Personal488 user's Manual
PC/IEEE 488 Controller For DOS & Windows 3.X

the smart approach to instrumentation ™

IO0tech, Inc.
25971 Cannon Road
Cleveland, OH 44146-1833
Phone: (440) 439-4091
Fax: (440) 439-4093
E-mail: sales@jiotech.com
Internet: www.iotech.com

Personal488 User's Manual
PC/IEEE 488 Controller
For DOS & Windows 3.X

p/n Personal488-902 Rev. 3.0

© 1998 by I0tech, Inc. February 1998 Printed in the United States of America.

mailto:sales@iotech.com
www.iotech.com

Warranty Information
Your IOtech warranty is as stated on the product warranty card. You may contact IOtech by phone,
fax machine, or e-mail in regard to warranty-related issues.
Phone: (440) 439-4091, fax: (440) 439-4093, e-mail: sales@iotech.com

Limitation of Liability

IOtech, Inc. cannot be held liable for any damages resulting from the use or misuse of this product.

Copyright, Trademark, and Licensing Notice
All IOtech documentation, software, and hardware are copyright with all rights reserved. No part of this product may be
copied, reproduced or transmitted by any mechanical, photographic, electronic, or other method without IOtech’s prior
written consent. IOtech product names are trademarked; other product names, as applicable, are trademarks of their
respective holders. All supplied IOtech software (including miscellaneous support files, drivers, and sample programs)
may only be used on one installation. You may make archival backup copies.

FCC Statement
Ry IO0tech devices emit radio frequency energy in levels compliant with Federal Communications Commission rules (Part 15)
“A™ for Class A devices. If necessary, refer to the FCC booklet How To Identify and Resolve Radio-TV Interference Problems
é (stock # 004-000-00345-4) which is available from the U.S. Government Printing Office, Washington, D.C. 20402.

CE Notice
Many IOtech products carry the CE marker indicating they comply with the safety and emissions standards of the
European Community. As applicable, we ship these products with a Declaration of Conformity stating which
specifications and operating conditions apply.

Warmngs, Cautions, Notes, and Tips

Refer all service to qualified personnel. This caution symbol warns of possible personal injury or equipment damage
under noted conditions. Follow all safety standards of professional practice and the recommendations in this manual.
Using this equipment in ways other than described in this manual can present serious safety hazards or cause equipment
damage.

\ This warning symbol is used in this manual or on the equipment to warn of possible injury or death from electrical
\ shock under noted conditions.

This ESD caution symbol urges proper handling of equipment or components sensitive to damage from electrostatic
discharge. Proper handling guidelines include the use of grounded anti-static mats and wrist straps, ESD-protective
bags and cartons, and related procedures.

This symbol indicates the message is important, but is not of a Warning or Caution category. These notes can be of
great benefit to the user, and should be read.

In this manual, the book symbol always precedes the words “Reference Note.” This type of note identifies the location
of additional information that may prove helpful. References may be made to other chapters or other documentation.

Tips provide advice that may save time during a procedure, or help to clarify an issue. Tips may include additional
reference.

Specifications and Calibration

Specifications are subject to change without notice. Significant changes will be addressed in an addendum or revision to
the manual. As applicable, IOtech calibrates its hardware to published specifications. Periodic hardware calibration is
not covered under the warranty and must be performed by qualified personnel as specified in this manual. Improper
calibration procedures may void the warranty.

Quality Notice

IOtech has maintained ISO 9001 certification since 1996. Prior to shipment, we thoroughly test our products and
review our documentation to assure the highest quality in all aspects. In a spirit of continuous improvement, IOtech
welcomes your suggestions.

