References

III-324 Personal488 User’s Manual, Rev. 3.0

Driver488 provides additional EnterI routines that are short form versions of the EnterXI function.
The additional EnterI functions are: EnterI, EnterNI, EnterMoreI, and EnterNMoreI. These
functions are discussed in detail below:

EnterNI
SYNTAX EnterNI(ByVal devHandle%,data%,By Val count&) As Long

REMARKS EnterNI is equivalent to the following call to EnterXI:
EnterXI(devHandle%,data%,count&, 1, 0, 0, 0)

The EnterNI function passes the device handle, the pointer to the data buffer, and the size of the data
buffer to the EnterXI function. It specifies forceAddr% is TRUE, causing Driver488 to re-address the
device. The default terminators are chosen by specifying a 0 pointer as the term parameter.
Asynchronous transfer is turned off by sending 0 for the async% parameter, and the completion status
value is ignored by sending 0 for the compStat% parameter.

EnterNMoreI
SYNTAX EnterNMoreI(ByVal devHandle%,data%,ByVal count&)As Long

REMARKS EnterNMoreI is equivalent to the following call to EnterXI:
EnterXI(devHandle%,data%,count&,0,0,0,0);

The EnterNMoreI function passes the device handle, the pointer to the data buffer, and the size of the
data buffer to the EnterXI function. It specifies forceAddr% is FALSE; therefore, Driver488 does not
address the device if it is the same device as previously used. The default terminators are chosen by
specifying a 0 as the term parameter. Asynchronous transfer is turned off by sending 0 for the async%
parameter, and the completion status value is ignored by sending 0 for the compStat% parameter.

Note: All forms of the EnterI commands (except EnterXI) use EOI as the only terminator. Also,
EnterI and EnterMoreI must be passed to the entire array (i.e. intarray(), not the
starting location: intarray (0)).

The following table describes the differences between the various forms of EnterI. It outlines the
variables passed to each function and how many bytes the functions read.

EnterI Function Reads Until Variable
EnterXI (ADC,IResp (0),1000,1,Term,1,1) n bytes or

terminators
Pass starting location

EnterI (ADC, IResp())
EnterMoreI (ADC, IResp ())

Array full or EOI Pass entire array

EnterNI (ADC< IResp (0), 1000)
EnterNMoreI (ADC, IResp (0), 1000)

n bytes or EOI Pass starting location

where: SResp is String * 1000, and IResp(1000) is integer.

III. COMMAND REFERENCES - 15. Command References 15B. Driver488/SUB, W31, W95, & WNT

Personal488 User’s Manual, Rev. 3.0 III-325

EnterI (Peripheral Mode)
Driver488/W31 (Visual Basic only)

EnterXI
SYNTAX EnterXI (ByVal devHandle% ,data%, ByVal count&, ByVal

forceAddr%, Term As terms, ByVal async%, compStat%)As Long

devHandle% refers to either an IEEE 488 interface or an external device.
data% is the first element in an integer array into which the data is read.
count& is the number of characters to read.
forceAddr% is ignored.
term is a pointer to a terminator structure that is used to set up the input

terminators. If term is set to 0, the default terminators are used.
async% is a flag that allows asynchronous data transfer.
compStat% is a pointer to an integer containing completion status information.

RETURNS -1 if error,

otherwise, the number of bytes transferred. The memory buffer
pointed to by the data parameter is filled in with the
information read from the device.

MODE *CA

BUS STATES Determined by the Controller

SEE ALSO OutputX, Term, Buffered, EOL (Sub-Chapter 15A)

EXAMPLE term.EOI = TRUE
term.nChar = 1
term.EightBits = TRUE
term.term1 = &HA
bytecount=EnterXI(timer,data%(0),1024,0,term,1,&stat)

These EnterI commands for Visual Basic are identical to the standard Enter commands with the
exception of the return values are placed in integer variables rather than string variables.

In Peripheral mode, the EnterXI command receives data from the I/O adapter under control of the
Active Controller. The Active Controller must put Driver488 into the Listen state and configure some
bus device to provide Driver488 with data. The Listen state can be checked with the Status
command, or can cause an interrupt with the Arm command. A time-out error occurs (if enabled) if
Driver488 does not receive a data byte within the time out period after issuing the EnterXI command.

Additional EnterI Functions

Driver488 provides additional EnterI routines that are short form versions of the EnterXI function.
The additional EnterI functions are: EnterI and EnterNI. In Peripheral mode, the device handle
must always refer to an I/O adapter, and the forceAddr% flag is ignored. Thus, EnterMoreI is
equivalent to EnterI, and EnterNMoreI is equivalent to EnterNI.

Error
SYNTAX int pascal Error(DevHandleT devHandle, bool display);

devHandle refers to either an IEEE 488 interface or an external device.
display indicates whether the error message display should be ON or OFF.

RETURNS -1 if error

MODE Any

BUS STATES None

15B. Driver488/SUB, W31, W95, & WNT III. COMMAND REFERENCES - 15. Command References

III-326 Personal488 User’s Manual, Rev. 3.0

SEE ALSO OnEvent, GetError, GetErrorList, Status

EXAMPLE errorcode = Error(ieee, OFF);

The Error command enables or disables automatic on-screen display of Driver488 error messages.
Specifying ON enables the error message display, while specifying OFF disables the error message
display. Error ON is the default condition.

FindListeners
SYNTAX int pascal FindListeners(DevHandleT devHandle, char primary,

unsigned short *listener, short limit);

devHandle refers to either an IEEE 488 interface or an external device. If
devHandle refers to an external device, then the FindListeners command
acts on the hardware interface to which the external device is attached.

primary is the primary IEEE 488 bus address to check.
listener is a pointer to a list that contains all Listeners found on the specified

interface board. The user must allocate enough memory to accommodate all
of the possible Listeners up to the limit that he specified.

limit is the maximum number of Listeners to be entered into the Listener list.
RETURNS -1 if error

MODE Any

BUS STATES ATN•MTA, UNL, LAG
SEE ALSO CheckListener, BusAddress, Status

EXAMPLE DevHandleT listeners[5];
errorcode = FindListeners(ieee,10,listeners,5)

The FindListeners command finds all of the devices configured to Listen at the specified primary
address on the IEEE 488 bus. The command first identifies the primary address to check and returns
the number of Listeners found and their addresses. Then, it fills the user supplied array with the
addresses of the Listeners found. The number of Listeners found is the value returned by the function.
The returned values include the secondary address in the upper byte, and the primary address in the
lower byte. If there is no secondary address, then the upper byte is set to 255; hence, a device with
only a primary address of 16 and no secondary address, is represented as 0xFF10, or -240 decimal.

Finish
SYNTAX int pascal Finish(DevHandleT devHandle);

devHandle refers to either an IEEE 488 interface or an external device. If
devHandle refers to an external device, the Finish command acts on the
hardware interface to which the external device is attached.

RETURNS -1 if error

MODE CA

BUS STATES ATN

SEE ALSO Resume, PassControl

EXAMPLE errorcode = Finish(ieee);

The Finish command asserts Attention (ATN) and releases any pending holdoffs after a Resume
function is called with the monitor flag set.

III. COMMAND REFERENCES - 15. Command References 15B. Driver488/SUB, W31, W95, & WNT

Personal488 User’s Manual, Rev. 3.0 III-327

GetError
SYNTAX ErrorCodeT pascal

GetError(DevHandleT devHandle, char *errText);

devHandle refers to either the IEEE 488 interface or the external device that has
the associated error.

errText is the string that will contain the error message. If errText is non-null,
the string must contain at least 247 bytes.

RETURNS -1 if error,

otherwise, it returns the error code number associated with
the error for the specified device.

MODE Any

BUS STATES None

SEE ALSO Error, GetErrorList, Status

EXAMPLE errnum = GetError(ieee,errText);
printf(“Error number:%d;%s \n”errnum,errText);

The GetError command is called by the user after another function returns an error indication. The
device handle sent to the function that returned the error indication, is sent to GetError as its
devHandle parameter. GetError finds the error associated with that device, and returns the error
code associated with that error. If a non-null error text pointer is passed, GetError also fills in up to
247 bytes in the string. The application must ensure that sufficient space is available.

GetErrorList
SYNTAX ErrorCodeT pascal GetErrorList(DevHandlePT devHandles, char

*errText, DevHandlePT errHandle);

devHandles is a pointer to a list of external devices that was returned from a
function, due to an error associated with one of the external devices in the list.

errText is the text string that contains the error message. The user must ensure
that the string length is at least 247 bytes.

errHandle is a pointer to the device handle that caused the error.
RETURNS -1 if error

otherwise, it returns the error number associated with the
given list of devices.

MODE Any

BUS STATES None

SEE ALSO Error, GetError, Status

EXAMPLE char errText[329];
int errHandle;
int errnum;
result = ClearList(list);
if (result == -1) {
 errnum=GetErrorList(list,errText,&errHandle);
 printf(“Error %d;%s,at handle %d\n”, errnum, errText,
 errHandle);
}

The GetErrorList command is called by the user, after another function identifying a list of device
handles, returns an error indication. The device handle list sent to the function that returned the error
indication, is sent to GetErrorList. GetErrorList finds the device which returned the error
indication, returning the handle through errHandle, and returns the error code associated with that
error. If a non-null error text pointer is passed, GetError also fills in up to 247 bytes in the string.
The application must ensure that sufficient space is available.

15B. Driver488/SUB, W31, W95, & WNT III. COMMAND REFERENCES - 15. Command References

III-328 Personal488 User’s Manual, Rev. 3.0

Hello
SYNTAX int pascal Hello(DevHandleT devHandle, char *message);

devHandle refers to either an IEEE 488 interface or an external device. If
devHandle refers to an external device, the Hello command acts on the
hardware interface to which the external device is attached.

message is a character pointer that contains the returned message.
RETURNS -1 if error.

MODE Any

BUS STATES None

SEE ALSO Status, OpenName, GetError

EXAMPLE char message[247];
result = Hello(ieee,message);
printf(“%s\n”,message);

The Hello command is used to verify communication with Driver488, and to read the software
revision number. If a non-null string pointer is passed, Hello fills in up to 247 bytes in the string. The
application must ensure that sufficient space is available. When the command is sent, Driver488
returns a string similar to the following:

Driver488 Revision X.X (C)199X IOtech, Inc.

where X is the appropriate revision or year number.

IntLevel
Driver488/SUB and Driver488/W31 only

SYNTAX int pascal IntLevel(DevHandleT devHandle, int channel);

devHandle refers to either an IEEE 488 interface or an external device. If
devHandle refers to an external device, then the IntLevel command acts on
the hardware interface to which the external device is attached.

channel is a valid interrupt channel, or -1 to specify NONE.
RETURNS -1 if error

MODE Any

BUS STATES None

SEE ALSO DmaChannel, TimeOut

EXAMPLE errorcode = IntLevel(ieee, 7);

The IntLevel command specifies the hardware interrupt level that is used by the I/O adapter.
Driver488 uses hardware interrupts, if available, to improve the efficiency of I/O adapter control and
communication. The interrupt level is specified by an integer in the range 2 through 15 as appropriate
to the host computer bus and interface card type. The interrupt level value must match the hardware
settings on the interface card.

III. COMMAND REFERENCES - 15. Command References 15B. Driver488/SUB, W31, W95, & WNT

Personal488 User’s Manual, Rev. 3.0 III-329

IOAddress
Driver488/SUB and Driver488/W31 only

SYNTAX int pascal IOAddress(DevHandleT devHandle, uint ioaddr);

devHandle refers to either an interface or an external device. If devHandle
refers to an external device, then the IOAddress command acts on the
hardware interface to which the external device is attached.

ioaddr is the I/O base address to set.
RETURNS -1 if error

MODE Any

BUS STATES None

SEE ALSO IntLevel, DmaChannel, TimeOut

EXAMPLE errorcode = IOAddress(ieee,0x02E1);

The IOAddress command specifies the I/O port base address of the I/O adapter. The base address is
set by a 16-bit integer, ioaddr, that is usually given as a hexadecimal number. The default I/O port
base address for the IEEE 488 hardware interface is 0X02E1 for the first interface, 0X22E1 for the
second, and 0X42E1 and 0X62E1 for the third and fourth interfaces. The default I/O port base
addresses for the serial hardware interface is 0X03F8. Other standard I/O port base addresses are
0X02F8, 0X03E8, 0X02E8. The IOAddress value must match the hardware switch settings on the I/O
adapter.

KeepDevice
SYNTAX int pascal KeepDevice(DevHandleT devHandle);

devHandle refers to an external device.
RETURNS -1 if error

MODE Any

BUS STATES None

SEE ALSO MakeDevice, RemoveDevice, OpenName

EXAMPLE errorcode = KeepDevice(scope);

The KeepDevice command changes the indicated temporary Driver488 device to a permanent device,
visible to all applications. Permanent Driver488 devices are not removed when Driver488 is closed.
Driver488 devices are created by MakeDevice and are initially temporary. Unless KeepDevice is
used, all temporary Driver488 devices are forgotten when Driver488 is closed. The only way to
remove the permanent device once it has been made permanent by the KeepDevice command, is to
use the RemoveDevice command.

LightPen
Driver488/SUB only

SYNTAX int pascal LightPen(DevHandleT devHandle, bool flag);

devHandle refers to either an IEEE 488 interface or an external device. If
devHandle refers to an external device, then the LightPen command acts on
the hardware interface to which the external device is attached.

flag may be either ON (LightPen enabled), or OFF (LightPen disabled).
RETURNS -1 if error

MODE Any

BUS STATES None

SEE ALSO OnEvent, Arm, Disarm

EXAMPLE errorcode = LightPen(ieee,ON);

15B. Driver488/SUB, W31, W95, & WNT III. COMMAND REFERENCES - 15. Command References

III-330 Personal488 User’s Manual, Rev. 3.0

The LightPen command disables the detection of interrupts via setting the light pen status. The
default is light pen interrupt enabled.

Listen
SYNTAX int pascal Listen(DevHandleT devHandle, char pri, char sec);

devHandle refers to either an IEEE 488 interface or an external device. If
devHandle refers to an external device, the command acts on the associated
interface.

pri and sec specify the primary and secondary addresses of the device which is
to be addressed to listen.

RETURNS -1 if error

MODE CA

BUS STATES ATN, LAG

SEE ALSO Talk, SendCmd, SendData, SendEoi, FindListeners

EXAMPLES errorcode = Listen (ieee, 12, -1);

The Listen command addresses an external device to Listen.

Local
SYNTAX int pascal Local(DevHandleT devHandle);

devHandle refers to either an IEEE 488 interface or an external device.
RETURNS -1 if error

MODE SC

BUS STATES *REN

SEE ALSO Remote, AutoRemote

EXAMPLES errorcode = Local(ieee); To unassert the Remote Enable (REN) line,
the IEEE 488 interface is specified.

errorcode = Local(wave); To send the Go To Local (GTL) command,
an external device is specified.

In the System Controller mode, the Local command issued to an interface device, causes Driver488 to
unassert the Remote Enable (REN) line. This causes devices on the bus to return to manual operation.
A Local command addressed to an external device, places the device in the local mode via the Go To
Local (GTL) bus command.

LocalList
SYNTAX int pascal LocalList(DevHandlePT devHandles);

devHandles refers to a pointer to a list of external devices.
RETURNS -1 if error

MODE CA

BUS STATES ATN•UNL, MTA, LAG,GTL
SEE ALSO Local, Remote, RemoteList, AutoRemote

EXAMPLES deviceList[0] = wave;
deviceList[1] = timer;
deviceList[2] = dmm;
deviceList[3] = NODEVICE;
errorcode = LocalList(deviceList);

To send the Go To Local
(GTO) bus command to a
list of external devices.

In the System Controller mode, the LocalList command issued to an interface device, causes
Driver488 to unassert the Remote Enable (REN) line. This causes devices on the bus to return to
manual operation. A LocalList command addressed to an external device, places the device in the
local mode via the Go To Local (GTL) bus command.

III. COMMAND REFERENCES - 15. Command References 15B. Driver488/SUB, W31, W95, & WNT

Personal488 User’s Manual, Rev. 3.0 III-331

Lol
SYNTAX int pascal Lol(DevHandleT devHandle);

devHandle refers to either an IEEE 488 interface or an external device. If
devHandle refers to an external device, the Lol command acts on the
hardware interface to which the external device is attached.

RETURNS -1 if error

MODE CA

BUS STATES ATN•LLO
SEE ALSO Local, LocalList, Remote, RemoteList

EXAMPLES errorcode = Lol(ieee);

The Lol command causes Driver488 to issue an IEEE 488 LocalLockout (LLO) bus command. Bus
devices that support this command are thereby inhibited from being controlled manually from their
front panels.

MakeDevice
SYNTAX int pascal MakeDevice(DevHandleT devHandle, char *name);

devHandle refers to an existing external device.
name is the device name of the device that is to be made and takes the

configuration of the device given by devHandle.
RETURNS Device handle, or -1 if error

MODE Any

BUS STATE None

SEE ALSO KeepDevice, RemoveDevice, OpenName, Close

EXAMPLE dmm=MakeDevice(scope,"DMM");
BusAddress(dmm,16,-1);

Create a device named DMM, attached to
the same I/O adapter as SCOPE and
set its IEEE 488 bus address to 16.

The MakeDevice command creates a new temporary Driver488 device that is an identical copy of an
already existing Driver488 external device. The new device is attached to the same I/O adapter of the
existing device and has the same bus address, terminators, timeouts, and other characteristics. The
newly created device is temporary and is removed when Driver488 is closed. KeepDevice may be
used to make the device permanent. To change the default values assigned to the device, it is necessary
to call the appropriate configuration functions such as BusAddress, IOAddress, and TimeOut.

MakeNewDevice
Driver488/W95 only

SYNTAX DevHandleT pascal MakeNewDevice(LPSTR iName, LPSTR aName,BYTE
primary,BYTE secondary,TermPT In,TermPT Out,DWORD tOut);

devHandle refers to the new external device.
Name is the device name of the device that is to be made and takes the

configuration of the device based on the parameters specified.
primary and secondary are the secondary and primary bus addresses to be

specified. For no secondary address, a -1 must be specified.
In and Out are pointers to terminator structures specified to set up the respective

input and output terminators of the device.
tOut is the timeout parameter to be specified.

RETURNS Device handle, or -1 if error

MODE Any

BUS STATE None

SEE ALSO MakeDevice, KeepDevice, RemoveDevice, OpenName, Close

15B. Driver488/SUB, W31, W95, & WNT III. COMMAND REFERENCES - 15. Command References

III-332 Personal488 User’s Manual, Rev. 3.0

This is a new function in Driver488/W95. This function is similar to the MakeDevice function except
that MakeNewDevice will create a new device based on the parameters specified, instead of simply
cloning an existing device. To change the default values assigned to the device, it is necessary to call
the appropriate configuration functions such as BusAddress, IOAddress, and TimeOut.

MyListenAddr
SYNTAX int pascal MyListenAddr (DevHandleT devHandle);

devHandle refers to either an interface or an external device. If devHandle
refers to an external device, the command acts on the associated interface.

RETURNS -1 if error

MODE CA

BUS STATES ATN, MLA

SEE ALSO MyTalkAddr, Talk, Listen, SendCmd

EXAMPLES errorcode = MyListenAddr (ieee);

The MyListenAddr command addresses the interface to Listen.

MyTalkAddr
SYNTAX int pascal MyTalkAddr (DevHandleT devHandle);

devHandle refers to either an interface or an external device. If devHandle
refers to an external device, the command acts on the associated interface.

RETURNS -1 if error

MODE CA

BUS STATES ATN, MTA

SEE ALSO MyListenAddr, Listen, SendCmd

EXAMPLES errorcode = MyTalkAddr (ieee);

The MyTalkAddr command addresses the interface to Talk.