mailto:sales@iotech.com

Personal488 PC/IEEE 488 Controller

General Table of Contents

General Table of CONTENTScooiiiiiiii e e ii
Detailed Table of CONTENTSouiiiii e \Y;
Introduction to thisManualooi i XV
SECTION . HARDWARE GUIDES. ... -1
i @ AV 7=Y oV Y PSRRI 1-3
2. Personal488 (with GP488B): 8-bit DMA Interface Boardccccuvvvvuiiieeeeeeennnnns 1-8
3. Personal488/AT: 16-bit DMA INterface BOAIdccuuvvunieeueireiieeenieesieeseesneeenns 1-13
4. Personal488/NB: 170 kByte Interface Module for Notebook, Laptop, & Desktop PCs... 1-17
5. Personal488/MM: 330 kByte INterface BOArd...........cccuueervunieeeunieeriieeessieeesnneeesneens 1-18
6. Personal488/CARD: Type Il PCMCIA Interface Card for Notebook & Desktop PCs ... 1-22
SECTION 1I: SOFTWARE GUIDES.. ... 11-31
A O LY =1 VA 1= P STORPPIOt 11-33
8. Driver488/DRV: All Languages Compatibleovevvvuieeirnieiiiieeeiiieesiiieeesneeenanns 11-34
9. Driver488/SUB: C Language, Pascal & QuickBasic Compatible.............cccceevvnneenn. 11-133
10. Driver488/W31: C Language & Visual Basic Compatiblecoeevvuneeivnneeennnnnns 11-191
11. Driver488/W95: (Software Revisions PeNdiNg)cccuuueeevuieeernieeiiieersiieessieeesnneens 11-257
12. Driver488/WNT: (Software Revisions PENAING)cuuueeeruieeereeiiiieeeeiieersieeennnees 11-258
SECTION 11I: COMMAND REFERENCES......c.ooooiiiiiiiiineeeeeeeeeee 111-259
L3, OVEIVIBW ...ttt e e e et e e e e et e e e e ettt e e e e eeta e eseeraaaeeeens 111-261
14. ComMAaNd SUMMAKIEScccoiiiiii et e et e e et e e e s et e e e e earaaeeeeens 111-262
15. Command REFErENCESovuii e 111-282
SECTION 1V: TROUBLESHOOTING.........cctiii it 1VV-353
16, OVEIVIEW ... ittt ettt e e et e e e e e e e e e e et e e e e eata e eeseasanaeeeenes 1VV-355
17. Radio Interference Problems........ccooooiiiiiiiiiiii e 1VV-356
18. Troubleshooting ChecCKIiStSccooiiiiiiiiiiiici e 1V-357
RS e g o] gl Y/ [T EST=To [T PP UPPT 1V-361
SECTION V. APPENDIX ...ttt e e V-367
SECTION VI INDEX ... oottt e e e e e e e e eaa e e eeene VI-375

Personal488 User’s Manual, Rev. 3.0 iii

Personal488 User’s Manual, Rev. 3.0

Personal488 PC/IEEE 488 Controller

Detailed Table of Contents

FCC Radio Frequency Interference Statement.........ccccovveeiiiiiiiiiiiin e e Error!

LT T = U | 1SR iii
LImitation Of Liability ... e e e iii
0%e] 0}V g o] o) il N\ (o] 4 Tod = TS UUPPPIR iii

LI = o L=T g g F= T o 2 A\ Lo o Lo =TSRRI iii
QUATTTY INOTICE ..ot e e e et ettt e e e e e e e eeetta e e e e aeeeeesnnn e e e aaaaeennes iii
General Table Of CONTENTS ... \Y;
Detailed Table of CONTENTS ... Vil
Introduction to thisS Manual ..., XVil
ADOUL ThIS MANUALoii e e et e eens XVii
HOW 10 USe thIS MaNUALooiiii e e ean Xvii
Header Files & CommMand REFEIENCES.........cooiiiiiiiiiiiie ettt e e e Xvii
SECTION I. HARDWARE GUIDES ... 1-1
I @ LV 7T V4 Y 1-3
[Ha] goTo [UTe1 f To] o ISP TRPRTSIRN 1-3
IEEE 488.2 INTErfAcCe BOAKAScovuiiiiiiii ettt e e e e eaa s 1-4
Driverd88 SOftwWare INTEITACE.ooiu e 1-4
Interface & Interface Board SPeCifiCatioNscocovviiiiiiiiiii e 1-6
IEEE 488.1-1987 INTEITACEcoieeiiiie ettt e e e e e e e e e ee b ns 1-6

IEEE 488.2-1987 INTEITACEciiiiieie e 1-6
GPA488B INtErface BOAId.........covvuiiiiiiiieiiieeee ettt e e et e e e e e e e et e e e e e e eenbannans 1-6
ATA88 INTEITACE BOAIMcoeeiiiiiiiiiieeeeeeeeeeeeeeeeeeeeee ettt e e et e e eaeeeeesasasessssessesenenes 1-6
MPA88 INTErface BOAIMuuiieiiiieeiiie ettt ettt e e e e e e e e e e e e e e e e eetta e e eeeeeeseen 1-6
MPABBCT INTEITACE BOAIUooviviiiiiiiiiiiiieieieeeeeeeeee ettt eeeeeeeeeeseaeeeasasasasasesssssssesssesessseseeseereres -7
GPA488/2 INTErface BOAId.........cooviiiiiiieieieeeee et e e e e e et e e e e e e eaabans 1-7
GP488/MM INterface BOard............oooooeiiiiiii e -7
NBA488 INtErface MOAUIEooeeiieeeeeee ettt e e e e e e e e et e e e e e e eeaaen 1-7
PCMUCIA INTEITACE CAld......oooiiiiiiiiiiiieieieeeeeeeee ettt ettt ettt e e e e eeeeeeeeaeesaeeeeeeeseeeeeeeereees -7

2. Personal488 (With GPA488B)ccuuuuiiiiiiiiieieeeeeies e e e 1-8
THE PACKAQE ... oottt e e e et ettt e e e e e e e ettt e e e aaaeeaee 1-8
Hardware Installation (fOr PC/IXT/AT) i a e e e eaaaaaaas 1-8
Installation & Configuration of the Interface Cardcccooviiiiiii e 1-8
DL - T0] Y=Y o 1o SR 1-9

1/0O Base AAAress SEIECTIONuuuii ittt e e e e e e et e e e e e e e eeaanns 1-9

o) 0] g U] A T=] 1=y o] o OSSR 1-10

DMA Channel SEIECTIONouuuiiei ettt e e e e e e e e e e e e e e e eebaban s aeeaees 1-10

Walit State CoNfIQUIATIONcoiiiii e e e e e e e e e e e s reeeaeeeeean 1-11
INTErNal CIOCK SEIECTION.... ..ot e e e e e e e e e e e e e e eeraanns 1-11
[STor=1 o I Ta 1) =11 F=1 d o] o IO PPPPPPPPPPPPPRt 1-11

3. PEISONAIABEI AT ..o 1-13
THE PACKAQE ... oottt e e et ettt e e e e e e e e et e e aaaeeaea 1-13
Hardware Installation (FOr PC/IXT/AT) oottt e e e e e 1-13

Personal488 User’s Manual, Rev. 3.0 \%

Installation & Configuration of the Interface Card.........cccccccooviiiiiiiiie e 1-13