OnEvent
Driver488/SUB only

SYNTAX int pascal OnEvent(DevHandleT devHandle,UserHandleFP
handler,OpaqueP argument);

devHandle refers to either an interface or an external device.
handler is a user-specified interrupt-handler function that is to perform some

function, defined by the user, when one of the Armed conditions occur.
argument is the 32-bit argument passed to the handler function. It may be used

to point to information used by the handler function.
RETURNS -1 if error

MODE Any

BUS STATES None

SEE ALSO Arm, Disarm, LightPen

EXAMPLE void
Handler(OpaqueP arg)
{
printf(“Interrupt handler got arg = %ld\n”,arg);
}
errorcode = OnEvent(ieee,Handler,(OpaqueP)(15));

The OnEvent command specifies the function to be called when an Armed event occurs. The function
handler is passed the specified 32-bit argument entry. The handler can use the argument to identify
the portion of the program that set up the OnEvent, and then use Status and other commands to

III. COMMAND REFERENCES - 15. Command References 15B. Driver488/SUB, W31, W95, & WNT

Personal488 User’s Manual, Rev. 3.0 III-333

determine the state of Driver488 and take appropriate action. OnEvent is most often used to respond
to Service Requests (SRQ).

OnEvent
Driver488/W31 (C only) and Driver488/W95 only

SYNTAX int pascal OnEvent(DevHandleT devHandle, HWND hWnd, OpaqueP
lParam);

devHandle refers to either an interface or an external device.
hWnd is the window handle to receive the event notification.
lParam value will be passed in the notification message.

RETURNS -1 if error

MODE Any

SEE ALSO Arm, Disarm

BUS STATES None

EXAMPLE ieee = OpenName (“ieee”);
OnEvent (ieee, hWnd, (OpaqueP) 12345678L);
Arm (ieee, acSRQ | acError);
break;

The OnEvent command causes the event handling mechanism to issue a message upon occurrence of
an Armed event. The message will have a type of WM_IEEE488EVENT, whose value is retrieved via:

RegisterWindowMessage ((LPSTR) “WM_IEEE488EVENT”);

The associated wParam is an event mask indicating which Armed event(s) caused the notification, and
the lParam is the value passed to OnEvent. Note that although there is a macro for
WM_IEEE488EVENT in the header file for each language, this macro resolves to a function call and
therefore cannot be used as a case label. The preferred implementation is to include a default case in
the message handling case statement and directly compare the message ID with WM_IEEE488EVENT.
The following is a full example of a program using the OnEvent function:

LONG FAR PASCAL export
WndProc(HWND hWnd, unsigned iMessage, WORD wParam, LONG lParam);
{
HANDLE
ieee;
switch (iMessage)

{
case WM_CREATE:

ieee = OpenName (“ieee”);
OnEvent (ieee, hWnd, (OpaqueP) 12345678L);
Arm (ieee, acSRQ | acError);
break;

default:
if (iMessage == WM_IEEE488EVENT) {

char buff [80];
wsprintf (buff, “Condition = %04X, Param = %081X”,
wParam, lParam);
MessageBox (hWnd, (LPSTR) buff,(LPSTR) “Event
Noted”, MB OK);
return TRUE;

}
}

}

15B. Driver488/SUB, W31, W95, & WNT III. COMMAND REFERENCES - 15. Command References

III-334 Personal488 User’s Manual, Rev. 3.0

OnEventVDM
Driver488/W95 (Console Mode Applications only)

SYNTAX INT pascal OnEventVDM(DevHandleT devHandle, EventFuncT func);

devHandle refers to either an interface or an external device.
func is a user-specified interrupt-handler function that is to perform some

function, defined by the user, when one of the Armed conditions occur.
RETURNS -1 if error

MODE Any

SEE ALSO OnEvent, Arm, Disarm

BUS STATES None

EXAMPLE qsk(x,Arm(ieee0, acSRQ));
qsk(x,OnEventVDM(ieee0, srqHandler));

Arm SRQ detection and set
up SRQ function handler

This function is new in Driver488/W95. The OnEventVDM (VDM refers to Virtual DOS Machine)
allows a call back to a user-specified function in a console mode application. The following is a full
example of a console mode program using the OnEventVDM function:

#include <windows.h>
#include <stdio.h>
#include “iotieee.h”

// For debugging
#define qsk(v,x) (v=x, printf(#x “ returned %d/n, v))

void
srqHandler(DevHandlerT devHandle, UINT mask)
{

LONG xfered;
printf(“\007\n\nEVENT-FUNCTION on %d mask 0x%04x\n”,devHandle,
mask);
qsk(xfered, Spoll(devHandle));
printf(“\n\n”);

}

void
main(void)
{

LONG result, xfered;
int ioStatus, x;
DevHandleT ieee0, wave14, wave16;
TermT myTerm;
UCHAR buffer[500];
printf(“\n\nSRQTEST program PID %d\n”,GetCurrentProcessId ());
qsk(ieee0, OpenName(“ieee0”));
qsk(wave14, OpenName(“Wave14”));
qsk(wave16, OpenName(“Wave16”));
qsk(result, Abort(wave14));
qsk(result, Abort(wave16));
qsk(x, Hello(ieee0, buffer));
printf(“\n%s\n\n”, buffer);
myTerm.EOI = 1;
myTerm.nChar = 0;
myTerm.termChar[0] = ‘\r’;
myTerm.termChar[1] = ‘\n’;

// Arm SRQ detection and set up SRQ function handler
qsk(x, Arm(ieee0, acSRQ));
qsk(x, OnEventVDM(ieee0, srqHandler));

// Tell the Wave to assert SRQ in 3 seconds
qsk(xfered,Output(wave16,“t3000x”,6L,1,0,&myTerm,0,&ioStatus));
printf(“Completion code: 0x%04x\n”, ioStatus);

III. COMMAND REFERENCES - 15. Command References 15B. Driver488/SUB, W31, W95, & WNT

Personal488 User’s Manual, Rev. 3.0 III-335

// Normally, your program would be off doing other work, for
// this example we will just hold here for a short time.
For(result = 0; result 30000; result++) {

printf(“Result is %06d\r”, result);
}
printf(“\n\n”);

qsk(xfered, Spoll(wave16));
qsk(x, Close(wave14));
qsk(x, Close(wave16));
qsk(x, Close(ieee0));

}

OpenName
SYNTAX DevHandleT pascal OpenName(char *name);

name is the name of an interface or external device.
RETURNS Device handle associated with the given name, or -1 if error.

MODE Any

BUS STATE None

SEE ALSO MakeDevice, Close

EXAMPLES dmm = OpenName(“DMM”); Open the external device DMM
dmm = OpenName(“IEEE:DMM”); Specify the interface to which the external

device is connected

The OpenName command opens the specified interface or external device and returns a device handle
for use in accessing that device.

Output (Controller Mode)
OutputX

SYNTAX long pascal OutputX(DevHandleT devHandle, char *data, long
count, bool last, bool forceAddr, TermT *terminator, bool
async, int *compStat);

devHandle refers to either an interface or an external device. If devHandle
refers to an external device, the OutputX command acts on the hardware
interface to which the external device is attached.

data is a string of bytes to send.
count is the number of bytes to send.
last is a flag that forces the device output terminator to be sent with the data.
forceAddr is used to specify whether the addressing control bytes are to be

issued for each Output command.
terminator is a pointer to a terminator structure that is used to set up the input

terminators. If terminator is set to 0, the default terminator is used.
async is a flag that allows asynchronous data transfer.
compStat is a pointer to an integer containing completion status information.

RETURNS -1 if error, otherwise, the number of characters transferred

MODE CA

BUS STATES With interface handle: REN (if SC and AutoRemote), *ATN, ATN

With external device handle: REN (if SC and AutoRemote),
ATN•MTA, UNL, LAG, *ATN, ATN

SEE ALSO Enter, Term, TimeOut, Buffered, EOL (Sub-Chapter 15A)

EXAMPLES term.EOI = TRUE;
term.nChar = 1;
term.EightBits = TRUE;
term.termChar[0] = ‘\r’;
data = “U0X”;
count = strlen(data);
bytecnt=Output(timer,data,count,1,0,&term,0,&stat);

15B. Driver488/SUB, W31, W95, & WNT III. COMMAND REFERENCES - 15. Command References

III-336 Personal488 User’s Manual, Rev. 3.0

The OutputX command sends data to an interface or external device. The Remote Enable (REN) line is
first asserted if Driver488 is the System Controller and AutoRemote is enabled. Then, if a device
address (with optional secondary address) is specified, Driver488 is addressed to Talk and the specified
device is addressed to Listen. If no address is specified, then Driver488 must already be configured to
send data, either as a result of a preceding OutputX command, or as the result of a Send command.
Terminators are automatically appended to the output data as specified.

The forceAddr flag is used to specify whether the addressing control bytes are to be issued for each
OutputX command. If the device handle refers to an interface, forceAddr has no effect and
command bytes are not sent. If the device handle refers to an external device and forceAddr is TRUE,
Driver488 addresses the interface to Talk and the external device to Listen. If forceAddr is FALSE,
Driver488 compares the current device with the most recently addressed device on that interface. If the
addressing information is the same, no command bytes are sent. If they are different, OutputX acts as
if the forceAddr flag were TRUE and sends the addressing information.

The terminator is a pointer to a terminator structure that is used to set up the input terminators. This
pointer may be a null pointer, requesting use of the default terminators for the device, or it may point to
a terminator structure requesting no terminators. The async is a flag that allows asynchronous data
transfer. If this flag is TRUE, the OutputX command returns to the caller as soon as the data transfer is
underway and can be completed under DMA and/or interrupts. FALSE indicates that the OutputX
command should not return until the transfer is complete. The compStat is a pointer to an integer
containing completion status information. A null pointer indicates that completion status is not
requested. In the case of an asynchronous transfer, this pointer must remain valid until the transfer is
complete.

Additional Output Functions

Driver488 provides additional Output functions that are short form versions of the OutputX function.
The additional Output functions are: Output, OutputN, OutputMore, and OutputNMore. These
functions are discussed in detail below:

Output
SYNTAX long pascal Output(DevHandleT devHandle,char *data);

REMARKS Output is equivalent to the following call to OutputX:
OutputX(devHandle,data,strlen(data),1,1,0L,0,0L);

The Output function passes the device handle and a pointer to the data buffer to the OutputX
function. It determines the size of the data buffer provided by the user and passes that value as the
count parameter. It specifies that the forceAddr flag is set TRUE, which causes Driver488 to address
the device if an external device is specified. The default terminators are chosen by specifying a 0
pointer as the terminator parameter. Synchronous transmission is specified by sending 0 for the
async parameter, and the completion status value is ignored by sending a 0 for the compStat pointer.

OutputN
SYNTAX long pascal OutputN(DevHandleT devHandle,char *data,long

count);

REMARKS OutputN is equivalent to the following call to OutputX:
OutputX(devHandle,data,count,0,1,0L,0,0L);

The OutputN function passes the device handle and a pointer to the data buffer to the OutputX
function. It specifies that the forceAddr flag is set TRUE, which causes Driver488 to address the
device if an external device is specified. The default terminators are chosen by specifying a 0 pointer
as the terminator parameter. Synchronous transmission is specified by sending 0 for the async
parameter, and the completion status value is ignored by sending a 0 for the compStat pointer.

OutputMore
SYNTAX long pascal OutputMore(DevHandleT devHandle, char *data);

REMARKS OutputMore is equivalent to the following call to OutputX:

III. COMMAND REFERENCES - 15. Command References 15B. Driver488/SUB, W31, W95, & WNT

Personal488 User’s Manual, Rev. 3.0 III-337

OutputX(devHandle,data,strlen(data),1,0,0L,0,0L);

The OutputMore function passes the device handle and a pointer to the data buffer to the OutputX
function. It determines the size of the data buffer provided by the user and passes that value as the
count parameter. It specifies that the forceAddr flag is set FALSE, so Driver488 does not re-address
the device if it is the same device as that previously used. The default terminators are chosen by
specifying a 0 pointer as the terminator parameter. Synchronous transmission is specified by
sending 0 for the async parameter, and the completion status value is ignored by sending a 0 pointer
for the compStat pointer.

OutputNMore
SYNTAX long pascal OutputNMore (DevHandleT devHandle, char *data,

long count);

REMARKS OutputNMore is equivalent to the following call to OutputX:
OutputX(devHandle,data,0,0,0L,0,0L);

The OutputNMore function passes the device handle and a pointer to the data buffer to the OutputX
function. It specifies that the forceAddr flag is set FALSE, so Driver488 does not re-address the
device if it is the same device as that previously used. The default terminators are chosen by specifying
a 0 pointer as the terminator parameter. Synchronous transmission is specified by sending 0 for the
async parameter, and the completion status value is ignored by sending a 0 pointer for the compStat
pointer.

Output (Peripheral Mode)
OutputX

SYNTAX long pascal OutputX(DevHandleT devHandle, char *data, long
count, bool last, bool forceAddr, TermT *terminator, bool
async, int *compStat);

devHandle refers to either an interface or an external device.
data points to the bytes to send.
count is the number of characters to send.
last is a flag that forces the device output terminator to be sent with the data.
forceAddr is ignored.
terminator is a pointer to a terminator structure that is used to set up the output

terminators. If terminator is set to 0, the default terminator is used.
async is a flag that allows asynchronous data transfer.
compStat is a pointer to an integer containing completion status information.

RETURNS -1 if error; otherwise, the number of characters transferred

MODE *CA

BUS STATES Determined by the Controller.

SEE ALSO Enter, Term, TimeOut, Buffered

In Peripheral mode, the OutputX command sends data to the interface under control of the Active
Controller. The Active Controller must put the interface into the Talk state and configure some bus
device to accept the transferred data. The Talk state can be checked with the Status command, or can
cause an interrupt via the Arm command. A time-out error occurs, if enabled, if no bus device accepts
the data within the time out period after issuing the OutputX command. Even as a Peripheral,
Driver488 might be the System Controller. If Driver488 is the System Controller and AutoRemote is
enabled, then Driver488 asserts Remote Enable (REN) before sending any data. The OutputX
command in Peripheral mode is otherwise identical to the OutputX command in Controller mode.

Additional Output Functions

Driver488 provides additional Output routines that are short form versions of the OutputX function.
The additional Output functions are: Output and OutputN. In Peripheral mode, the device handle

15B. Driver488/SUB, W31, W95, & WNT III. COMMAND REFERENCES - 15. Command References

III-338 Personal488 User’s Manual, Rev. 3.0

must always refer to an I/O adapter, and the forceAddr flag is ignored. Thus, OutputMore is
equivalent to Output, and OutputNMore is equivalent to OutputN.

OutputI (Controller Mode)
Driver488/W31 (Visual Basic only)

OutputXI
SYNTAX OutputXI (ByVal devHandle%, data%, ByVal count&, ByVal last%,

ByVal forceAddr%, Term As terms, ByVal async%, compstat%)
As Long

devHandle% refers to either an interface or an external device. If devHandle%
refers to an external device, the OutputXI command acts on the hardware
interface to which the external device is attached.

data% is the first element in an integer array which holds the data being sent.
count& is the number of bytes to send.
last% is a flag that forces the device output terminator to be sent with the data.
forceAddr% is used to specify whether the addressing control bytes are to be

issued for each OutputXI command.
terms is a pointer to a terminator structure that is used to set up the input

terminators. If terms is set to 0, the default terminator is used.
async% is a flag that allows asynchronous data transfer.
compStat% is a pointer to an integer containing completion status information.

RETURNS -1 if error; otherwise, the number of characters transferred

MODE CA

BUS STATES With interface handle: REN (if SC and AutoRemote), *ATN, ATN

With external device handle: REN (if SC and AutoRemote),
ATN•MTA, UNL, LAG, *ATN, ATN

SEE ALSO EnterI, Term, TimeOut, Buffered, EOL (Sub-Chapter 15A)

EXAMPLES term.EOI = TRUE
term.nChar = 1
term.EightBits = TRUE
term.term1 = &HA
data%(0) = 1
data%(1) = 2
data%(2) = 3
bytecount = OutputI(dev, data%(0), 3, 0, term, 1, stat)

The OutputI commands for Visual Basic are identical to the standard Output commands except for
the variable holding the data to be sent is an integer rather than a string type.

The OutputXI command sends data to an interface or external device. The Remote Enable (REN) line
is first asserted if Driver488 is the System Controller and AutoRemote is enabled. Then, if a device
address (with optional secondary address) is specified, Driver488 is addressed to Talk and the specified
device is addressed to Listen. If no address is specified, then Driver488 must already be configured to
send data, either as a result of a preceding OutputXI command, or as the result of a Send command.
Terminators are automatically appended to the output data as specified.

The forceAddr% flag is used to specify whether the addressing control bytes are to be issued for each
OutputXI command. If the device handle refers to an interface, forceAddr% has no effect and
command bytes are not sent. If the device handle refers to an external device and forceAddr% is
TRUE, Driver488 addresses the interface to Talk and the external device to Listen. If forceAddr% is
FALSE, Driver488 compares the current device with the most recently addressed device on that
interface. If the addressing information is the same, no command bytes are sent. If they are different,
OutputXI acts as if the forceAddr% flag were TRUE and sends the addressing information.

The terms is a pointer to a terminator structure that is used to set up the input terminators. This
pointer may be a null pointer, requesting use of the default terminators for the device, or it may point to

III. COMMAND REFERENCES - 15. Command References 15B. Driver488/SUB, W31, W95, & WNT

Personal488 User’s Manual, Rev. 3.0 III-339

a terminator structure requesting no terminators. The async% is a flag that allows asynchronous data
transfer. If this flag is TRUE, the OutputXI command returns to the caller as soon as the data transfer
is underway and can be completed under DMA and/or interrupts. FALSE indicates that the OutputXI
command should not return until the transfer is complete. The compStat% is a pointer to an integer
containing completion status information. A null pointer indicates that completion status is not
requested. In the case of an asynchronous transfer, this pointer must remain valid until the transfer is
complete.

Additional OutputI Functions

Driver488 provides additional OutputI functions that are short form versions of the OutputXI
function. The additional OutputI functions are: OutputNI, OutputMoreI, and OutputNMoreI.
These functions are discussed in detail below:

OutputNI
SYNTAX OutputNI(ByVal devHandle%, data%, ByVal count&) As Long

REMARKS OutputNI is equivalent to the following call to OutputXI:
OutputXI(devHandle%,data%,count&,0,1,0,0,0)

The OutputNI function passes the device handle and a pointer to the data buffer, to the OutputXI
function. It specifies that the forceAddr% flag is set TRUE, which causes Driver488 to address the
device if an external device is specified. The default terminators are chosen by specifying a 0 pointer
as the terms parameter. Synchronous transmission is specified by sending 0 for the async parameter,
and the completion status value is ignored by sending a 0 for the compStat pointer.

OutputMoreI
SYNTAX OutputMoreI(ByVal devHandle%,data%,By Val count&)As Long

REMARKS OutputMoreI is equivalent to the following call to OutputXI:
OutputXI(devHandle%,data%,count&,1,0,0,0,0)

The OutputMoreI function passes the device handle and a pointer to the data buffer, to the OutputXI
function. It determines the size of the data buffer provided by the user and passes that value as the
count& parameter. It specifies that the forceAddr% flag is set FALSE, so Driver488 does not re-
address the device if it is the same device as that previously used. The default terminators are chosen
by specifying a 0 pointer as the terms parameter. Synchronous transmission is specified by sending 0
for the async parameter, and the completion status value is ignored by sending a 0 pointer for the
compStat pointer.