(D =10] | Y=Y A Lo L RO PPRPPRR 1-13
1/0 Base AAAIreSS SEIECTION.......couuiiiiiiiiii ettt et e e e e e e snnreeeee s 1-13
INTEITUPT SEIBCTION ...ttt e e e e et e e e e e e e e ennbeeeeeeaaae e s 1-14
DMA Channel SEIECTIONcoiiiiiiii ettt e e b e e e neeas 1-15
Board Installation ... 1-15
Personald88/NB ... 1-17
LI L= = o] = (o [T 1-17
Hardware Installation (for Notebook, Laptop, & Desktop PCS).......cccoooeeiiiiiiiiiiiiiieniiennns 1-17
PersonNald88/IMIM...... ..o e 1-18
LI 2 LT = o] = o [T 1-18
Hardware Installation (FOr PC/XT /AT) .. e eeeeeees 1-18
Installation & Configuration of the Interface Card..........ccccccooiviiiiiiiiie e 1-18
(D =10] | Y=Yt A Lo L RO PPRPPRRN 1-18
1/0 Base AAAIreSS SEIECTION.couuiiiiiiiiii ettt st et e s e e e snnreeeee s 1-19
INTEITUPT SEIBCTION ...ttt e e e e ettt e e e e e e e e et eeeeeaaae e s 1-20
DMA Channel SEIECTIONccoiiiiiiii ettt e e s nreas 1-20
Lo} =Y g Fo I [oTod S Y=Y =Tox o o] o [P PPPPIt 1-21
BOoArd INSTAIATIONccoiiiiiii et e e et e e e et e e e e nnbe e e e e neeas 1-21
PersonNald88/CARDccoii it 1-22
LI g LT = o] = o [T PP 1-22
) (o T 116 o e o 1-22
Hardware Installation (for Notebook & Desktop PCS)cooiiiiiiiiiiiiiiiiieeeeiiiiee e, 1-23
INTErTACES & CONMECTOIS . .uiiiiiiiiiiee ettt sttt e e s s ettt e e e s nbe e e e sbe e e e snnbeeeesnneeee s 1-23
INterface Cable CONNECLIONooiiiiiiiieeeeeeeeeeeeeeeeeeee ettt ettt e e e e eeeeeeaeesesasssessessasassssssnennnes 1-23
INSTAIlAtioN INTO & PC....oiiiii ettt et e e s e e s naaeee s 1-24
Interface Cable & IEEE 488 ACCESSONIES.cuiiiiiiiiiieiiieeieeeeieeeeeeeeeeeeeeeeeeeeseeesesessssssesresassrererernre 1-24
SOFEWAKE INSTAITATIONuiiiiiiiiii bbb bbb b bbeeeeeee 1-24
INIIAlIZATION SOfTUWEAIE ... eeiiiiiiiiie ittt te e e eeeeeeeeeesesessssssssssssssssssssssssssssssssssssesnsssennnnnnnes 1-24
(Ot a1 To 8Tz La [0 g TS0] 1 1YL= U =SS 1-27
(BT o [e1 A T0] g F=1 1) 1RSSR 1-29
SECTION II: SOFTWARE GUIDES ... 11-31
(@ =T 1= 11-33
DIIVEIAB8/DRV ...t ea s 11-34
BA. INTrOAUCTION ... e e e eaaa 11-34
8B. Installation & Configuration ..o 11-35
Before YOU Get STAITEdcooviiiiiiiiiiiiiiiiiiiiieeeeeeeeeeee e 11-35
Making Backup DisK COPIES ... et e et eeaeeeees 11-36
Driver INSTAllatioN..... ...ttt 11-36
Selective Installation of SUPPOIT fIlES......oooo e 11-36
Driver INStallation 10 DiSKooiiiiiiiiiiii et e et e e sbeee e e ane 11-37
ConfIgUIration UTTHITYo e et e e e e e e eeeenanan s 11-38
1 a1 (= =T = PP PRP 11-38
EXTErnal DEVICES ..o 11-38
Opening the Configuration ULHTITY........ccccooiiiiiiiii e 11-38
Configuration of IEEE 488 INTerfaces.......c..uuuiiiiiiiiiii e 11-39
Configuration of Serial INterfaces.........oouviiiiii i e 11-41
Configuration of IEEE 488 EXternal DeVICES.......c.coouuiuiiiiiiiiiiiie e 11-42
Multiple Interface ManagemMeNt..........oii i e e e e e e eeaane 11-43
8C. External Device INterfaCing......ccccoooviieiiiiiiiiiiiii e 11-45
) o o Yo L8 Tox o o] o 1PN 11-45
Character Command Language (CCL)uuuiiii i e et e e e e e e e e e e eeeeannn s 11-45
(D 1@ ST B =LY Lo =T PP 11-46

Vi

Personal488 User’s Manual, Rev. 3.0

Configuration of Named DEVICES........cccuuuuiiiii et e e e e e e e e e e e e e e 11-46