OutputNMoreI
SYNTAX OutputNMoreI(ByVal devHandle, data%, ByVal count&) As Long

REMARKS OutputNMoreI is equivalent to the following call to OutputXI:
OutputXI(devHandle%,data%,count&,0,0,0,0,0);

The OutputNMoreI function passes the device handle and a pointer to the data buffer, to the
OutputXI function. It specifies that the forceAddr% flag is set FALSE, so Driver488 does not re-
address the device if it is the same device as that previously used. The default terminators are chosen
by specifying a 0 pointer as the terms parameter. Synchronous transmission is specified by sending 0
for the async parameter, and the completion status value is ignored by sending a 0 pointer for the
compStat pointer.

Note: The OutputNI and OutputNMoreI commands do not send terminators. Also, OutputI and
OutputMoreI must be passed to the entire array (i.e. intarray(), not the starting location:
intarray (0)).

The following table describes the differences between the various forms of OutputI. It outlines the
variables passed to each function and how many bytes the functions output.

15B. Driver488/SUB, W31, W95, & WNT III. COMMAND REFERENCES - 15. Command References

III-340 Personal488 User’s Manual, Rev. 3.0

OutputI Function Terminators Variable
OutputXI(ADC,IResp (0),1000,1,Term,1,1) Choice Pass starting location

OutputI (ADC, IRESP())
OutputMoreI (ADC, IResp ())

Yes Pass entire array

OutputNI (ADC< IResp (0), 1000)
OutputNMoreI (ADC, IResp (0), 1000)

No Pass starting location

where: SResp is String * 1000, and IResp(1000) is integer.

OutputI (Peripheral Mode)
Driver488/W31 only (Visual Basic only)

OutputXI
SYNTAX OutputXI (ByVal devHandle%, data%, ByVal count&, ByVal last%,

ByVal forceAddr%, Term As terms, ByVal async%, compstat%)
As Long

devHandle% refers to either an interface or an external device.
data% points to the bytes to send.
count& is the number of characters to send.
last% is a flag that forces the device output terminator to be sent with the data.
forceAddr% is ignored.
terms is a pointer to a terminator structure that is used to set up the output

terminators. If terms is set to 0, the default terminator is used.
async% is a flag that allows asynchronous data transfer.
compStat% is a pointer to an integer containing completion status information.

RETURNS -1 if error; otherwise, the number of characters transferred

MODE *CA

BUS STATES Determined by the Controller.

SEE ALSO EnterI, Term, TimeOut, Buffered

The OutputI commands for Visual Basic are identical to the standard Output commands except that
they use an integer array for the output data rather than a string.

In Peripheral mode, the OutputXI command sends data to the interface under control of the Active
Controller. The Active Controller must put the interface into the Talk state and configure some bus
device to accept the transferred data. The Talk state can be checked with the Status command, or can
cause an interrupt via the Arm command. A time-out error occurs, if enabled, if no bus device accepts
the data within the time out period after issuing the OutputXI command. Even as a Peripheral,
Driver488 might be the System Controller. If Driver488 is the System Controller and AutoRemote is
enabled, then Driver488 asserts Remote Enable (REN) before sending any data. The OutputXI
command in Peripheral mode is otherwise identical to the OutputXI command in Controller mode.

Additional OutputI Functions

Driver488 provides additional OutputI functions that are short form versions of the OutputXI
function. The additional OutputI functions are: OutputI and OutputNI. In Peripheral mode, the
device handle must always refer to an I/O adapter, and the forceAddr% flag is ignored. Thus,
OutputMoreI is equivalent to OutputI, and OutputNMoreI is equivalent to OutputNI.

III. COMMAND REFERENCES - 15. Command References 15B. Driver488/SUB, W31, W95, & WNT

Personal488 User’s Manual, Rev. 3.0 III-341

PassControl
SYNTAX int pascal PassControl(DevHandleT devHandle);

devHandle refers to an external device to which control is passed.
RETURNS -1 if error

MODE CA

BUS STATES ATN•UNL, MLA, TAG, UNL, TCT, *ATN
SEE ALSO Abort, Reset, SendCmd

EXAMPLE errorcode = PassControl(scope);

The PassControl command allows Driver488 to give control to another controller on the bus. After
passing control, Driver488 enters the Peripheral mode. If Driver488 was the System Controller, then it
remains the System Controller, but it is no longer the Active Controller. The Controller now has
command of the bus until it passes control to another device or back to Driver488. The System
Controller can regain control of the bus at any time by issuing an Abort command.

PPoll
SYNTAX int pascal PPoll(DevHandleT devHandle);

devHandle refers to either an interface or an external device. If devHandle
refers to an external device, then the PPoll command acts on the hardware
interface to which the external device is attached.

RETURNS -1 if error; otherwise, a number in the range 0 to 255

MODE CA

BUS STATES ATN•EOI, *EOI
SEE ALSO PPollConfig, PPollUnconfig, PPollDisable, SPoll

EXAMPLE errorcode = PPoll(ieee);

The PPoll (Parallel Poll) command is used to request status information from many bus devices
simultaneously. If a device requires service then it responds to a Parallel Poll by asserting one of the
eight IEEE 488 bus data lines (DIO1 through DIO8, with DIO1 being the least significant). In this
manner, up to eight devices may simultaneously be polled by the controller. More than one device can
share any particular DIO line. In this case, it is necessary to perform further Serial Polling (SPoll) to
determine which device actually requires service.

Parallel Polling is often used upon detection of a Service Request (SRQ), though it may also be
performed periodically by the controller. In either case, PPoll responds with a number from 0 to 255
corresponding to the eight binary DIO lines. Not every device supports Parallel Polling. Refer to the
manufacturer’s documentation for each bus device to determine if Parallel Poll capabilities are
supported.

PPollConfig
SYNTAX int pascal PPollConfig(DevHandleT devHandle, int ppresponse);

devHandle refers to either an interface or an external device to configure for the
Parallel Poll.

ppresponse is the decimal equivalent of the four binary bits S, P2, P1, and P0
where S is the Sense bit, and P2, P1, and P0 assign the DIO bus data line used
for the response.

RETURNS -1 if error

MODE CA

BUS STATES ATN•UNL, MTA, LAG, PPC

15B. Driver488/SUB, W31, W95, & WNT III. COMMAND REFERENCES - 15. Command References

III-342 Personal488 User’s Manual, Rev. 3.0

SEE ALSO PPoll, PPollUnconfig, PPollDisable

EXAMPLE errorcode =
PPollConfig
(dmm,0x0D);

Configure device DMM to assert DIO6 when it desires service (ist
= 1) and it is Parallel Polled (0x0D = &H0D = 1101 binary;
S=1, P2=1, P1=0, P0=1; 101 binary = 5 decimal = DIO6).

The PPollConfig command configures the Parallel Poll response of a specified bus device. Not all
devices support Parallel Polling and, among those that do, not all support the software control of their
Parallel Poll response. Some devices are configured by internal switches.

The Parallel Poll response is set by a four-bit binary number response: S, P2, P1, and P0. The most
significant bit of response is the Sense (S) bit. The Sense bit is used to determine when the device will
assert its Parallel Poll response. Each bus device has an internal individual status (ist). The Parallel
Poll response is asserted when this ist equals the Sense bit value S. The ist is normally a logic 1
when the device requires attention, so the S bit should normally also be a logic 1. If the S bit is 0, then
the device asserts its Parallel Poll response when its ist is a logic 0. That is, it does not require
attention. However, the meaning of ist can vary between devices, so refer to your IEEE 488 bus
device documentation. The remaining 3 bits of response: P2, P1, and P0, specify which DIO bus data
line is asserted by the device in response to a Parallel Poll. These bits form a binary number with a
decimal value from 0 through 7, specifying data lines DIO1 through DIO8, respectively.

PPollDisable
SYNTAX int pascal PPollDisable(DevHandleT devHandle);

devHandle is either an interface or an external device that is to have its Parallel
Poll response disabled.

RETURNS -1 if error

MODE CA

BUS STATES ATN•UNL, MTA, LAG, PPC, PPD
SEE ALSO PPoll, PPollConfig, PPollUnconfig

EXAMPLE errorcode = PPollDisable(dmm); Disable Parallel Poll of device DMM.

The PPollDisable command disables the Parallel Poll response of a selected bus device.

PPollDisableList
SYNTAX int pascal PPollDisableList(DevHandlePT devHandles);

devHandles is a pointer to a list of external devices that are to have their Parallel
Poll response disabled.

RETURNS -1 if error

MODE CA

BUS STATES ATN•UNL, MTA, LAG, PPC, PPD
SEE ALSO PPoll, PPollConfig, PPollUnconfig

EXAMPLE deviceList[0] = wave;
deviceList[1] = timer;
deviceList[2] = dmm;
deviceList[3] = NODEVICE;
errorcode = PPollDisableList(deviceList);

The PPollDisableList command disables the Parallel Poll response of selected bus devices.

PPollUnconfig
SYNTAX int pascal PPollUnconfig(DevHandleT devHandle);

devHandle refers to a hardware interface. If devHandle refers to an external
device, then the PPollUnconfig command acts on the hardware interface to
which the external device is attached.

RETURNS -1 if error

III. COMMAND REFERENCES - 15. Command References 15B. Driver488/SUB, W31, W95, & WNT

Personal488 User’s Manual, Rev. 3.0 III-343

MODE CA

BUS STATES ATN•PPU
SEE ALSO PPoll, PPollConfig, PPollDisable

EXAMPLE errorcode = PPollUnconfig(ieee);

The PPollUnconfig command disables the Parallel Poll response of all bus devices.

Remote
SYNTAX int pascal Remote(DevHandleT devHandle);

devHandle refers to either an interface or an external device. If devHandle
refers to an interface, then the Remote Enable (REN) line is asserted. If
devHandle refers to an external device, then that device is addressed to
Listen and placed into the Remote state.

RETURNS -1 if error

MODE SC

BUS STATES REN (hardware interface)

REN, ATN•UNL, MTA, LAG (external device)
SEE ALSO Local, LocalList, RemoteList

EXAMPLES errorcode = Remote(ieee); Assert the REN bus line.
errorcode = Remote(scope); Assert the REN bus line and address the

SCOPE device specified to Listen, to
place it in the Remote state:

The Remote command asserts the Remote Enable (REN) bus management line. If an external device is
specified, then Remote will also address that device to Listen, placing it in the Remote state.

RemoteList
SYNTAX int pascal RemoteList(DevHandlePT devHandles);

devHandles is a pointer to a list of devices.
RETURNS -1 if error

MODE SC•CA
BUS STATES REN, ATN•UNL, MTA, LAG
SEE ALSO Remote, Local, LocalList

EXAMPLE deviceList[0] = wave;
deviceList[1] = timer;
deviceList[2] = dmm;
deviceList[3] = NODEVICE;
errorcode = RemoteList(deviceList);

Assert the REN bus line and
address a list of specified
devices to Listen, to place
these specified devices in
the Remote state.

The RemoteList command asserts the Remote Enable (REN) bus management line. If external
devices are specified, then RemoteList will also address those devices to Listen, placing them in the
Remote state.

RemoveDevice
SYNTAX int pascal RemoveDevice(DevHandleT devHandle);

devHandle specifies an interface or an external device to remove.
RETURNS -1 if error

MODE Any

BUS STATES None

SEE ALSO MakeDevice, KeepDevice, REMOVE DOS NAME (Sub-Chapter 15A)

EXAMPLE errorcode = RemoveDevice(dmm);

15B. Driver488/SUB, W31, W95, & WNT III. COMMAND REFERENCES - 15. Command References

III-344 Personal488 User’s Manual, Rev. 3.0

The RemoveDevice command removes the specific temporary or permanent Driver488 device that
was created with either the MakeDevice command or the startup configuration. This command also
removes a device that was made permanent through a KeepDevice command.

Request
SYNTAX int pascal Request(DevHandleT devHandle, int spstatus);

devHandle refers to either an interface or an external device. If devHandle
refers to an external device, the Request command acts on the hardware
interface to which the external device is attached.

spstatus is the Service Request status in the range 0 to 255.
RETURNS -1 if error

MODE *CA

BUS STATES SRQ if rsv is set, *SRQ if not.

SEE ALSO Status, ControlLine

EXAMPLES errorcode = Request(ieee,0) Clear SRQ and Serial Poll Response.
errorcode =

Request(ieee,64+2+4)
Generate an SRQ (decimal 64) with DIO2

(decimal 2) and DIO3 (decimal 4) set
in the serial poll response.

In Peripheral mode, Driver488 is able to request service from the Active Controller by asserting the
Service Request (SRQ) bus signal. The Request command sets or clears the Serial Poll status
(including Service Request) of Driver488. Request takes a numeric argument in the decimal range
0 to 255 (hex range &H0 to &HFF) that is used to set the Serial Poll status. When Driver488 is Serial
Polled by the Controller, it returns this byte on the DIO data lines.

The data lines are numbered DIO8 through DIO1. DIO8 is the most significant line and corresponds to
a decimal value of 128 (hex &H80). DIO7 is the next most significant line and corresponds to a
decimal value of 64 (hex &H40). DIO7 has a special meaning: It is the Request for Service (rsv) bit. If
rsv is set, then Driver488 asserts the Service Request (SRQ) bus signal. If DIO7 is clear (a logic 0),
then Driver488 does not assert SRQ. When Driver488 is Serial Polled, all eight bits of the Serial Poll
status are returned to the Controller. The rsv bit is cleared when Driver488 is Serial Polled by the
Controller. This causes Driver488 to stop asserting SRQ.

Reset
SYNTAX int pascal Reset(DevHandleT devHandle);

devHandle refers to either an interface or an external device. If devHandle
refers to an external device, the Reset command acts on the hardware
interface to which the external device is attached.

RETURNS -1 if error

MODE Any

BUS STATES None

SEE ALSO Abort, Term, TimeOut

EXAMPLE errorcode=Reset(ieee);

The Reset command provides a warm start of the interface. It is equivalent to issuing the following
command process, including clearing all error conditions:

1. Stop

2. Disarm

3. Reset hardware. (Resets to Peripheral if not System Controller)
4. Abort (if System Controller)
5. Error ON

6. Local

7. Request 0 (if Peripheral)

III. COMMAND REFERENCES - 15. Command References 15B. Driver488/SUB, W31, W95, & WNT

Personal488 User’s Manual, Rev. 3.0 III-345

8. Clear Change, Trigger, and Clear status.
9. Reset I/O adapter settings to installed values. (BusAddress, TimeOut, IntLevel and

DmaChannel)

Resume
SYNTAX int pascal Resume(DevHandleT devHandle, bool monitor);

devHandle refers to either an interface or an external device. If devHandle
refers to an external device, then the Resume command acts on the hardware
interface to which the external device is attached.

monitor is a flag that when it is ON, Driver488 monitors the data.
RETURNS -1 if error

MODE CA

BUS STATES *ATN

SEE ALSO Finish

EXAMPLES errorcode = Resume(ieee,OFF); Do not go into monitoring mode.
errorcode = Resume(ieee,ON);
errorcode = Finish(ieee);

Go into monitoring mode.

The Resume command unasserts the Attention (ATN) bus signal. Attention is normally kept asserted by
Driver488, but it must be unasserted to allow transfers to take place between two peripheral devices. In
this case, Driver488 sends the appropriate Talk and Listen addresses, and then must unassert Attention
with the Resume command.

If monitor is specified, Driver488 monitors the handshaking process but does not participate in it.
Driver488 takes control synchronously when the last terminator or EOI is encountered. At that point,
the transfer of data stops. The Finish command must be called to assert Attention and release any
pending holdoffs to be ready for the next action.

SendCmd
SYNTAX int pascal SendCmd(DevHandleT devHandle, unsigned char

*commands, int len);

devHandle refers to an interface handle.
commands points to a string of command bytes to be sent.
len is the length of the command string.

RESPONSE None

MODE CA

BUS STATES User-defined

SEE ALSO SendData, SendEoi

EXAMPLE char command[] = “U?0";
errorcode = SendCmd(ieee, &command, sizeof command);

The SendCmd command sends a specified string of bytes with Attention (ATN) asserted, causing the
data to be interpreted as IEEE 488 command bytes.

SendData
SYNTAX int pascal SendData(DevHandleT devHandle, unsigned char

*data, int len);

devHandle refers to an interface handle.
data points to a string of data bytes to be sent.
len is the length of the data string.

RESPONSE None

MODE Any

BUS STATES User-defined

15B. Driver488/SUB, W31, W95, & WNT III. COMMAND REFERENCES - 15. Command References

III-346 Personal488 User’s Manual, Rev. 3.0

SEE ALSO SendCmd, SendEoi

EXAMPLES char data[] = “W0X”;
errorcode = SendData(ieee, data, strlen (data));

The SendData command provides byte-by-byte control of data transfers and gives greater flexibility
than the other commands. This command can specify exactly which operations Driver488 executes.

SendEoi
SYNTAX int pascal SendEoi(DevHandleT devHandle, unsigned char *data,

int len);

devHandle refers to an interface handle.
data points to a string of data bytes to be sent.
len is the length of the data string.

RESPONSE None

MODE Any

BUS STATES User-defined

SEE ALSO SendCmd, SendData

EXAMPLES char data[] = “W0X”;
errorcode = SendEoi(ieee, data, strlen (data));

The SendEoi command provides byte-by-byte control of data transfers and gives greater flexibility
than the other commands. This command can specify exactly which operations Driver488 executes.
Driver488 asserts EOI during the transfer of the final byte.

SPoll
SYNTAX int pascal SPoll(DevHandleT devHandle);

devHandle refers to either an interface or a specific external device.
RETURNS -1 if error;

otherwise, 0 or 64 (hardware interface) in the range 0 to 255
(external device)

MODE Any

BUS STATES ATN•UNL, MLA, TAG, SPE, *ATN, ATN•SPD, UNT
SEE ALSO SPollList, PPoll

EXAMPLES errorcode = SPoll(ieee); Return the internal SRQ status
errorcode = SPoll(dmm); Return the Serial Poll response of the

specified device

In Active Controller mode, the SPoll (Serial Poll) command performs a Serial Poll of the bus device
specified and responds with a number from 0 to 255 representing the decimal equivalent of the eight-
bit device response. If rsv (DIO7, decimal value 64) is set, then that device is signaling that it requires
service. The meanings of the other bits are device-specific.

Serial Polls are normally performed in response to assertion of the Service Request (SRQ) bus signal by
some bus device. In Active Controller mode, with the interface device specified, the SPoll command
returns the internal SRQ status. If the internal SRQ status is set, it usually indicates that the SRQ line is
asserted. Driver488 then returns a 64. If it is not set, indicating that SRQ is not asserted, then
Driver488 returns a 0. With an external device specified, SPoll returns the Serial Poll status of the
specified external device.

In Peripheral mode, the SPoll command is issued only to the interface, and returns the Serial Poll
status. If rsv (DIO7, decimal value 64) is set, then Driver488 has not been Serial Polled since the
issuing last Request command. The rsv is reset whenever Driver488 is Serial Polled by the
Controller.

III. COMMAND REFERENCES - 15. Command References 15B. Driver488/SUB, W31, W95, & WNT

Personal488 User’s Manual, Rev. 3.0 III-347

SPollList
SYNTAX int pascal SPollList(DevHandlePT devHandles, unsigned char

*result, char untilflag);

devHandles is a pointer to a list of external devices.
result is an array that is filled in with the Serial Poll results of the corresponding

external devices.
untilflag refers to either ALL, WHILE_SRQ, or UNTIL_RSV.

RETURNS -1 if error

MODE *CA

BUS STATES ATN•UNL, MLA, TAG, SPE, *ATN, ATN•SPD, UNT
SEE ALSO SPoll, PPoll

EXAMPLE deviceList[0] = wave;
deviceList[1] = timer;
deviceList[2] = dmm;
deviceList[3] = NODEVICE;
result = SPollList(deviceList,

resultList, ALL);

Return the Serial Poll response for a
list of device handles.

In Active Controller mode, the SPollList (Serial Poll) command performs a Serial Poll of the bus
devices specified and responds with a number from 0 to 255 (representing the decimal equivalent of
the eight-bit device response) for each device on the list. If rsv (DIO7, decimal value 64) is set, then
that device is signaling that it requires service. The meanings of the other bits are device-specific.

Serial Polls are normally performed in response to assertion of the Service Request (SRQ) bus signal by
some bus device. In Active Controller mode with the interface device specified, the SPollList
command returns the internal SRQ status for each device. If the internal SRQ status is set, it usually
indicates that the SRQ line is asserted. Driver488 then returns a 64. If it is not set, indicating that SRQ
is not asserted, then Driver488 returns a 0. With an external device specified, SPollList returns the
Serial Poll status of the specified external device.

In Peripheral mode, the SPollList command is issued only to the interface and returns the Serial Poll
status. If rsv (DIO7, decimal value 64) is set, then Driver488 has not been Serial Polled since the last
Request command was issued. The rsv is reset whenever Driver488 is Serial Polled by the
Controller.

The untilflag refers to either ALL, WHILE_SRQ, or UNTIL_RSV. If ALL is chosen, all the devices are
Serial Polled and their results placed into the result array. If untilflag is WHILE_SRQ, Driver488
Serial Polls the devices until the SRQ bus signal becomes unasserted, and the results are put into the
result array. If untilflag is UNTIL_RSV, Driver488 Serial Polls the devices until the first device
whose rsv bit is set, is found and the results are put into the result array.

Status
SYNTAX int pascal Status(DevHandleT devHandle, IeeeStatusT *result);

devHandle refers to either an IEEE 488 interface or an external device. If
devHandle refers to an external device, Status acts on the hardware
interface to which the external device is attached.

result is a pointer to a Status structure.
RETURNS -1 if error

MODE Any

BUS STATES None

SEE ALSO GetError, SPoll

15B. Driver488/SUB, W31, W95, & WNT III. COMMAND REFERENCES - 15. Command References

III-348 Personal488 User’s Manual, Rev. 3.0

EXAMPLE result = Status(ieee,&StatusResult);
if (statusResult.transfer == TRUE) {
printf(“We have a transfer in progress\n”);
} else {
printf(“There is no transfer in progress\n”);
}

The Status command returns various items detailing the current state of Driver488. They are
returned in a data structure, based on the following table:

Status Item Flag Values and Description
Controller Active .CA TRUE: Active Controller, FALSE: Not CA.
System Controller .SC TRUE: System Controller, FALSE: Not SC.
Primary Bus Address .Primaddr 0 to 30: Two-digit decimal number.
Secondary Bus Address .Secaddr 0 to 31: Two-digit decimal number, or -1 if no address.
Address Change .addrChange TRUE: Address change has occured, FALSE: Not so.
Talker .talker TRUE: Talker, FALSE: Not Talker
Listener .listener TRUE: Listener, FALSE: Not Listener
ByteIn .bytein TRUE: Byte in, ready to read, FALSE: Not so.
ByteOut .byteout TRUE: Byte out, ready to output, FALSE: Not so.
Service Request .SRQ TRUE: SRQ is asserted, FALSE: SRQ is not asserted
Triggered .triggered TRUE: Trigger command received, FALSE: Not so.
Cleared .cleared TRUE: Clear command received, FALSE: Not so.
Transfer in Progress .transfer TRUE: Transfer in progress, FALSE: Not so.

These Status items are more-fully described in the following paragraphs:

• The Controller Active flag (.CA) is true if Driver488 is the Active Controller. If Driver488 is not
the System Controller, then it is initially a Peripheral and it becomes a controller when Driver488
receives control from the Active Controller.

• The System Controller flag (.SC) is true if Driver488 is the System Controller. The System
Controller mode may be configured during installation or by using the SysController command.

• The Primary Bus Address (.Primaddr) is the IEEE 488 bus device primary address assigned to
Driver488 or the specified device. This will be an integer from 0 to 30. The Secondary Bus
Address (.Secaddr) is the IEEE 488 bus device secondary address assigned to the specified
device. This will be either -1 to indicate no secondary address, or an integer from 0 to 31. Note
that the interface device can never have a secondary address.

• The Address Change indicator (.addrChange) is set whenever Driver488 become a Talker,
Listener, or the Active Controller, or when it becomes no longer a Talker, Listener, or the Active
Controller. It is reset when Status is read. The Talker (.talker) and Listener (.listener)
flags reflect the current Talker/Listener state of Driver488. As a Peripheral, Driver488 can check
this status to see if it has been addressed to Talk or addressed to Listen by the Active Controller.
In this way, the desired direction of data transfer can be determined.

• The ByteIn (.byteIn) indicator is set when the I/O adapter has received a byte that can be read by
an Enter command. The ByteOut (.byteOut) indicator is set when the I/O adapter is ready to
output data. The Service Request field (.SRQ), as an active controller, reflects the IEEE 488 bus
SRQ line signal. As a peripheral, this status reflects the rsv bit that can be set by the Request
command and is cleared when the Driver488 is Serial Polled. For more details, refer to the SPoll
command in this Sub-Chapter.

• The Triggered (.triggered) and Cleared (.cleared) indicators are set when, as a Peripheral,
Driver488 is triggered or cleared. These two indicators are cleared when Status is read. The
Triggered and Cleared indicators are not updated while asynchronous transfers are in progress.
The Transfer in Progress indicator (.transfer) indicates that an asynchronous transfer is in
progress.

III. COMMAND REFERENCES - 15. Command References 15B. Driver488/SUB, W31, W95, & WNT

Personal488 User’s Manual, Rev. 3.0 III-349

Stop
SYNTAX int pascal Stop(DevHandleT devHandle);

devHandle refers to either an interface or an external device. If devHandle
refers to an external device, the Stop command acts on the hardware interface
to which the external device is attached.

RETURNS -1 if error

MODE Any

BUS STATES ATN (Controller)

None (Peripheral)

SEE ALSO Enter, Output, Buffered

EXAMPLE errorcode = Stop(ieee);

The Stop command halts any asynchronous transfer that may be in progress. If the transfer has
completed already, then Stop has no effect. The actual number of characters transferred is available
from the Buffered command.

SysController
Driver488/SUB and Driver488/W31 only

SYNTAX int pascal SysController(DevHandleT devHandle, bool flag);

devHandle refers to either an interface or an external device. If devHandle
refers to an external device, the SysController command acts on the
hardware interface to which the external device is attached.

flag specifies whether or not Driver488 is to be System Controller. If flag is
ON, then Driver488 becomes System Controller. If flag is OFF, then
Driver488 ceases to be System Controller.

RETURNS -1 if error

MODE Any

BUS STATE IFC, *IFC (flag TRUE)

None (flag FALSE)

SEE ALSO Abort, Reset

EXAMPLES errorcode = SysController(ieee,ON);

The SysController command specifies whether or not the IEEE 488 interface card is to be the
System Controller. The System Controller has ultimate control of the IEEE 488 bus, and there may be
only one System Controller on a bus. If Driver488 is a Peripheral (that is, not System Controller), it
may still take control of bus transactions if the Active Controller passes control to Driver488.
Driver488 may then control the bus and, when it is done, pass control back to the System Controller or
other computer, which then becomes the Active Controller.

Talk
SYNTAX int pascal Talk(DevHandleT devHandle, char pri, char sec);

devHandle refers to either an interface or an external device. If devHandle
refers to an external device, the Talk command acts on the associated
interface.

pri and sec specify the primary and secondary addresses of the device which is
to be addressed to Talk.

15B. Driver488/SUB, W31, W95, & WNT III. COMMAND REFERENCES - 15. Command References

III-350 Personal488 User’s Manual, Rev. 3.0

RETURNS -1 if error

MODE CA

BUS STATES ATN, TAG

SEE ALSO Listen, SendCmd

EXAMPLES errorcode = Talk (ieee, 12, -1);

The Talk command addresses an external device to Talk.

Term
SYNTAX int pascal Term(DevHandleT devHandle, TermT *terminator, int

TermType);

devHandle refers to either an interface or an external device.
terminator is a pointer to the terminator structure.
TermType can be either IN, OUT, or IN+OUT, specifying whether input, output, or

both are being set.
RETURNS -1 if error

MODE Any

BUS STATES None

SEE ALSO Enter, Output, Status, EOL (Sub-Chapter 15A)

EXAMPLE term.EOI = TRUE;
term.nChar = 1;
term.EightBits = TRUE;
term.termChar[0] = 13;
errorcode = Term(ieee,&term,IN);

The Term command sets the end-of-line (EOL) terminators for input from, and output to, I/O adapter
devices. These terminators are sent at the end of output data and expected at the end of input data, in
the manner of CR LF as used with printer data.

During output, Term appends the bus output terminator to the data before sending it to the I/O adapter
device. Conversely, when Driver488 receives the bus input terminator, it recognizes the end of a
transfer and returns the data to the calling application. The terminators never appear in the data
transferred to or from the calling application. The default terminators for both input and output are set
by the startup configuration and are normally CR LF EOI, which is appropriate for most bus devices.

End-Or-Identify (EOI) has a different meaning when it is specified for input than when it is specified
for output. During input, EOI specifies that input is terminated on detection of the EOI bus signal,
regardless of which characters have been received. During output, EOI specifies that the EOI bus
signal is to be asserted during the last byte transferred.

TermQuery
Driver488/W95 only

SYNTAX INT TermQuery(DevHandleT devHandle, TermT *terminator, INT
TermType);

devHandle refers to either an interface or an external device.
terminator is a pointer to the terminator structure.
TermType can be either IN, OUT, or IN+OUT, specifying whether input, output, or

both are being set.
RETURNS -1 if error

MODE Any

BUS STATES None

SEE ALSO Term, Enter, Output, Status, EOL (Sub-Chapter 15A)

EXAMPLE None provided.

III. COMMAND REFERENCES - 15. Command References 15B. Driver488/SUB, W31, W95, & WNT

Personal488 User’s Manual, Rev. 3.0 III-351

This is a new function in Driver488/W95. The TermQuery function queries the terminators setting.
Terminators are defined by the TermT structure.

TimeOut
SYNTAX int pascal TimeOut(DevHandleT devHandle, long millisec);

devHandle refers to either an IEEE 488 interface or an external device.
millisec is a numeric value given in milliseconds.

RETURNS -1 if error

MODE Any

BUS STATES None

SEE ALSO Reset

EXAMPLE errorcode = TimeOut(ieee,100); Set the timeout value to 100 msec.

The TimeOut command sets the number of milliseconds that Driver488 waits for a transfer before
declaring a time out error. Driver488 checks for timeout errors on every byte it transfers, except in the
case of asynchronous transfers. While the first byte of an asynchronous transfer is checked for time
out, subsequent bytes are not. The user’s program must check for timely completion of an
asynchronous transfer.

Time out checking may be suppressed by specifying a time out value of zero seconds, which specifies
an infinite timeout. The default time out is specified in the startup configuration, normally 10 seconds.
The time out interval may be specified to the nearest 0.001 seconds (1 millisecond). However, due to
the limitations of the computer, the actual interval is always a multiple of 55 milliseconds and there is
an uncertainty of 55 msec in the actual interval. Time out intervals from 1 to 110 milliseconds are
rounded to 110 milliseconds. Larger intervals are rounded to the nearest multiple of 55 msec (e.g.
165, 220, 275 msec, etc.).

TimeOutQuery
Driver488/W95 only

SYNTAX INT pascal TimeOutQuery(DevHandleT devHandle, DWORD
millisec);

devHandle refers to either an IEEE 488 interface or an external device.
millisec is a numeric value given in milliseconds.

RETURNS -1 if error

MODE Any

BUS STATES None

SEE ALSO TimeOut, Reset

EXAMPLE None provided.

This is a new function in Driver488/W95. The TimeOutQuery function queries the time out setting,
given in milliseconds.

Trigger
SYNTAX int pascal Trigger(DevHandleT devHandle);

devHandle refers to either an IEEE 488 interface or an external device.
RETURNS -1 if error

MODE CA

15B. Driver488/SUB, W31, W95, & WNT III. COMMAND REFERENCES - 15. Command References

III-352 Personal488 User’s Manual, Rev. 3.0

BUS STATES ATN•GET (interface handle)
ATN•UNL, MTA, LAG, GET (external device handle)

SEE ALSO TriggerList, Status, SendCmd

EXAMPLES errorcode =
Trigger(ieee);

Issue a Group Execute Trigger (GET) bus command to those
devices that are already in the Listen state as the result of
a previous Output or Send command:

errorcode =
Trigger(dmm);

Issue a Group Execute Trigger (GET) bus command to the
device specified:

The Trigger command issues a Group Execute Trigger (GET) bus command to the specified device.
If no interface devices are specified, then the GET only affects those devices that are already in the
Listen state as a result of a previous Output or Send command.

TriggerList
SYNTAX int pascal TriggerList(DevHandlePT devHandles);

devHandles is a pointer to a list of external devices.
RETURNS -1 if error

MODE CA

BUS STATES ATN•UNL, MTA, LAG, GET
SEE ALSO Trigger, SendCmd, Status

EXAMPLE deviceList[0] = wave;
deviceList[1] = timer;
deviceList[2] = dmm;
deviceList[3] = NODEVICE;
errorcode = TriggerList(deviceList);

Issue a Group Execute
Trigger (GET) bus
command to a list of
specified devices.

The TriggerList command issues a Group Execute Trigger (GET) bus command to the specified
devices. If no interface devices are specified, then the GET affects those devices that are already in the
Listen state as a result of a previous Output or Send command.

UnListen
SYNTAX int pascal UnListen (DevHandleT devHandle);

devHandle refers to either an interface or an external device. If devHandle
refers to an external device, the UnListen command acts on the associated
interface.

RETURNS -1 if error

MODE CA

BUS STATES ATN, UNL

SEE ALSO Listen, UnTalk, SendCmd, Status

EXAMPLE errorcode = UnListen (ieee);

The UnListen command unaddresses an external device that was addressed to Listen.

UnTalk
SYNTAX int pascal UnTalk (DevHandleT devHandle);

devHandle refers to either an interface or an external device. If devHandle
refers to an external device, the UnTalk command acts on the associated
interface.

RETURNS -1 if error

MODE CA

BUS STATES ATN, UNT

SEE ALSO Talk, UnListen, SendCmd, Status

EXAMPLE errorcode = UnTalk (ieee);

III. COMMAND REFERENCES - 15. Command References 15B. Driver488/SUB, W31, W95, & WNT

Personal488 User’s Manual, Rev. 3.0 III-353

The UnTalk command unaddresses an external device that was addressed to Talk.

Wait
SYNTAX int pascal Wait(DevHandleT devHandle);

devHandle refers to either an interface or an external device. If devHandle is an
external device, the Wait command acts on the hardware interface to which
the external device is attached.

RETURNS -1 if error

MODE Any

BUS STATES Determined by previous Enter or Output command.

SEE ALSO Enter, Output, Buffered, Status

EXAMPLE errorcode = Wait(ieee);

The Wait command causes Driver488 to wait until any asynchronous transfer has completed before
returning to the user’s program. It can be used to guarantee that the data has actually been received
before beginning to process it, or that it has been sent before overwriting the buffer. It is especially
useful with the Enter command, when a terminator has been specified. In that case, the amount that is
actually received is unknown, and so the user’s program must check with Driver488 to determine when
the transfer is done. Time out checking, if enabled, is performed while Waiting.

IV-354 Personal488 User’s Manual, Rev. 3.0

Section IV:

 TROUBLESHOOTING

Personal488 User’s Manual, Rev. 3.0 IV-355

18. Troubleshooting Checklists TROUBLESHOOTING & ERROR MESSAGES

IV-356 Personal488 User’s Manual, Rev. 3.0

IV. TROUBLESHOOTING

Chapters

16. Overview...IV-355
17. Radio Interference Problems...IV-356
18. Troubleshooting Checklists ...IV-357
19. Error Messages..IV-361

 16. Overview
This Section consists of basic troubleshooting checklists, steps to correct radio frequency interference
problems, as well as a list of error messages for Driver488. The troubleshooting checklists, which
pertain to problems resulting from improper software installation or configuration, are nearly identical
for each Driver488 version. However, since subtle differences do exist among these drivers, it is
important to refer to the correct list.

The “Error Messages” Chapter contains a list of error codes in numerical sequence and a descriptions
of the corresponding text for each error message. If a software-related problem exists with your driver,
please refer to the following material prior to contacting your service representative.

TROUBLESHOOTING & ERROR MESSAGES 19. Radio Interference Problems

Personal488 User’s Manual, Rev. 3.0 IV-357

 17. Radio Interference Problems
Personal488 hardware systems generate, use and can radiate radio frequency energy, and if not
installed and not used correctly, may cause harmful interference to radio communications. However,
there is no guarantee that interference will not occur in a particular installation. If this equipment does
cause harmful interference to radio or television reception, which can be determined by turning the
equipment off and on, the user is encouraged to try to correct the interference by one or more of the
following measures:

1. Reorient or relocate the receiving antenna.

2. Increase the separation between the equipment and receiver.

3. Connect the equipment to an outlet on a circuit different from that to which the receiver is
connected.

4. Consult the dealer of an experienced radio/television technician for help.

The following booklet prepared by the FCC may also be helpful: How to Identify and Resolve Radio-
TV Interference Problems. This booklet is available from the U.S. Government Printing Office,
Washington, D.C. 20402, Stock Number 004-000-00345-4.

An FCC Radio Frequency Interference Statement appears in the front section of the manual.

18C. Driver488/SUB IV. TROUBLESHOOTING - 18. Troubleshooting Checklists

IV-358 Personal488 User’s Manual, Rev. 3.0

 18. Troubleshooting Checklists

Sub-Chapters

18A. Introduction..IV-357
18B. Driver488/DRV..IV-357
18C. Driver488/SUB ..IV-358
18D. Driver488/W31...IV-359
18E. Driver488/W95 & Driver488/WNT......................................IV-360

 18A. Introduction
For any type of Personal488 Driver, if during or after installation you notice any of the following:

• Error messages when trying to load DRVR488.EXE or DRVR488W.EXE in memory.

• Failures in writing to an instrument using an Output command.

• Can write but cannot read from an instrument using an Enter command.

• Unusually slow transfer on the IEEE 488 bus.

• General failures of basic Driver488 commands.

Please review the following steps to ensure your Driver488 software is properly configured and
installed.

 18B. Driver488/DRV
1. Remove the card from the computer and note the selected switch and jumper settings, such as those

for: I/O address, DMA channel, and interrupt level. For switch and jumper definitions, refer to
“Section I: Hardware Guides” in this manual. If you have an NB488, which is the parallel to
IEEE 488 controller interface, verify the interrupt level of your LPT port or run the NBTEST
program.

2. Run the CONFIG program which acts as an editor of the DRVR488.INI initialization file. This
DRVR488.INI file is referred to by the DRVR488.EXE TSR program when loading in memory. If
this initialization file is not edited properly, the DRVR488.EXE program will fail during loading or
when communicating on the bus.

3. In the CONFIG program, first select the DEVICE TYPE which can be: MP488CT, MP488, AT488,
GP488 or NB488. These are 5 different hardware interfaces that are supported by the same
Driver488 software. You should select the interface that you are using. To identify your interface,
refer to “Section I: Hardware Guides.”

 Note: For GP488 users (which is an 8-bit IEEE 488 controller plug-in card), make sure you have
a recent and compatible version of the hardware.

4. Once the DEVICE TYPE is selected, start selecting the I/O address, DMA channel and interrupt
level according to the switch settings determined in Step 1 above. Make sure none of these
parameters are used concurrently somewhere else in the computer, otherwise a system crash is
probable. In the case of an NB488, the DMA channel is not applicable.