USE OF EXTEINGAI DEVICES.ot e e e et e e e e e e eeeeena s 11-47
DIreCt 1/O With DOS DEVICESuuuuuuuiiiuiiiiiiiiiiiiiiieiieeennrereeeeeeeseeeeeeeeeeeeeeeeee ettt 11-47
Extensions FOr MUltiple INTerfaces. ... e 11-48
DUPHICAtE DEVICE NAMIESeeiiiie ettt e e e e st e e e e e e s et e e e e e s e ssntaaaeeeaeeseasnnrrnaeeeees 11-48
ACCESS Of MUILIPIE INTEITACES ... a e 11-48
L= 11 0] o] [PPSR 11-49
8D. Getting Started..........oouiiiiii e 11-49
L) geTo 18 Tox 1 o] o HPU TP 11-49
(NG)Y o JoT=1 e @Te] o d o] I [T gl =d o Te | o= s o [11-50
Direct Control from DOS USING CCLcoiiiiiiiiii e e e e e e 11-51
BE. MICKOSOTE C..ooeeeee et e e e e eeeees 11-53
Use of the Character Command LanQUAaGgE.........cceuuuuuiiiiieeiieeiiiiiciie e e eeeeeaitnss e e e e e e eennnnnne e 11-53
INTtialization Of the SYSTeM e 11-53
Configuration of the 195 DIMM ... e e e e e e e e 11-56
TaKING REAUINGS. .. ettt e e et e e e e e e e e et et e e e e aeeeeetban e e aeaaaennes 11-56
SO LT I = 1S3 = = 11-56
INTErrUPT HAaNAIiNG ... e e e e 11-57
LB EE IO . C e 11-59
CRITERR.ASM (Microsoft C & TUKDO C) ... 11-61
SY=] o] L=T =d o o 1 or= 1 o o [11-62
BF. MICIOSOTE FOITraN 11-63
Y=gl o] Lo ol oo | =1 0 o PSPPSR 11-63
8G. QUICKBASIC ..o ettt ettt 11-64
Use of the Character Command LanNQUAagE........ccovveuuiuuiiiiieeeeeeeiiiie e e ee e e e e e eeeeennnnns 11-64
INftialization Of the SYSTeM ... e 11-64
Configuration of the 195 DIMM ... e e e e e e e e e e 11-66
TaKING REAINGS. ettt e et e et e e e e e e e ettt e e e e aeeeeetban e e aeaaaennes 11-66
o U LT I = 1S3 = = 11-67
BASIC VARPTR & SADDRoitiiiiiiiiiiiiiiiiiiiiiieiiiieeeeeeaaeaeansesaenasanaassssssssssaesssssssssssnnsnnnsnnnnns 11-68
L) =Y g BT o)l o =T T | T o T 11-68
Y=gl o] LI ol oo | or= o o [P 11-70
BH. TUKDO C oo 11-71
Use of the Character Command LanNQUAagE........cccvvevuiuuiiiiieeeeeeeiiiis e e e e eeeeevnn e e e e e eeeennnnns 1-71
INTtialization Of the SYSTeM ... e 1-72
Configuration of the 195 DIMM ... e e e e e e e e e e 11-74
LIl g lo S CCT= To I g o TSP RURPPTRP 11-74
o U LT I = g 1S3 = o= 11-75
INTErrUPT HAaNAIiNG ..ot e e e e 11-76
LB EE O . C e 11-78
CRITERR.ASM (Microsoft C & TUKDO C) ... 11-80
Y= a] o] F=T =d o o | o= o o [11-80
8l. TUIDO PASsCal..........uuuiiiiiiiiiiiiiiiii e 11-82
Use of Character Command LANQUATEuuiiiiiiiiiiiiiaie et a e e e eeeaaia e e e e e eeeesnna s 11-82
INTtialization Of the SYStEM ... e e r e e 11-83
Configuration of the 195 DIMM ... e 11-84
JLIE= Lo T 2T = Vo i o TSP 11-85
o) oY I = U S (=] TSP 11-85
L) =Y g BT o)l o =T T | T o T 11-86
Y=gl o] LT ol oo | o= o o [OSSP 11-88
8J. SPreadShEETS.... oo 11-90
Use Of DIreCt DOS 1/O DEVICES.....cooeiiei i 11-90
INTtialization Of the SYSTEM e 11-90
Configuration of the 195 DIMM ... e e e e e e e e e 11-91