5. The interface NAME represents the DOS device name of the controller interface. This NAME is
recommended to be IEEE for direct compatibility with application programs. This NAME should

IV. TROUBLESHOOTING - 18. Troubleshooting Checklists 18A. Introduction, 18B. Driver488/DRV

Personal488 User’s Manual, Rev. 3.0 IV-359

not be related to an external instrument unless you are configuring an external device and not the
interface itself.

 To configure an external device, press <F5>. Note that it is not necessary to communicate with
instruments, an address number (0 to 30) can be used instead.

6. The IEEE bus address should be set to any address between 0 and 30 (preferably 21) and should
not conflict with any addresses on the bus. This is not the address of your instrument and should
not be, unless you are configuring an external device and not the interface itself.

 To configure an external device, press <F5>. Note that it is not necessary to configure a device in
order to communicate with it, an address number (0 to 30) can be used instead.

7. SYS CONTROLLER and LIGHT PEN typically should be checked unless you are using the interface
in Peripheral mode.

8. Press <F7> to get a picture of the configured board and verify jumper settings.

9. Press <F10> to save the DRVR488.INI file and exit.

10. If the DRVR488.EXE is already loaded in memory, remove it or simply reboot your computer and
reload it again because the DRVR488.EXE reads the DRVR488.INI file only at loading time.

11. Before starting to program in a high-level language, run the KBC.EXE program from the \UTILS
directory and make sure you can read and write, and communicate properly with your instrument
by using the OUTPUT and ENTER commands. For information on the use of the KBC.EXE
program, refer to the Sub-Chapter “Getting Started” in Chapter 8 “Driver488/DRV.”

12. If you can write properly to your instrument but you cannot read anything from it, refer to the
TERM command in “Section III: Command References” in this manual, to match up the terminators
sent by the instrument with the terminators expected by the Driver488. Refer to your instrument
manual to find the types of terminators appended to its response. Typically, these terminators are
CR and LF.

If problems still persist, consult your service representative for assistance. Once Driver488/DRV is
properly installed and configured, you are ready to start programming.

 18C. Driver488/SUB
1. Remove the card from the computer and note the selected switch and jumper settings, such as those

for: I/O address, DMA channel, and interrupt level. For switch and jumper definitions, refer to
“Section I: Hardware Guides” in this manual. If you have an NB488, which is the parallel to
IEEE 488 controller interface, verify the interrupt level of your LPT port or run the NBTEST
program.

2. Run the CONFIG program which acts as an editor of the DRVR488.INI initialization file. This
DRVR488.INI file is referred to by the DRVE488.EXE TSR program when loading in memory. If
this initialization file is not edited properly, the DRVR488.EXE program will fail during loading or
when communicating on the bus.

3. In the CONFIG program, first select the DEVICE TYPE which can be: MP488CT, MP488, AT488,
GP488 or NB488. These are 5 different hardware interfaces that are supported by the same
Driver488 software. You should select the interface that you are using. To identify your interface,
refer to “Section I: Hardware Guides.”

Note: For GP488 users (which is an 8-bit IEEE 488 controller plug-in card), make sure you have
a recent and compatible version of the hardware.

4. Once the DEVICE TYPE is selected, start selecting the I/O address, DMA channel and interrupt
level according to the switch settings determined in Step 1 above. Make sure none of these
parameters are used concurrently somewhere else in the computer, otherwise a system crash is
probable. In the case of an NB488, the DMA channel is not applicable.

18C. Driver488/SUB IV. TROUBLESHOOTING - 18. Troubleshooting Checklists

IV-360 Personal488 User’s Manual, Rev. 3.0

5. The interface NAME represents DOS device name of the controller interface. This NAME is
recommended to be IEEE for direct compatibility with application programs. This NAME should
not be related to an external instrument unless you are configuring an external device and not the
interface itself.

 To configure an external device, refer to Step 9 below.

6. The IEEE bus address should be set to any address between 0 and 30 and should not conflict with
any addresses on the bus. This is not the address of your instrument and should not be, unless you
are configuring an external device and not the interface itself.

 To configure an external device, refer to Step 9 below.

7. SysController and LightPen typically should be checked unless you are using the interface in
Peripheral mode.

8. Press <F7> to get a picture of the configured board and verify jumper settings.

9. Press <F5> to configure an external device. The default is two devices: DEV and WAVE. At least
one known device name should be configured in order to execute the subroutine “OpenName”
successfully. It is not recommended to delete DEV or WAVE for compatibility purposes.

10. Press <F10> to save the DRVR488.INI file and exit.

11. If the DRVR488.EXE is already loaded in memory, remove it or simply reboot your computer and
reload it again because the DRVR488.EXE reads the DRVR488.INI file only at loading time.

12. Start writing a simple program in a high-level language (C, BASIC, or Pascal) using the Output
and Enter subroutines to make sure you can read and write, and communicate properly with your
instrument. For information on how to write a program, refer to the Sub-Chapter “Getting Started”
in Chapter 9 “Driver488/SUB.”

13. If you can write properly to your instrument but you cannot read anything from it, refer to the
Term subroutine in “Section III: Command References” in this manual, to match up the
terminators sent by the instrument with the terminators expected by the Driver488. Refer to your
instrument manual to find the types of terminators appended to its response. Typically, these
terminators are CR and LF.

If problems still persist, consult your service representative for assistance. Once Driver488/SUB is
properly installed and configured, you are ready to start programming..

 18D. Driver488/W31
1. Remove the card from the computer and note the selected switch and jumper settings, such as those

for: I/O address, DMA channel, and interrupt level. For switch and jumper definitions, refer to
“Section I: Hardware Guides” in this manual. If you have an NB488, which is the parallel to
IEEE 488 controller interface, verify the interrupt level of your LPT port or run the NBTEST
program.

2. Run the CONFIG program which acts as an editor of the DRVR488W.INI initialization file. This
DRVR488W.INI is referred to by the DRVR488W.EXE program when loading in memory. If this
initialization file is not edited properly, the DRVR488W.EXE program will fail during loading or
when communicating on the bus.

3. In the CONFIG program, first select the DEVICE TYPE which can be: MP488CT, MP488, AT488,
GP488 or NB488. These are 5 different hardware interfaces that are supported by the same
Driver488 software. You should select the interface that you are using. To identify your interface,
refer to “Section I: Hardware Guides.”

 Note: For GP488 users (which is an 8-bit IEEE 488 controller plug-in card), make sure you have
a recent and compatible version of the hardware.

4. Once the DEVICE TYPE is selected, start selecting the I/O address, DMA channel and interrupt
level according to the switch settings determined in Step 1 above. Make sure none of these

IV. TROUBLESHOOTING - 18. Troubleshooting Checklists 18E. Driver488/W95

Personal488 User’s Manual, Rev. 3.0 IV-361

parameters are used concurrently somewhere else in the computer, otherwise a system crash is
probable. In the case of NB488, the DMA channel is not applicable.

5. The interface NAME represents DOS device name of the controller interface. This NAME is
recommended to be IEEE for direct compatibility with application programs. This NAME should
not be related to an external instrument unless you are configuring an external device and not the
interface itself.

6. The IEEE bus address should be set to any address between 0 and 30 and should not conflict with
any addresses on the bus. This is not the address of your instrument and should not be, unless you
are configuring an external device and not the interface itself.

7. SysController and LightPen typically should be checked unless you are using the interface in
Peripheral mode.

8. Press <F7> to get a picture of the configured board and verify jumper settings.

9. Press <F10> to save the DRVR488.INI file and exit.

10. If the DRVR488W.EXE is already loaded in memory, remove it. DRVR488W.EXE reads the
DRVR488W.INI file only at loading time.

11. Before starting to program in a high-level language, run the QUIKTEST or WINTEST program from
the \UTILS directory and make sure you can read and write, and communicate properly with your
instrument. For information on the use of QUIKTEST and WINTEST, refer to the Sub-Chapter
“Getting Started” in Chapter 10 “Driver488/WIN.”

12. If you can write properly to your instrument but you cannot read anything from it, refer to the
Term subroutine in “Section III: Command References” in this manual, to match up the
terminators sent by the instrument with the terminators expected by Driver488. Refer to your
instrument manual to find the types of terminators appended to its response. Typically, these
terminators are CR and LF.

If problems still persist, consult your service representative for assistance. Once Driver488/W31 is
properly installed and configured, you are ready to start programming.

 18E. Driver488/W95 & Driver488/WNT
Note: The differences among Driver488 for Windows 3.x, Windows 95 and Windows NT are

slight. However, because additional changes are being made to Driver488/W95 and
Driver488/WNT at the time this manual is being revised, refer to your operating system
header file (and README.TXT text file, if present) to obtain the current material on these
driver versions.

19. Error Messages IV. TROUBLESHOOTING

IV-362 Personal488 User’s Manual, Rev. 3.0

 19. Error Messages
Error Number and Message Text Description
00 OK No error has occurred.
01 TIME OUT - NOT ADDRESSED TO

LISTEN
ENTER as a Peripheral did not receive data

within the TIME OUT period.
02 AUTOINITIALIZE MODE NOT ALLOWED This error message is obsolete in Driver488

Rev.3.0.
03 SYSTEM ERROR - BUFFER MODE NOT

SUPPORTED
Internal system error. Report to factory.

04 TIME OUT ERROR ON DATA READ Expected bus data was not received within
the TIME OUT period.

05 SYSTEM ERROR - INVALID INTERNAL
MODE

Internal system error. Report to factory.

06 INVALID CHANNEL FOR DMA This error message is obsolete in Driver488
Rev.4.0.

07 TIME OUT ON DMA TRANSFER This error message is obsolete in Driver488
Rev.4.0.

08 TIME OUT - NOT ADDRESSED TO TALK OUTPUT as a Peripheral was not possible
within the TIME OUT period.

09 TIME OUT OR BUS ERROR ON WRITE Error occurred transferring a data byte to a
bus service.

10 SEQUENCE - NO DATA AVAILABLE The user’s program attempted to read from
Driver488 when no response or data
was available.

11 SEQUENCE - DATA HAS NOT BEEN READ The user’s program attempted to write data
or commands to Driver488 without
reading back the response to a previous
command.

12 SYSTEM ERROR - ON PEN INTS
ALREADY ON

Internal system error. Report to factory.

13 SYSTEM ERROR - INVALID ON PEN
INIT

Internal system error. Report to factory.

14 SYSTEM ERROR - LIKELY MEMORY
CORRUPTION

Internal system error. Report to factory.

15 SYSTEM ERROR - ON PEN INTS
ALREADY OFF

Internal system error. Report to factory.

16 BOARD DOES NOT RESPOND AT
SPECIFIED ADDRESS

Driver488 is unable to communicate with
the IEEE interface board. Check the
board address configuration, and the
software installation.

17 TIME OUT ON COMMAND (MTA) MyTalkAddress could not be sent within the
TIME OUT period.

18 TIME OUT ON COMMAND (MLA) MyListenAddress could not be sent within
the TIME OUT period.

19 TIME OUT ON COMMAND (LAG) Listen address(es) could not be sent within
the TIME OUT period.

20 TIME OUT ON COMMAND (TAG) Talk address could not be sent within the
TIME OUT period.

21 TIME OUT ON COMMAND (UNL) UnListen could not be sent within the TIME
OUT period.

22 TIME OUT ON COMMAND (UNT) UnTalk could not be sent within the TIME
OUT period.

IV. TROUBLESHOOTING 19. Error Messages

Personal488 User’s Manual, Rev. 3.0 IV-363

23 ONLY AVAILABLE TO SYSTEM
CONTROLLER

Driver488 could not execute a command
because it was not the System
Controller.

24 RESPONSE MUST BE 0 THROUGH 15 The RESPONSE parameter of the PPOLL
CONFIG command must be within the
range of 0 to 15.

25 NOT A PERIPHERAL The REQUEST command is only valid
when Driver488 is in the Peripheral
(*CA) mode.

26 SYSTEM ERROR - TIMER INTS ALREADY
ON

Internal system error. Report to factory.

27 SYSTEM ERROR - INVALID TIMER INIT Internal system error. Report to factory.
28 SYSTEM ERROR - TIMER INTS ALREADY

OFF
Internal system error. Report to factory.

29 ADDRESS REQUIRED PASS CONTROL requires an address.
30 TIME OUT VALUE MUST BE FROM 0 TO

65535
The TIME OUT period must be within the

specified range.
31 MUST BE ADDRESSED TO TALK DATA or EOI SEND subcommands are

invalid unless Driver488 is already
addressed to talk by MTA.

32 VALUE MUST BE BETWEEN 0 AND 255 Data bytes specified numerically in the
SEND command must be 8-bit integers.

33 INVALID BASE ADDRESS I/O port base addresses must end in 0, 1, or
8 when expressed in hexadecimal.

34 INVALID BUS ADDRESS IEEE 488 bus addresses must be in the
range of 0 to 30.

35 BAD DMA CHAN NO. OR DMA NOT
ENABLED

This error message is obsolete in Driver488
Rev.4.0.

36 NOT AVAILABLE TO A PERIPHERAL In Peripheral mode Driver488 cannot send
bus commands such as device
addresses.

37 INVALID PRIMARY ADDRESS IEEE 488 bus addresses must be in the
range of 0 to 30.

38 INVALID SECONDARY ADDRESS IEEE 488 bus secondary addresses must be
in the range of 0 to 31.

39 INVALID - TRANSFER OF ZERO BYTES A #count of zero bytes is not valid.
40 NOT ADDRESSED TO LISTEN In Controller mode, ENTER without

specifying a bus address is not valid
unless Driver488 is already addressed
to listen.

41 COMMAND SYNTAX ERROR Error in specifying command.
42 UNABLE TO CHANGE MODE AFTER

BOOTUP
This error message is obsolete in Driver488

Rev.4.0.
43 TIME OUT WAITING FOR ATTENTION As a Peripheral, executing an ENTER

command, Attention did not become
unasserted within the TIME OUT
period.

44 DEMO VERSION - CAPABILITY
EXHAUSTED

The DEMO version of Driver488 is limited
to 100 commands per session.

45 DEMO VERSION - ONLY ONE ADDRESS The DEMO version of Driver488 can
control only one instrument at one IEEE
488 bus address.

46 OPTION NOT AVAILABLE This error message is obsolete in Driver488
Rev.4.0.

19. Error Messages IV. TROUBLESHOOTING

IV-364 Personal488 User’s Manual, Rev. 3.0

47 VALUE MUST BE BETWEEN 1 AND 8 The IEEE 488 interface board clock
frequency must be between 1 and 8.

48 TIME OUT - CONTROL NOT ACCEPTED No device took control of the IEEE 488 bus
after a PASS CONTROL.

49 UNABLE TO ADDRESS SELF TO TALK OR
LISTEN

A TALK or LISTEN subcommand in a
SEND command specified the
controller’s own address. Use MTA or
MLA instead.

50 TIME OUT ON COMMAND A time out error occurred during a SEND
command.

51 CANNOT DMA ON ODD BOUNDARY Internal system error. Report to factory.
52 INTERRUPT %d DOES NOT EXIST Invalid interrupt chosen. Check hardware

settings.
53 INTERRUPT %d IS NOT SHAREABLE Another device already controls this

interrupt.
54 UNABLE TO ALLOCATE DYNAMIC MEMORY

FOR INT %d
Internal system error. Report to factory.

55 SHARED INTERRUPT %d CHAIN
CORRUPTED

Internal system error. Report to factory.

56 TOO MANY ACTIVE TIMEOUTS Internal system error. Report to factory.
57 INVALID DEVICE HANDLE %d Device handle was not opened. Must first

open device and assign handle.
58 OUT OF DEVICE HANDLES Too many device handles opened. Must

close unused handles.
59 UNKNOWN DEVICE: %s Device not configured. Use MakeDevice to

create.
60 DRIVER NOT LOADED Driver is not loaded. Must load driver to

run.
61 INVALID LIST OF DEVICE HANDLES Array of device handles does not contain

valid handles.
62 INVALID TERMINATOR STRUCTURE Terminator structure does not contain valid

data.
63 INVALID DATA POINTER Data pointer is NULL or points to invalid

data.
64 INVALID POINTER TO STATUS

STRUCTURE
Status structure address is invalid or NULL.

65 INVALID NAME POINTER Name parameter is empty or address is
invalid.

66 SYSTEM ERROR - INVALID INTERNAL
POINTER

Internal system error. Report to factory.

67 INVALID STRING FOR ERROR TEXT Error text string address is invalid.
68 UNABLE TO FIND ERROR CODE

REPORTER
Internal system error. Report to factory.

69 UNABLE TO TRANSLATE ERROR CODE Internal system error. Report to factory.
70 DMA CHANNEL %d DOES NOT EXIST Specified DMA channel does not exist.

Check hardware settings.
71 DMA CHANNEL %d NOT AVAILABLE Specified DMA channel is not available for

use by Driver. Choose another channel.
72 DMA CHANNEL %d ALREADY IN USE Specified DMA channel is already being

used by another device. Choose
another channel.

73 UNABLE TO ALLOCATE MEMORY FOR
ASYNCHRONOUS I/O

Internal system error. Report to factory.

IV. TROUBLESHOOTING 19. Error Messages

Personal488 User’s Manual, Rev. 3.0 IV-365

74 UNKNOWN DOS DEVICE NAME Driver488 DOS device name not known.
Must create Driver488 DOS device
name with the Make Dos Name
command.

75 UNABLE TO ALLOCATE MEMORY FOR NEW
DEVICE

Ran out of memory. Remove some devices
to restore memory.

76 UNKNOWN SLAVE DEVICE Internal system error. Report to factory.
77 SLAVE DEVICE NOT SPECIFIED Corrupt initialization file. Run the Install

program.
78 UNABLE TO CREATE DOS DEVICE NAME Internal system error. Report to factory.
79 UNABLE TO INITIALIZE DEVICE Corrupt initialization file. Run the Install

program.
80 ATTEMPTED TO REMOVE SLAVE DEVICE Attempt to remove device which is required

for operation by another device.
81 DATA OVERRUN Serial input overflow.
82 (None) (None)
83 FRAMING ERROR Serial data corrupt. Possible incorrect

Serial port configuration.
84 TIME OUT ON SERIAL COMMUNICATION Serial device did not respond.
85 UNKNOWN PARAMETER OF TYPE %d

SPECIFIED :\n %s = %s
Internal system error. Report to factory.

86 BUS ERROR - NO LISTENERS No Listeners found on bus.
87 TIME OUT ON MONITOR DATA Expected terminator was not received.
88 INVALID VALUE SPECIFIED Specified value is invalid for application.

See command for proper value types.
89 NO TERMINATOR SPECIFIED Terminator must be specified. Check

terminator value.
90 NOT AVAILABLE IN 8-BIT SLOT Specified option is not available when the

I/O adapter is fitted into an 8-bit slot.
91 TOO MANY PENDING EVENTS Internal system error. Report to factory.
92 BREAK ERROR Serial receiver detected break.
93 UNEXPECTED CHANGE OF CONTROL

LINES
Handshake lines changed during

transmission.
94 TIME OUT ON CTS Hardware handshake not satisfied within

time out. Check cabling and connected
device.

95 TIME OUT ON DSR Hardware handshake not satisfied within
time out. Check cabling and connected
device.

96 TIME OUT ON DCD Hardware handshake not satisfied within
time out. Check cabling and connected
device.

97 CANNOT SEND EOI WITHOUT DATA Transmission of EOI was requested when
no data was available to send.

98 ADDRESS STATUS CHANGE DURING
TRANSFER

Talker/Listener mode changed during data
transfer, possibly due to activity of
some other device on the IEEE 488 bus.

99 UNABLE TO MAKE NEW DEVICE MakeDevice or CreateDevice was unable to
create a new device, possibly due to the
number of devices which already
existed.

100 (None) (None)
101 COMMAND SYNTAX ERROR: % Command interpreter was unable to

interpret command and no other
information was available.

19. Error Messages IV. TROUBLESHOOTING

IV-366 Personal488 User’s Manual, Rev. 3.0

102 ERROR OPENING DEVICE %s Possible loss of electrical or logical
connection.

103 DEVICE %s CURRENTLY LOCKED BY %s Device is in use by another processor in a
multiprocessing environment. (This
does not refer to multitasking
environments.)

104 TIME OUT ON NETWORK
COMMUNICATIONS

Unable to access a remote communications
device within the time out interval.

105 ERROR: DEVICE IS NOT OPEN Attempt to access a device which has not
been opened or has subsequently been
closed.

106 IPX IS NOT LOADED Unable to access device via network
communications.

107 INTERFACE IS BUSY Remote IEEE 488 interface is busy.
108 TIMER/COUNTER REQUIRES INTERRUPTS

TO BE CONFIGURED
Interrupts are required for proper Driver488

function of this device.
109 INVALID INTERRUPT LEVEL Request interrupt level is not supported by

this hardware.
110 MUST REMOVE DOS NAME FIRST Attempted to remove a Driver488 device

underlying a DOS device.
111 NO WINDOWS TIMERS AVAILABLE Driver488/W31 requires use of a Windows

timer which was unavailable. Close
other applications using Windows
timers and retry.

IV. TROUBLESHOOTING 19. Error Messages

Personal488 User’s Manual, Rev. 3.0 IV-367

V-368 Personal488 User’s Manual, Rev. 3.0

Section V:

 APPENDIX

Personal488 User’s Manual, Rev. 3.0 V-369

ASCII Character Codes & IEEE 488 Bus Line Messages V. APPENDIX

V-370 Personal488 User’s Manual, Rev. 3.0

 V. APPENDIX
Bus States, Bus Lines & Bus Commands

Bus State Bus Lines Data Transfer (DIO) Lines
8 7 6 5 4 3 2 1

Hex Value (QuickBASIC) &H80 &H40 &H20 &H10 &H08 &H04 &H02 &H01

Decimal Value 128 64 32 16 8 4 2 1

Bus Management Lines
IFC Interface Clear
REN Remote Enable

IEEE 488 Interface: Bus Management Lines
ATN Attention (&H04) 0 0 0 0 0 1 0 0
EOI End-Or-Identify (&H80) 1 0 0 0 0 0 0 0
SRQ Service Request (&H40) 0 1 0 0 0 0 0 0

IEEE 488 Interface: Handshake Lines
DAV Data Valid (&H08) 0 0 0 0 1 0 0 0
NDAC Not Data Accepted (&H10) 0 0 0 1 0 0 0 0
NRFD Not Ready For Data (&H20) 0 0 1 0 0 0 0 0

Serial Interface: Bus Management Lines
DTR Data Terminal Ready (&H02) 0 0 0 0 0 0 1 0
RI Ring Indicator (&H10) 0 0 0 1 0 0 0 0
RTS Request To Send (&H01) 0 0 0 0 0 0 0 1

Serial Interface: Handshake Lines
CTS Clear To Send (&H04) 0 0 0 0 0 1 0 0
DCD Data Carrier Detect (&H08) 0 0 0 0 1 0 0 0
DSR Data Set Ready (&H20) 0 0 1 0 0 0 0 0

Bus State Bus Commands Data Transfer (DIO) Lines
(IEEE 488) (ATN is asserted “1”) 8 7 6 5 4 3 2 1

Hex Value (QuickBASIC) &H80 &H40 &H20 &H10 &H08 &H04 &H02 &H01

Decimal Value 128 64 32 16 8 4 2 1
DCL Device Clear x 0 0 1 0 1 0 0
GET Group Execute Trigger (&H08) x 0 0 0 1 0 0 0
GTL Go To Local (&H01) x 0 0 0 0 0 0 1
LAG Listen Address Group (&H20-3F) x 0 1 a d d r n
LLO Local Lock Out (&H11) x 0 0 1 0 0 0 1
MLA My Listen Address x 0 1 a d d r n
MTA My Talk Address x 1 0 a d d r n
PPC Parallel Poll Config x 1 1 0 S P2 P1 P0
PPD Parallel Poll Disable (&H07) x 0 0 0 0 1 1 1
PPU Parallel Poll Unconfig (&H15) x 0 0 1 0 1 0 1
SCG Second. Cmd. Group (&H60-7F) x 1 1 c o m m d
SDC Selected Device Clear (&H04) x 0 0 0 0 1 0 0
SPD Serial Poll Disable (&H19) x 0 0 1 1 0 0 1
SPE Serial Poll Enable (&H18) x 0 0 1 1 0 0 0
TAG Talker Address Group (&H40-5F) x 1 0 a d d r n
TCT Take Control (&H09) x 0 0 0 1 0 0 1
UNL Unlisten (&H3F) x 0 1 1 1 1 1 1
UNT Untalk (&H5F) x 1 0 1 1 1 1 1

(x = “don’t care”)

V. APPENDIX Bus States, Bus Lines & Bus Commands

Personal488 User’s Manual, Rev. 3.0 V-371

ASCII Character Codes & IEEE 488 Bus Line Messages

Box Items

Hex Value $41 65 Decimal Value

A
Bus Message 01 ASCII Character

ASCII Control Codes V. APPENDIX

V-372 Personal488 User’s Manual, Rev. 3.0

ASCII Control Codes (Table 1)

ASCII Control Codes (Decimal 00 to 31)
Dec

Value
Hex

Value
($ or &H)

Character
and

Abbreviation
Name Bus Message

Addressed Command Group (ACG)
00 00 None / NUL Null None
01 01 ^A / SOH Start of Header Go To Local
02 02 ^B / STX Start of Text None
03 03 ^C / ETX End of Text None
04 04 ^D / EOT End of Transmission Selected Device Clear
05 05 ^E / ENQ Inquiry None
06 06 ^F / ACK Acknowledgement None
07 07 ^G / BEL Bell Parallel Poll Disable (PPD)
08 08 ^H / BS Backspace Group Execute Trigger
09 09 ^I / HT Horizontal Tab Take Control (TCT)
10 0A ^J / LF Line Feed None
11 0B ^K / VT Vertical Tab None
12 0C ^L / FF Form Feed None
13 0D ^M / CR Carriage Return None
14 0E ^N / SO Shift Out None
15 0F ^O / SI Shift In None

Universal Command Group (UCG)
16 10 ^P / DLE Data Link Escape None
17 11 ^Q / DC1 Device Control 1 Local Lockout (LLO)
18 12 ^R / DC2 Device Control 2 None
19 13 ^S / DC3 Device Control 3 None
20 14 ^T / DC4 Device Control 4 Device Clear (DCL)
21 15 ^U / NAK Negative Acknowledgement Parallel Poll Unconfig (PPU)
22 16 ^V / SYN Synchronous Idle None
23 17 ^W / ETB End of Transmission Block None
24 18 ^X / CAN Cancel Serial Poll Enable (SPE)
25 19 ^Y / EM End of Medium Serial Poll Disable (SPD)
26 1A ^Z / SUB Substitute None
27 1B ^[/ ESC Escape None
28 1C ^\ / FS File Separator None
29 1D ^] / GS Group Separator None
30 1E ^^ / RS Record Separator None
31 1F ^_ / US Unit Separator None

Notes: ASCII control codes are sometimes used to “formalize” a communications session between
communication devices.

DC1, DC2, DC3, DC4, FS, GS, RS, and US all have user-defined meanings, and may
vary in use between sessions or devices.

DC4 is often used as a general “stop transmission character.”

Codes used to control cursor position may be used to control print devices, and move the print
head accordingly. However, not all devices support the full set of positioning codes.

V. APPENDIX ASCII Control Codes

Personal488 User’s Manual, Rev. 3.0 V-373

ASCII Control Codes (Table 2)

ASCII Control Codes (00 to 31)
Dec Name Description
Addressed Command Group (ACG)
00 Null (NUL) Space filler character. Used in output timing for some device

drivers.
01 Start of Header (SOH) Marks beginning of message header.
02 Start of Text (STX) Marks beginning of data block (text).
03 End of Text (ETX) Marks end of data block (text).
04 End of Transmission (EOT) Marks end of transmission session.
05 Inquiry (ENQ) Request for identification or information.
06 Acknowledgement (ACK) “Yes” answer to questions or “ready for next transmission.” Used

in asynchronous protocols for timing.
07 Bell (BEL) Rings bell or audible alarm on terminal.
08 Backspace (BS) Moves cursor position back one character.
09 Horizontal Tab (HT) Moves cursor position to next tab stop on line.
10 Line Feed (LF) Moves cursor position down one line.
11 Vertical Tab (VT) Moves cursor position down to next “tab line.”
12 Form Feed (FF) Moves cursor position to top of next page.
13 Carriage Return (CR) Moves cursor to left margin.
14 Shift Out (SO) Next characters do not follow ASCII definitions.
15 Shift In (SI) Next characters revert to ASCII meaning.

Universal Command Group (UCG)
16 Data Link Escape (DLE) Used to control transmissions using “escape sequences.”
17 Device Control 1 (DC1) Not defined. Normally used for ON controls.
18 Device Control 2 (DC2) Usually user defined.
19 Device Control 3 (DC3) Not defined. Normally used for OFF controls.
20 Device Control 4 (DC4) Usually user defined.
21 Negative Acknowledgement (NAK) “No” answer to questions or “errors found, re-transmit.” Used in

asynchronous protocols for timing.
22 Synchronous Idle (SYN) Sent by asynchronous devices when idle to insure sync.
23 End of Transmission Block (ETB) Marks block boundaries in transmission.
24 Cancel (CAN) Indicates previous transmission should be disregarded.
25 End of Medium (EM) Marks end of physical media, as in paper tape.
26 Substitute (SUB) Used to replace a character known to be wrong.
27 Escape (ESC) Marks beginning of an Escape control sequence.
28 File Separator (FS) Marker for major portion of transmission.
29 Group Separator (GS) Marker for submajor portion of transmission.
30 Record Separator (RS) Marker for minor portion of transmission.
31 Unit Separator (US) Marker for most minor portion of transmission.

ASCII Character Set V. APPENDIX

V-374 Personal488 User’s Manual, Rev. 3.0

ASCII Character Set (Table 1)

ASCII Character Set (Decimal 32 to 79)
Dec Hex Character Name Bus Message
Listen Address Group (LAG)
32 20 <space> Space Bus address 00
33 21 ! Exclamation Point Bus address 01
34 22 “ Quotation Mark Bus address 02
35 23 # Number Sign Bus address 03
36 24 $ Dollar Sign Bus address 04
37 25 % Percent Sign Bus address 05
38 26 & Ampersand Bus address 06
39 27 ‘ Apostrophe Bus address 07
40 28 (Opening Parenthesis Bus address 08
41 29) Closing Parenthesis Bus address 09
42 2A * Asterisk Bus address 10
43 2B + Plus Sign Bus address 11
44 2C , Comma Bus address 12
45 2D - Hyphen or Minus Sign Bus address 13
46 2E . Period Bus address 14
47 2F / Slash Bus address 15

Listen Address Group (LAG)
48 30 0 Zero Bus address 16
49 31 1 One Bus address 17
50 32 2 Two Bus address 18
51 33 3 Three Bus address 19
52 34 4 Four Bus address 20
53 35 5 Five Bus address 21
54 36 6 Six Bus address 22
55 37 7 Seven Bus address 23
56 38 8 Eight Bus address 24
57 39 9 Nine Bus address 25
58 3A : Colon Bus address 26
59 3B ; Semicolon Bus address 27
60 3C < Less Than Sign Bus address 28
61 3D = Equal Sign Bus address 29
62 3E > Greater Than Sign Bus address 30
63 3F ? Question Mark Unlisten (UNL)

Talk Address Group (TAG)
64 40 @ At Sign Bus address 00
65 41 A Capital A Bus address 01
66 42 B Capital B Bus address 02
67 43 C Capital C Bus address 03
68 44 D Capital D Bus address 04
69 45 E Capital E Bus address 05
70 46 F Capital F Bus address 06
71 47 G Capital G Bus address 07
72 48 H Capital H Bus address 08
73 49 I Capital I Bus address 09
74 4A J Capital J Bus address 10
75 4B K Capital K Bus address 11
76 4C L Capital L Bus address 12
77 4D M Capital M Bus address 13
78 4E N Capital N Bus address 14
79 4F O Capital O Bus address 15

V. APPENDIX ASCII Character Set

Personal488 User’s Manual, Rev. 3.0 V-375

ASCII Character Set (Table 2)

ASCII Character Set (80 to 127)
Dec Hex Character Name Bus Message
Talk Address Group (TAG)
80 50 P Capital P Bus address 16
81 51 Q Capital Q Bus address 17
82 52 R Capital R Bus address 18
83 53 S Capital S Bus address 19
84 54 T Capital T Bus address 20
85 55 U Capital U Bus address 21
86 56 V Capital V Bus address 22
87 57 W Capital W Bus address 23
88 58 X Capital X Bus address 24
89 59 Y Capital Y Bus address 25
90 5A Z Capital Z Bus address 26
91 5B [Opening Bracket Bus address 27
92 5C \ Backward Slash Bus address 28
93 5D] Closing Bracket Bus address 29
94 5E ^ Caret Bus address 30
95 5F _ Underscore Untalk (UNT)

Secondary Command Group (SCG)
96 60 ’ Grave Command 00
97 61 a Lowercase A Command 01
98 62 b Lowercase B Command 02
99 63 c Lowercase C Command 03
100 64 d Lowercase D Command 04
101 65 e Lowercase E Command 05
102 66 f Lowercase F Command 06
103 67 g Lowercase G Command 07
104 68 h Lowercase H Command 08
105 69 I Lowercase I Command 09
106 6A j Lowercase J Command 10
107 6B k Lowercase K Command 11
108 6C l Lowercase L Command 12
109 6D m Lowercase M Command 13
110 6E n Lowercase N Command 14
111 6F o Lowercase O Command 15
Secondary Command Group (SCG)
112 70 p Lowercase P Command 16
113 71 q Lowercase Q Command 17
114 72 r Lowercase R Command 18
115 73 s Lowercase S Command 19
116 74 t Lowercase T Command 20
117 75 u Lowercase U Command 21
118 76 v Lowercase V Command 22
119 77 w Lowercase W Command 23
120 78 x Lowercase X Command 24
121 79 y Lowercase Y Command 25
122 7A z Lowercase Z Command 26
123 7B { Opening Brace Command 27
124 7C | Vertical Line Command 28
125 7D } Closing Brace Command 29
126 7E ~ Tilde Command 30
127 7F DEL Delete Command 31

Personal488 User’s Manual, Rev. 3.0 VI-377

Section VI:

 INDEX

VI-378 Personal488 User’s Manual, Rev. 3.0

VI. INDEX

Personal488 User’s Manual, Rev. 3.0 VI-379

 VI. INDEX

A
ABORT/Abort, 61, 62, 80, 104,

105, 117, 119, 143, 179, 181, 204,
262, 274, 278, 283, 294, 301, 304,
313, 333, 340, 343

absolute, 127
Acknowledgement (ACK), 371,

372
Active Controller, 28, 39, 116-119,

127, 129, 130, 137, 177-181, 187,
190, 197, 211, 236, 263, 267, 271,
275, 279, 283, 288, 290, 296, 298,
300, 301, 304, 306, 308, 309, 313,
321, 324, 336, 339, 340, 343, 345-
348

address, 116, 125, 190
absolute, 127
base, 6-9, 13, 14, 18, 19, 22, 25,

26, 29, 40, 121, 126, 137, 138,
183, 197, 263, 266, 268, 270,
274, 278, 280, 294, 328, 362

bus, 28, 39, 42-44, 46-48, 50, 52,
55, 56, 66, 67, 74, 75, 84-86,
91, 92, 114, 121, 122, 124-126,
137, 140-142, 151, 160, 167,
183, 184, 190, 196, 198, 199,
201, 202, 210, 235, 262, 266,
270, 274, 278, 296, 303, 306,
308, 315, 330, 358-360, 362,
373, 374

memory, 68, 96, 99, 105, 110,
114, 127

offset, 96-98, 127
port, 25
primary, 43, 46, 56, 66, 74, 85, 91,

121, 125, 126, 141, 183, 199,
201, 268, 272, 276, 307, 308,
325, 347

secondary, 43, 46, 56, 66, 74, 85,
91, 92, 121, 125, 126, 141, 183,
199, 201, 265, 276, 288, 289,
298, 299, 307, 308, 325, 335,
337, 347, 362

segment, 67, 97, 98, 107, 127
Address Change, 50, 52, 55, 66, 74,

84, 91, 118, 119, 180, 181, 190,
211, 236, 283, 304, 307, 308, 313,
343, 347

address range, 25
address separator, 126

Addressed Command Group
(ACG), 130, 371, 372

analog-to-digital converter (ADC),
43, 46, 143, 144, 151, 156, 159,
160, 163, 164, 167, 169, 173, 176,
177, 199, 201, 203, 204, 209, 210,
212, 219, 220, 227, 228, 234, 235,
237, 238, 240, 246, 247, 249, 250

Application Program Interface
(API), 4, 33, 45, 46, 49, 142, 143,
202-204, 261

ARM/Arm, 39, 41, 58, 60, 69, 70,
77, 79, 87, 89, 102, 118, 119, 137,
139, 152, 156, 160, 168, 179-181,
189, 196, 213, 228, 262, 264, 266,
268-270, 272-274, 276, 278, 283,
287, 288, 290, 298, 300, 313, 314,
319, 321, 324, 332, 333, 336, 339

ASCII, 51, 54, 73, 100, 108, 110,
112, 113, 126, 131, 153, 156, 161,
164, 169, 173, 175, 214, 220, 239,
247, 294, 305, 370-374

assembly language, 53, 72, 96, 97,
99-101, 108, 111

asynchronous transfers, 34, 57, 68,
76, 86, 92, 102, 130, 133, 177,
191, 206, 264, 267, 268, 271, 275,
279, 284, 314, 335, 338, 348, 350,
352, 372

AT488, 4, 6, 13, 14, 35, 39, 134,
137, 192, 196, 200, 319, 357-359

Attention (ATN), 117, 119, 128-
130, 179, 181, 188, 286, 305, 306,
313, 318, 344, 362, 369

AUTO REMOTE, 284, 298
AutoRemote, 262, 274, 278, 314,

335-337, 339
Aztec C, 72, 104, 150

B
Backspace (BS), 371, 372
basic data acquisition, 154, 155,

162, 163, 170, 171, 206, 214, 216,
239, 240

Bell (BEL), 371, 372
binary, 43, 46, 47, 54, 61, 62, 64,

72, 79, 80, 83, 96, 100, 112-115,
141, 154-156, 162, 164, 170, 174,
175, 199, 215, 220, 239, 240, 248,
278, 279, 301, 302, 340, 341

block data acquisition, 154, 162,
170, 215, 239

Borland C, 5, 146, 148, 150, 151,
191, 194, 206-209, 211

buffer, 41, 42, 56, 57, 59, 61, 63,
67, 70, 71, 75, 77, 79, 81, 85, 86,
88, 90, 101-103, 107, 110, 112,
114, 127, 131, 139, 150, 151, 154,
155, 157-159, 162, 163, 165, 167,
170-172, 174, 176, 190, 211, 212,
215, 216, 219, 221, 229, 237, 239,
240, 248, 249, 268, 272, 280, 289,
290, 292, 311, 320, 321, 323, 333,
335, 336, 338, 352

buffer transfer, 56, 67, 75, 85
BUFFERED/Buffered, 109, 113-

115, 176, 262, 274, 278, 284, 289,
290, 299, 300, 309, 314, 348

buffered I/O, 113, 114
bus,

address, 307, 308
command, 56, 66, 74, 84, 91, 116-

119, 124, 127, 128, 130, 131,
177-181, 186-188, 263, 265,
267, 269, 273, 275, 279, 281,
282, 285, 289, 290, 296, 300,
305, 306, 311, 312, 316, 329,
330, 351, 362, 369

handshake, 42, 128-130, 139, 140,
188, 364, 369

line, 116, 127-130, 178, 187, 188,
211, 236, 262, 266, 270, 274,
278, 283, 286, 308, 313, 317,
318, 369, 370

management, 34, 116, 128, 129,
178, 188, 252, 282, 283, 303,
312, 313, 342, 369

state, 127, 128, 187, 188, 286,
318, 369

BUS ADDRESS, 284, 362
BusAddress, 142, 143, 151, 156,

203, 210, 212, 220, 228, 234, 235,
247, 253, 262, 274, 278, 315, 330,
331

ByteIn, 4, 50, 52, 55, 66, 74, 84, 91,
127, 189, 211, 236, 269, 273, 283,
307, 308, 313, 347

ByteOut, 4, 50, 52, 55, 66, 74, 84,
91, 127, 189, 211, 236, 269, 273,
283, 307, 308, 313, 347

C

VI. INDEX

VI-380 Personal488 User’s Manual, Rev. 3.0

C language, 145, 150, 206
call-by-reference, 98, 99
call-by-value, 98, 99
Carriage Return (CR), 46, 90, 91,

94, 109, 126, 176, 200, 291, 292,
310, 349, 358-360, 371, 372

Character Command Language
(CCL), 34, 37, 45-49, 51, 53, 64,
71, 82, 104, 107, 132, 134

character count, 109-112, 126, 176,
288-290, 298-300

CHECK LISTENER, 285
CheckListener, 262, 274, 278, 315
CLEAR/Clear, 4, 47, 50, 52, 55, 66,

74, 84, 91, 117-119, 127, 153,
156, 161, 164, 169, 173, 179-181,
211-214, 220, 228, 229, 232, 236-
238, 242, 247, 249, 253, 262, 266,
274, 278, 283, 285, 304, 313, 316,
343, 347

Clear To Send (CTS), 42, 128, 130,
139, 140, 188, 286, 318, 369

ClearList, 144, 204, 252, 262, 274,
278, 316

client driver, 26
CLOCK FREQUENCY, 285
ClockFrequency, 316, 317
Close, 99, 102, 144, 204, 209, 210,

212, 220, 221, 228, 232, 262, 266,
270, 274, 278, 317, 334

COM port, 133
command

description, 29, 112, 125, 187,
282, 312

format, 125, 186
reference, 33, 47, 60, 65, 78, 83,

96, 100, 102, 112, 119, 125,
132, 144, 145, 155, 158, 163,
166, 190, 256-258, 261, 264,
268, 272, 276, 280, 282, 312

communication, 24, 25, 28, 34, 35,
39-41, 43, 47, 51, 54, 55, 66, 72,
74, 82, 84, 91, 96, 100, 101, 109,
111, 113, 129, 130, 137-141, 144,
152, 160, 168, 191, 196, 198, 199,
201, 208, 211, 233, 235, 252, 263,
266, 270, 274, 278, 293, 294, 327

compatibility, 4-6, 11, 15, 17, 18,
21, 23-25, 29, 35, 41, 64, 78, 90,
95, 138, 191, 198, 199, 287, 319,
357-360

configuration parameters, 28, 39-
41, 43, 136-140, 196-198

configuration screen, 27, 38, 39,
42, 136, 140, 195, 196, 198

configuration utility, 27, 29, 38,
135, 136, 193, 195, 199

console mode, 333
CONTROL LINE, 286, 364
Controller Active, 28, 39, 116-119,

127, 129, 130, 137, 177-181, 187,
190, 197, 211, 236, 263, 267, 271,
275, 279, 283, 288, 290, 296, 298,
300, 301, 304, 306, 308, 309, 313,
321, 324, 336, 339, 340, 343, 345-
348

ControlLine, 262, 269, 273, 274,
278, 281, 317, 318

counter/timer, 4, 7, 27, 38, 40, 42,
45, 138, 140, 192

CRITERR, 53, 61, 72, 80, 104, 105

D
data acquisition, 43, 154, 155, 162,

163, 165, 170, 171, 206, 214-216,
239, 240, 243, 246

data bit, 42, 57, 68, 76, 86, 92, 139
Data Carrier Detect (DCD), 42,

128, 130, 139, 140, 188, 286, 318,
369

Data Link Escape (DLE), 371, 372
Data Set Ready (DSR), 42, 130,

139, 140, 188, 286, 318, 369
Data Terminal Ready (DTR), 128,

129, 188, 286, 318, 369
data terminator, 108, 175
data transfer, 4, 10, 28, 29, 40, 42,

43, 60, 61, 78, 80, 104, 112, 113,
115, 129, 130, 137, 140, 141, 175,
177, 194, 197, 199, 200, 241, 248,
283, 287, 298, 305, 308, 313, 319,
335, 345, 347, 349, 364

data type, 131, 189
Data Valid (DAV), 128, 129, 188,

286, 318, 369
decimal value, 128, 188, 189, 369-

374
default settings, 25, 27, 38, 136,

195
Device Clear (DCL), 128, 131, 188,

262, 266, 274, 278, 285, 316, 369,
371

Device Control (DC), 371, 372
device handle, 140, 141, 143, 152,

160, 161, 163, 168, 173, 198, 199,
204, 211, 213, 235, 252, 263, 264,
267, 268, 271, 272, 275, 276, 279,
280, 320, 321-324, 326, 334-338,
363

device I/O, 106, 282, 312
device name, 28, 34, 40, 42-44, 46,

47-49, 51, 52, 99, 102, 120, 125,
126, 132, 137, 140, 141, 142, 143,
144, 145, 182, 197, 198, 199, 202,

203, 204, 205, 210, 212, 219, 227,
234, 237, 246, 249, 252, 253, 255,
288, 289, 359, 360, 364

device type, 27, 28, 38-43, 136, 137,
139-141, 195-197, 199

digital I/O, 4-7, 27, 38, 40, 42, 45,
137, 140, 192

DIO lines, 128, 130, 188, 189, 286,
301, 302, 304, 318, 340, 341, 343,
369

direct I/O, 47, 113, 115
Direct Memory Access (DMA), 4,

6-10, 13-15, 18-20, 39, 115, 133,
137, 147-150, 155, 163, 171, 177,
194, 196, 200, 215, 240, 262, 264,
266, 268, 270, 272, 274, 276, 278,
280, 284, 287, 304, 319, 335, 357-
363

DISARM/Disarm, 152, 160, 168,
189, 262, 264, 266, 268-270, 272-
274, 276, 278, 286, 304, 318, 319,
343

DMA CHANNEL, 287, 304, 363
DMA section, 200
DmaChannel, 262, 274, 278, 319
DOS, 4, 5, 29, 34, 45-49, 51, 53, 54,

59, 61, 65, 72, 73, 78-80, 82, 83,
90, 95, 96, 99-111, 115, 122-124,
126, 133, 149, 184-186, 191, 193,
194, 199, 268, 280, 294, 295, 303,
333, 359, 360, 364, 365

Driver488/DRV, 5, 8, 13, 17, 18,
22, 24, 28, 34-41, 43-56, 58, 60-
80, 82-93, 95, 96, 99-102, 104-
115, 117-120, 122-127, 131-133,
187, 261, 282, 307, 308, 357, 358

Driver488/IUX, 5
Driver488/LIB, 5
Driver488/NT, 257, 258
Driver488/OEM, 5
Driver488/SCX, 5
Driver488/SUB, 5, 8, 13, 17, 18, 22,

24, 133-174, 187, 190, 256-258,
261, 264, 268, 272, 312, 316, 317,
319, 327, 328, 331, 348, 358, 359

Driver488/W31, 5, 8, 13, 17, 18, 22,
24, 29, 187, 190-200, 202-204,
206-220, 225, 227, 231-241, 243,
248, 251, 252, 254, 256-258, 261,
276, 280, 312, 318, 319, 322, 324,
327, 328, 332, 337, 339, 348, 359,
360, 365

Driver488/W95, 5, 8, 18, 187, 190,
257, 258, 261, 312, 318, 330, 331,
332, 333, 349, 350, 360

VI. INDEX

Personal488 User’s Manual, Rev. 3.0 VI-381

Driver488/WIN, 191, 257, 258
Driver488/WIN95, 257, 258
Driver488/WNT, 5, 8, 187, 190,

257, 258, 261, 312, 360
drivers section, 200
Dynamic Data Exchange (DDE),

191, 206, 241, 243, 246, 255, 256
Dynamic Link Library (DLL), 3, 5,

33, 191, 192, 254

E
End of Text (ETX), 371, 372
End of Transmission (EOT), 371,

372
End of Transmission Block (ETB),

372
End-Of-Line (EOL), 54, 55, 61, 62,

73, 79, 80, 90, 91, 94, 100, 105,
108-114, 126, 288-291, 294, 298,
309, 310, 349

End-Or-Identify (EOI), 6, 29, 40,
43, 46, 47, 112, 114, 115, 125,
126, 128, 129, 138, 141-144, 155,
157, 174-176, 188-190, 197, 199,
200, 203, 204, 215, 221, 265, 269,
273, 277, 279, 281, 286, 349

enhanced mode DMA transfer, 194
ENTER/Enter, 47, 50, 52, 56, 57,

62, 63, 66-68, 70, 74, 75, 81, 85-
87, 89, 92-94, 105, 109, 112-115,
117-119, 125, 133, 143, 144, 154,
156, 158, 176, 179-181, 189, 190,
201, 204, 212, 214, 215, 220, 229,
237, 245, 249, 251, 254, 262, 274,
278, 284, 287, 288, 291, 308, 311,
314, 319-322, 324, 347, 352, 357-
359, 361, 362

ENTER #count BUFFER, 56, 75,
86, 284, 288-290

EnterI, 278, 322-324
EnterMore, 320, 321
EnterMoreI, 323, 324
EnterN, 320, 321
EnterNI, 323, 324
EnterNMore, 321
EnterNMoreI, 323, 324
EnterX, 319, 321
EnterXI, 322, 324
ERROR/Error, 4, 6, 35, 49, 51, 52,

54, 55, 61, 62, 65, 70, 71, 73, 79,
80, 84, 88-91, 94, 99, 102, 105,
119, 127, 145, 156, 163, 164, 173,
181, 205, 210-212, 219, 224, 227,
228, 231, 232, 236, 248, 263, 274,
278, 282, 283, 291, 292, 304, 307,
308, 312, 324, 325, 343, 361-365

error message, 38, 50, 135, 194,
263, 264, 266, 268, 270, 272, 274,
276, 279, 280, 291, 308, 325, 355,
357, 361

Event Custom Control, 191, 206,
208, 232, 233, 235-237, 249

event handling, 152, 160, 168, 191,
200, 208, 213, 228, 233, 237, 238,
250, 262, 266, 270, 274, 278, 282,
312, 332

Event Message, 206, 211, 212, 224
Example, 37, 49, 53, 145, 194, 205,

216, 217, 225, 237
Examples, 131, 145, 189
Excel, 191, 241-246, 256
external device, 27, 34, 35, 38, 42-

49, 134-136, 140-145, 192, 195,
198, 199, 201-205, 263, 267, 271,
275, 279, 316, 342

F
FILL, 51, 54, 55, 61, 65, 70, 73, 79,

84, 88, 90, 91, 94, 291, 292, 304
FIND LISTENERS, 292
FindListeners, 263, 274, 278, 325
FINISH/Finish, 263, 274, 278, 293,

305, 325, 344
Form Feed (FF), 371, 372
functionality, 25, 29, 34, 155, 163,

171, 194, 216, 240, 256

G
garbage collection, 97
GET, 106
GetDeviceData, 100, 102, 111
GetError, 151, 156, 159, 167, 210,

212, 220, 228, 234, 235, 247, 263,
274, 278, 326

GetErrorList, 263, 274, 278, 326
getting started, 35, 49, 134, 145,

192, 205
Go To Local (GTL), 117, 119, 128,

131, 179, 181, 188, 296, 329, 369,
371

GP488/2, 4, 7
GP488/MM, 4, 7, 18-21, 35, 192
GP488B, 4, 6, 8-11, 15, 20, 35, 39,

45, 46, 134, 137, 142, 192, 196,
200, 203

Group Execute Trigger (GET),
128, 131, 188, 264, 271, 280, 311,
351, 369, 371

H
header, 5, 53, 61, 72, 80, 104, 105,

145-148, 150, 151, 166, 187, 190,
206-209, 211, 223, 230, 257, 258,
312, 332, 372

HELLO/Hello, 50, 51, 55, 65, 66,
70, 73, 74, 84, 88, 91, 94, 101,
102, 110, 145, 147-149, 152, 156,
160, 168, 209, 211, 220, 233, 235,
247, 252, 263, 274, 278, 280, 293,
327, 333

hexadecimal value, 125, 128, 188,
189, 369-371, 373, 374

Horizontal Tab (HT), 371, 372

I
I/O, 4, 7, 11, 26, 29, 35, 39, 41, 42,

46, 47, 55, 60, 61, 63, 73, 78-80,
90, 96, 104-106, 113-115, 133,
137, 139, 140, 176, 190, 196, 282,
291, 292, 312, 317, 322, 324

I/O control (IOCTL), 54, 55, 60-62,
65, 70, 73, 78, 79, 82-84, 88, 96,
100-103, 105, 110, 111, 292, 294,
295

Idle, 4, 118, 119, 127, 129, 131,
179-181, 189, 211, 236, 269, 273,
283, 307, 308, 313, 371, 384

IEEE section, 201
IEEE_3 section, 200
IEEE_4 section, 201
IEEEDEV section, 201
IEEEIO, 53-55, 58, 59, 72, 73, 76,

78, 97, 100, 104, 107, 108, 111
individual status (ist), 302, 341
initialization file, 27, 38, 43, 135,

140, 141, 193, 195, 198-201, 357-
359, 364

input buffer, 42, 131, 139
Inquiry (ENQ), 371, 372
insert mode, 51
instrument management, 252
INT LEVEL, 293, 304
Interface Clear (IFC), 56, 66, 74,

84, 91, 116, 117, 128, 129, 137,
143, 178, 179, 188, 196, 204, 283,
313, 369

interrupt handling, 57, 68, 76, 86,
92, 153, 162, 169, 200

interrupt section, 200
interrupt selection, 10, 14, 20
IntLevel, 142, 203, 263, 274, 278,

327
IO ADDRESS, 293, 294
IOAddress, 263, 274, 278, 328, 330,

331

VI. INDEX

VI-382 Personal488 User’s Manual, Rev. 3.0

IOCTL$, 60, 69, 71, 78, 83, 96,
100, 294, 295

ISA bus, 4, 10, 15, 22

K
KEEP DEVICE, 47, 295, 297, 303
KEEP DOS NAME, 295, 297
KeepDevice, 142, 143, 151, 203,

210, 235, 263, 274, 279, 328, 330
Keyboard Controller Program

(KBC.EXE), 50, 51, 106-108,
295, 358

L
library, 133, 145-150, 159, 166,

194, 207
licensing, 36, 134, 193, 256
LIGHT PEN, 40, 296, 358
LightPen, 28, 40, 137, 263, 264,

268, 270, 272, 276, 328, 329, 359,
360

Line Feed (LF), 46, 61, 79, 109,
126, 176, 200, 291, 292, 310, 349,
358-360, 371, 372

link
cold, 241
design time, 241
hot, 241
run time, 241, 242
server, 241, 244, 245

Listen, 4, 116, 118, 119, 127, 129,
131, 177, 179-181, 211, 236, 263,
279, 283, 288-290, 298, 299, 305,
308, 311, 320-322, 324, 325, 329,
331, 335, 337, 342, 344, 347, 351,
361

Listen Address Group (LAG), 116,
128, 130, 177, 188, 305, 373

LOCAL/Local, 117, 119, 179, 181,
232, 263, 279, 296, 304, 329

Local Lock Out (LLO) (bus
command), 128, 131, 188, 263,
267, 275, 279, 330, 371

LOCAL LOCKOUT (LOL)
(system command), 117, 119, 125

LocalList, 263, 275, 279, 329
Lol (system command), 263, 275,

279, 330
LPT port, 17, 37, 40, 41, 137, 138,

197, 198, 357-359

M
MAKE DEVICE, 46, 47, 295, 297,

303
MAKE DOS NAME, 47, 295, 297

MakeDevice, 142, 143, 151, 156,
160, 167, 199, 201, 203, 210, 212,
220, 228, 234, 235, 247, 253, 263,
275, 279, 328, 330, 331, 363

MakeNewDevice, 330, 331
MARKDRVR, 27, 38, 122, 123,

184, 185
memory model, 59, 78, 97, 145-148
message handling section, 200
Microsoft C, 5, 53, 54, 61, 72, 80,

97, 98, 146, 150, 191, 194, 206-
208, 211

Microsoft Fortran, 63
MP488, 4, 6, 7, 27, 35, 38-40, 134,

137, 192, 196, 200, 317, 319, 357-
359

MP488CT, 4, 7, 35, 39, 40, 42, 45,
134, 136-138, 140, 192, 196, 200,
287, 317, 319, 357-359

multiple transactions, 6, 7, 34, 35,
43-45, 48, 49, 130, 134, 141, 144,
145, 192, 199, 201, 202, 204, 205

My Listen Address (MLA) (bus
command), 128, 131, 188, 263,
267, 271, 275, 279, 305

My Talk Address (MTA) (bus
command), 119, 128, 131, 181,
188, 263, 267, 271, 275, 279, 305,
313

MyListenAddr (system command),
263, 275, 279, 331

MyTalkAddr (system command),
263, 275, 279, 331

N
name, 27, 28, 38, 39, 41-43, 46-49,

54, 72, 98, 99, 102, 106, 125, 132,
136, 137, 139, 144, 145, 195, 196,
201, 204, 205, 272, 276
device, 28, 34, 40, 42-44, 46-49,

52, 99, 102, 120, 125, 126, 132,
137, 140-145, 182, 197-199,
202-205, 210, 212, 219, 227,
234, 237, 246, 249, 252, 253,
255, 288, 289, 359, 360, 364

text box, 235, 243
NB488, 4, 7, 17, 35, 39-41, 134,

137, 138, 192, 196-198, 200, 317,
319, 357-360

Negative Acknowledgement
(NAK), 371, 372

Not Active Controller, 117, 127,
179, 187

Not Data Accepted (NDAC), 128,
130, 188, 286, 318, 369

Not Ready For Data (NRFD), 128,
129, 188, 286, 318, 369

Not System Controller, 117, 119,
127, 178, 181, 187, 307

Null (NUL), 371, 372

O
OnEvent, 39, 41, 137, 139, 152,

154, 156, 158, 168, 196, 213, 228,
262-264, 266, 270, 272, 274-276,
278, 314, 331, 332

OnEventVDM, 333
OpenName, 133, 136, 142-145, 151,

155, 156, 195, 201, 203-205, 209,
210, 212, 219, 227, 233, 234, 237,
245-247, 249, 250, 252, 253, 275,
279, 332-334, 359

operating mode, 28, 29, 56, 66, 74,
85, 92, 116-119, 127, 178, 179,
181, 187, 265, 281, 287-290, 296-
301, 304, 306-308, 319, 321, 322,
324, 329, 333, 334, 336, 337, 339,
340, 343, 345-347, 358-360, 362

operating mode transitions, 116,
178

OUTPUT/Output, 44, 47, 49, 52,
56, 58, 63, 65, 66, 69, 70, 74, 77,
84, 85, 87, 89, 91-94, 101, 109,
112-114, 117-119, 125, 133, 143,
144, 153-158, 161, 169, 176, 179-
181, 189, 190, 201, 204, 212-215,
220, 221, 228, 229, 232, 255, 262,
263, 266, 270, 274, 275, 278, 279,
284, 291, 292, 295, 297-299, 310,
311, 314, 333-337, 339, 351, 357-
359, 361

OUTPUT #count BUFFER, 299,
300

output buffer, 42, 139
OutputI, 279, 337-339
OutputMore, 335, 336
OutputMoreI, 338, 339
OutputN, 335, 336
OutputNI, 338, 339
OutputNMore, 336
OutputNMoreI, 338, 339
OutputX, 334, 336
OutputXI, 337, 339

P
parallel, 4, 7, 17, 40, 120, 121, 138,

182, 183, 197, 263, 267, 271, 275,
279, 357-359

Parallel Poll Configure (PPC) (bus
command), 128, 130, 131, 188

Parallel Poll Disable (PPD) (bus
command), 128, 131, 188, 371

VI. INDEX

Personal488 User’s Manual, Rev. 3.0 VI-383

Parallel Poll Unconfigure (PPU)
(bus command), 128, 131, 188,
371

Pascal, 4, 5, 34, 82-87, 96, 110, 133,
145, 149, 166, 174, 292, 314, 359

PASS CONTROL, 117, 119, 301,
362, 363

PassControl, 263, 275, 279, 340
PC/XT bus, 15
Peripheral, 4, 28, 39, 44, 50, 52, 55,

66, 74, 84, 91, 116-119, 122, 123,
127, 137, 177-181, 184, 185, 187,
189, 196, 197, 211, 236, 269, 273,
283, 288-290, 298, 300, 301, 304,
306-309, 313, 321, 324, 336, 339,
340, 343, 345-348, 358-362

port, 4, 7, 17, 25, 27, 29, 34, 38, 40,
41, 45, 120, 121, 124, 133, 137,
138, 142, 182, 183, 186, 197, 198,
263, 266, 270, 274, 278, 286, 294,
317, 328, 357-359, 362, 364

PPOLL/PPoll, 57, 68, 76, 86, 92,
117, 119, 179, 181, 263, 275, 279,
301, 306, 340

PPOLL CONFIG (PPC) (system
command), 117, 119, 128, 301,
302, 362

PPOLL DISABLE (PPD) (system
command), 117, 119, 128, 302

PPOLL UNCONFIG (PPU)
(system command), 117, 119,
128, 302

PPollConfig (system command),
263, 275, 279, 340, 341

PPollDisable (system command),
263, 275, 279, 341

PPollDisableList, 263, 275, 279,
341

PPollUnconfig (system command),
263, 275, 279, 341, 342

primary address, 43, 46, 56, 66, 74,
85, 91, 121, 125, 126, 141, 183,
199, 201, 268, 272, 276, 307, 308,
325, 347

printer, 17, 40, 41, 44-46, 96, 116,
120, 121, 123, 124, 138, 178, 182,
183, 185, 186, 197, 198, 200, 349

printer redirection, 120, 182
PRNTEMUL, 123, 124, 185, 186
protocol, 4, 34, 35, 97-99, 117, 134,

179, 192, 372
PUT, 106

Q
Quick C, 5, 146, 147, 191, 206-209,

211, 216

QuickBASIC, 5, 64, 67, 106, 125,
128, 133, 145, 148, 149, 159, 166,
188, 189, 282, 369

QUIKTEST, 194, 206, 244, 251,
254-256, 360

R
raw mode, 61, 79, 82, 100
REMDRVR, 27, 38, 122, 123, 184,

185
REMOTE/Remote, 59, 63, 70, 71,

78, 82, 88, 90, 94, 95, 117, 153,
156, 161, 169, 179, 214, 238, 263,
275, 279, 284, 303, 342, 365

Remote Enable (REN), 116, 117,
128, 129, 137, 178, 179, 188, 196,
284, 296, 298, 299, 303, 314, 329,
335-337, 339, 342, 369

RemoteList, 263, 275, 279, 342
REMOVE DEVICE, 47, 295, 303
REMOVE DOS NAME, 47, 303,

365
RemoveDevice, 143, 151, 203, 210,

235, 263, 275, 279, 328, 342
REQUEST/Request, 117, 119, 179,

181, 263, 267, 271, 275, 279, 304,
308, 343, 346, 362, 365

Request for Service (rsv), 190, 304,
306-308, 343, 345, 346, 347

Request To Send (RTS), 128, 129,
188, 286, 318, 369

RESET/Reset, 54-56, 61, 63, 65, 66,
70, 73, 74, 79, 82-84, 88, 90, 91,
94, 155, 157, 165, 174, 212, 215,
221, 229, 232, 237, 240, 248, 249,
263, 275, 279, 292, 294, 304, 343

Response, 84, 86-89, 127, 187, 233
RESUME/Resume, 117, 119, 179,

181, 232, 263, 275, 279, 293, 304,
305, 344

Returns, 187
revision identification, 50, 51, 55,

66, 74, 84, 91
Ring Indicator (RI), 128, 129, 188,

286, 318, 369
router section, 200

S
sample program, 62, 63, 70, 80, 83,

88, 94, 102, 105, 155, 163, 171,
216, 224, 246, 249, 250

secondary address, 43, 46, 56, 66,
74, 85, 91, 92, 121, 125, 126, 141,
183, 199, 201, 265, 276, 288, 289,
298, 299, 307, 308, 325, 335, 337,
347, 362

Secondary Command Group
(SCG), 128, 130, 188, 374

Selected Device Clear (SDC), 128,
131, 144, 188, 204, 262, 266, 274,
278, 285, 316, 371

SEND, 117, 119, 125, 284, 288, 289,
298, 299, 305, 306, 311, 362-364

SendCmd, 263, 275, 279, 344
SendData, 263, 267, 271, 275, 314,

344, 345
SendEoi, 275, 314, 345
serial, 4, 9, 14, 19, 27, 34, 38, 39,

41, 42, 45, 57-59, 68-70, 76, 77,
86-88, 92-94, 117, 119-121, 128-
131, 135, 136, 139, 140, 142, 153,
154, 157, 162, 163, 165, 169, 170,
172, 179, 181-183, 188, 189, 202,
214, 215, 239, 255, 262, 266, 267,
269-271, 273-275, 278, 280, 281,
286, 294, 301, 304, 306-308, 317,
318, 328, 340, 343, 345, 346, 364,
369

Serial Poll Disable (SPD), 128, 131,
188

Serial Poll Enable (SPE), 128, 131,
188

serial redirection, 120, 121, 182
Server, 241, 242, 244
Service Request (SRQ), 50, 52, 55,

57, 58, 66, 68, 69, 74, 76, 77, 84,
86, 87, 91, 92, 102, 117, 119, 128,
129, 153, 156, 157, 162, 164, 165,
169, 172, 173, 179, 181, 188, 211,
236, 283, 286, 301, 304, 306-308,
313, 318, 332, 340, 343, 345-347,
369

SetDeviceData, 100, 102, 111
Shift In (SI), 371, 372
Shift Out (SO), 371, 372
slave, 201
specifications, 6, 24, 25
SPOLL/SPoll, 52, 57, 68, 69, 71,

76, 86, 88, 89, 92-95, 117, 119,
153, 154, 156, 157, 162, 169, 170,
172, 179, 181, 212-215, 220, 221,
228, 229, 239, 265, 268, 272, 275,
276, 280, 306, 308, 340, 345

SPOLL LIST, 307
SPollList, 275, 280, 346
spreadsheets, 5, 34, 243
Start of Header (SOH), 371, 372
Start of Text (STX), 371, 372
STATUS/Status, 50, 51, 52, 55, 57,

58, 64, 66, 68, 70, 71, 74, 76, 84,
86-89, 91, 93-95, 102, 118, 119,
152, 155-158, 161, 165, 166, 168,
172, 174, 179-181, 190, 213, 215,

VI. INDEX

VI-384 Personal488 User’s Manual, Rev. 3.0

216, 219-221, 238, 240, 247, 248,
264, 268, 269, 273, 275, 280, 281,
288, 290, 298, 300, 307, 308, 319,
321, 324, 336, 339, 346, 347, 363,
364
address, 9, 14, 19
interrupt, 9, 14, 19, 58, 76
light pen, 28, 40, 57, 60, 69, 76,

79, 87, 89, 93, 102, 137, 263,
270, 284, 295, 296, 314, 319,
329

Serial Poll, 9, 14, 19, 58, 59, 69,
70, 77, 87, 88, 94, 117, 119,
131, 179, 181, 304, 306, 343,
346

status reading, 4, 43, 45, 47, 50-52,
55, 57, 59-62, 66, 68-71, 74-78,
80, 81, 84, 86-88, 91- 93, 100,
102, 105, 111, 141-143, 151, 152,
154-159, 161-165, 167, 168, 170-
173, 179, 181, 199, 202, 204, 213,
215, 216, 220, 221, 238, 240, 247,
248, 262, 264-266, 268, 270, 272,
274, 276, 278, 280, 281, 286, 301,
306, 308, 317, 318, 320, 321, 323,
335, 336, 338, 340, 345-347

STOP/Stop, 42, 69, 71, 118, 232,
264, 275, 280, 304, 309, 343, 348

stop bit, 42, 139
string, 43, 54-56, 61, 65, 67, 68, 73,

74, 79, 83, 85, 92, 97, 99, 105,
107-109, 112, 114, 125, 126, 141,
150, 152, 153, 155, 160, 161, 167-
169, 171, 175, 199, 200, 208, 209,
211, 214, 219, 223, 225, 230, 235,
238, 239, 241-245, 255, 263, 267,
268, 271, 272, 275, 276, 280, 293,
305, 307, 322, 324, 326, 327, 337,
339, 344, 363

subroutine, 5, 34, 57, 64, 69, 76, 87,
91-93, 96, 99, 123, 134, 142, 143,
146, 149, 185, 202-204, 207, 209,
212, 233, 237, 359, 360

subroutine call, 34, 35, 96, 141,
142, 192, 202

Synchronous Idle (SYN), 371, 372
syntax, 35, 61, 80, 104, 125, 187,

251, 264, 268, 272, 276, 280
client driver, 26
enabler, 26

SYS CONTROLLER, 308, 309,
358

SysController, 28, 39, 137, 196,
264, 275, 280, 347, 348, 359, 360

system command, 186
System Controller, 8, 13, 18, 28,

39, 44, 50, 52, 55, 66, 74, 84, 91,
116, 117, 119, 127, 129, 137, 177-

179, 181, 187, 190, 196, 201, 264,
265, 267, 268, 271, 272, 275, 276,
280, 283, 296, 298, 299, 301, 304,
307-309, 313, 329, 335-337, 339,
340, 343, 347, 348, 362

T
Take Control (TCT), 128, 131, 188,

371
Talk, 4, 35, 116, 118, 119, 127, 129,

131, 177, 179-181, 211, 236, 264,
271, 275, 280, 283, 288, 289, 298-
300, 305, 308, 320, 322, 331, 335-
337, 339, 344, 347-349

Talk Address Group (TAG), 116,
128, 130, 177, 179, 188, 305, 373,
374

TERM/Term, 46, 47, 108, 109,
112-114, 142-144, 175, 176, 189,
203, 204, 263, 264, 266, 267, 270,
271, 274, 275, 278-280, 284, 309,
349, 358-360

terminator, 6, 189, 264, 268, 272,
276, 280, 320, 322, 363, 364
bus, 29, 40, 42, 43, 46-48, 131,

138, 140, 141, 143, 144, 197,
198, 199, 203, 204, 289, 290

data, 108, 175
End-Of-Line (EOL), 54, 55, 61,

62, 73, 79, 80, 90, 91, 94, 100,
105, 108-114, 126, 288-291,
294, 298, 309, 310, 349

input, 51, 108, 109, 112-114, 126,
175, 176, 201, 265, 268, 272,
276, 281, 288-291, 310, 335,
337, 349

output, 108, 109, 112, 113, 175,
176, 201, 265, 268, 272, 276,
281, 291, 298-300, 310, 349

TERM, 112, 175
TermQuery, 349
TIME OUT, 46, 299, 300, 304, 310,

361-365
time out period, 28, 34, 40, 42, 43,

46-48, 80, 104, 137, 139, 140-142,
144, 197-199, 201, 202, 204, 264,
271, 275, 280, 288, 290, 298, 300,
310, 321, 324, 336, 339, 350, 363-
365

TimeOut, 142, 203, 264, 275, 280,
330, 331, 350

TimeOutQuery, 350
TRIGGER/Trigger, 4, 35, 47, 50,

52, 55, 59, 63, 66, 70, 71, 74, 78,
82, 84, 88, 90, 91, 94, 95, 117-
119, 127, 154, 157, 158, 162, 165,
169, 172, 174, 179-181, 211, 213,

215, 220, 228, 236, 238, 239, 248,
250, 264, 275, 280, 283, 304, 310,
311, 313, 343, 347, 350, 351

TriggerList, 264, 280, 351
True Basic, 99, 107, 110, 111
Turbo Basic, 107, 108
Turbo C, 5, 53, 54, 61, 72, 78, 80,

146-148, 150, 151, 191
Turbo Pascal, 82-87, 110, 166, 292

U
Universal Command Group

(UCG), 130, 371, 372
UnListen (system command), 264,

280, 306, 351
Unlisten (UNL) (bus command),

116, 118, 128, 131, 177, 179, 188,
264, 268, 280, 305, 373

UnTalk (system command), 264,
280, 351

Untalk (UNT) (bus command),
116, 118, 128, 131, 177, 179, 264,
268, 280, 305, 374

utility program, 4, 17, 22, 27, 35,
37, 38, 49, 50, 63, 120, 122, 123,
134, 182, 184, 185, 192-194, 206,
251, 256

V
Vertical Tab (VT), 371, 372
Visual Basic, 5, 191, 194, 206, 207,

232-236, 241, 242, 246, 251, 254,
256, 322, 324, 337, 339

W
WAIT/Wait, 57, 68, 71, 75, 86, 89,

115, 155-157, 164, 165, 173, 174,
177, 213-215, 221, 228, 232, 239,
240, 247, 248, 264, 268, 279, 280,
289, 290, 300, 311, 352

wait state, 9, 11, 19, 29
WINTEST, 194, 206, 251-253, 256,

360

List of ASCII Acronyms & Abbreviations
The following list applies to ASCII Control Codes:

ACK Acknowledgement
BEL Bell
BS Backspace
CAN Cancel
CR Carriage Return
DC1 Device Control 1
DC2 Device Control 2
DC3 Device Control 3
DC4 Device Control 4
DEL Delete
DLE Data Link Escape
EM End of Medium
ENQ Inquiry
EOT End of Transmission
ESC Escape
ETB End of Transmission Block
ETX End of Text
FF Form Feed
FS File Separator
GS Group Separator
HT Horizontal Tab
LF Line Feed
NAK Negative Acknowledgement
NUL Null
RS Record Separator
SI Shift In
SO Shift Out
SOH Start of Header
STX Start of Text
SUB Substitute
SYN Synchronous Idle
US Unit Separator
VT Vertical Tab

List of IEEE 488 Acronyms & Abbreviations
The following list of acronyms and abbreviations apply to IEEE 488:

yy (bullet symbol) “and”
* (asterisk symbol) “unasserted”
*CA Not Controller Active mode
*SC Not System Controller mode
ACG Addressed Command Group
ADC Analog-to-Digital Converter
API Application Program Interface
ASCII American Standard Code for Information Interchange
ATN Attention line
CA Controller Active mode
CCL Character Command Language
CMD Bus Command interpretation
CTS Clear To Send line
DAV Data Valid line
DCD Data Carrier Detect line
DCL Device Clear bus command
DDE Dynamic Data Exchange
DIO Data Transfer (I/O) line
DLL Dynamic Link Library
DMA Direct Memory Access
DMM Digital Multimeter
DSR Data Set Ready line
DTR Data Terminal Ready line
EOI End-Or-Identify line
EOL End-Of-Line terminator
GET Group Execute Trigger bus command
GTL Go To Local bus command
IEEE Institute of Electrical & Electronic Engineers
IFC Interface Clear line
IOCTL Input/Output Control
ist Bus Device Individual Status
LAG Listen Address Group bus command
LLO Local Lock Out bus command
MLA My Listen Address
MTA My Talk Address
NDAC Not Data Accepted line
NRFD Not Ready For Data line
PPC Parallel Poll Configure bus command
PPD Parallel Poll Disable bus command
PPU Parallel Poll Unconfig bus command
REN Remote Enable line
RI Ring Indicator line
RS Revised Standard
rsv Request for Service bit
RTS Request To Send line
SC System Controller mode
SCG Secondary Command Group
SCPI Standard Command for Programmable Instruments
SDC Selected Device Clear bus command
SPD Serial Poll Disable bus command
SPE Serial Poll Enable bus command
SRQ Service Request line
TAG Talk Address Group bus command
TCT Take Control bus command
UCG Universal Command Group
UNL Unlisten bus command
UNT Untalk bus command

	Personal488 PC/IEEE 488 Controller User's Manual
	Warranty
	Warnings, Cautions, Notes, and Tips
	General Table of Contents
	Detailed Table of Contents
	Introduction
	About this Manual
	How to Use this Manual
	Header Files & Command References

	Section I: Hardware Guides
	Chapter 1 - Overview
	Introduction
	IEEE 488.2 Interface Boards
	Driver488 Software Interface
	Interface & Interface Board Specifications

	Chapter 2 - Personal488 (with GP488B)
	The Package
	Hardware Installation (for PC/XT/AT)

	Chapter 3 - Personal488/AT
	The Package
	Hardware Installation (for PC/XT/AT)

	Chapter 4 - Personal488/NB
	The Package
	Hardware Installation (for Notebook, Laptop, & Desktop PCs)

	Chapter 5 - Personal488/MM
	The Package
	Hardware Installation (for PC/XT/AT)

	Chapter 6 - Personal488/CARD
	The Package
	Introduction
	Hardware Installation (for Notebook & Desktop PCs)
	Software Installation
	Functionality

	Section II: Software Guides
	Chapter 7 - Overview
	Chapter 8 - Driver488/DRV
	Introduction
	Installation & Configuration
	External Device Interfacing
	Getting Started
	Microsoft C
	Microsoft Fortran
	QuickBASIC
	Turbo C
	Turbo Pascal
	Spreadsheets
	Other Languages
	Language-Specific Information
	Data Transfers
	Operating Modes
	Utility Programs
	Command Descriptions
	Command Reference

	Chapter 9 - Driver488/SUB
	Introduction
	Installation & Configuration
	External Device Interfacing
	Getting Started
	C Languages
	QuickBASIC
	Pascal
	Data Transfers
	Operating Modes
	Utility Programs
	Command Descriptions
	Command Reference

	Chapter 10 - Driver488/W31
	Introduction
	Installation & Configuation
	External Device Interfacing
	Getting Started
	C Languages
	Visual Basic
	Utility Programs
	Command Reference

	Chapter 11 - Driver488/W95
	Chapter 12 - Driver488/WNT

	Section III: Command References
	Chapter 13 - Overview
	Chapter 14 - Command Summaries
	Driver488/SUB, C Languages
	Driver488/SUB, QuickBASIC
	Driver488/SUB, Pascal
	Driver488/W31, C Languages
	Driver488/W31, Visual Basic

	Chapter 15 - Command References
	Driver488/DRV Commands
	Driver488/SUB, W31, W95, & WNT Commands

	Section IV: Troubleshooting
	Chapter 16 - Overview
	Chapter 17 - Radio Interference Problems
	Chapter 18 - Troubleshooting Checklists
	Introduction
	Driver488/DRV
	Driver488/SUB
	Driver488/W31
	Driver488/W95 & Driver488/WNT

	Chapter 19 - Error Messages

	Section V: Appendix
	Section VI: Index
	List of ASCII Acronyms & Abbreviations
	List of IEEE 488 Acronyms & Abbreviations