Personal488 User’s Manual, Rev. 3.0 Vi

JLIE= Yl T 5= Vo i o T 11-92

INTErrUPT HaNAIING. ..o et e e e e e nneana s 11-92
BK. Other LanNQUAQESuuuiiiiiiiiiiieiiiiie ettt e e e e e eeeees 11-96
1 (o T 116 o T o 11-96
e T aTo [T g To Ao (o =2~ RSP 11-97
(CT= 1 g o To [T @0 1 1= o o] o SRR 11-97
1V (=70 g o] VY, oo 1= PR TR OURUPUSRRT 11-97
(O 11 1] g o = o] (o1] £ EERP 11-99
Opening & CloSiNG the DIIVEN e 11-100
1/0 Control (IOCTL) COMMUNICAtIONccovviiiiii e e e e e e e e eeaaaeans 11-100
IOCTL Get & Set DEVICE DaAtauuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiartaraaarar e araeaaaasraaaaaearraaasaansarannaes 11-100
TOCTL REAU & W ...ttt ettt e e st e e e st e e e snbae e e e nneeas 11-101
Data & Command CoOmMmMURNICAtIONcooiiiiiii e e 11-102
ARM Condition DeteCtIONcooooiiiiiiii 11-102
Y=gl o] LI o oo | or= o £ [T 11-102
8L. Language-Specific INfTormation...........cccooviiiiiiiiinieee e 11-104
V4 L= ol O PP 11-104
Use of Character Command LANQUAGE.ceeueaaiiiiiiiieieiaae et ee e e e e e seiibee e e e e e e e e aaneeeeeeeaaeens 11-104
CRITERR.C (fOF AZEEC C) .uviiieiiiiiiee ettt ettt et e e e st e e st ee e e e snbbe e e e eneee 11-105
GW-BASIC (for GW-BASIC or Interpreted BASIC).....ccooo oo 11-105
USE Of DIreCt DOS 1/O DBVICES....ciuviiieiiitiiee ettt siet ettt ettt e st e e s enbe e e s snbb e e e snbaeeessnneeeeas 11-105
BASIC VARPTR & SADDRooiiiiitiiie ittt ettt ettt a e sttt e e st e e s et e e s snsaeeeeansaaeaesssaeeas 11-105
GET & PUT (for GW-BASIC ONIY) oot 11-106
JP1 TopSpeed MOAUIA-2 e e e 11-106
USE Of DIreCt DOS 1/O DBVICES....ciuuiiieiiiiiiie ettt etiet ettt e st e e st e e s snabe e e e snbaeeeesnneeeeas 11-106
LOQIteCh MOAUIA-2 ... et e ettt e e e e e e eeeata e e e aaaeees 11-106
USE Of DIreCt DOS 1/O DBVICES....ciuuiiieiiiiiiie e iieete sttt ettt et e e s enbb e e s snba e e e snbaeeeesnnneeeas 11-106

LI O =T = 7= 1] T o RPPPIN 11-107
Use of Character Command LANQUAGE.cuueeeeiiicuiiiiiiieeeeeiiiieieeeeeaesessninneeeeaaesssssssnnnseeseees 11-107
L 1 A I O RS TPR 11-107
LI 1O] I o I I I | = PP PP PPRPPR 11-107
BN 1 g o Yo TN == 1S Lo PPN 11-108
Use of Character Command LANQUAGE.uueeiiiueieieiiiiiieaiieieessieeeeestieeeessnseeeessnneeeessneeeeas 11-108
BM. Data TranSTerS.....coooeiiie e 11-108
BLIC=Y 0T =L 0] =P 11-108
ENd-Of-Line (EOL) TeIrMINATOIS......ccciiiiiiiiiie e e e e sttt e e e e e e st e e e e e e s st e e e e e e s s s nnrnranaeeaeee s 11-108

LI LA =T 0 1= U (] 11-112
(DT] =Tor VL@ IR = U | i 1=T =T [O L PP 11-113
D11 =Yoo= LU E @ 1 I = O PSPPSR 11-113
DiIreCt BUS ENTER.....cooiiiiiii ittt ettt e e st e e e anbb e e e s snnbeeessnnaeeeeas 11-113
BUFfered 1Oo 11-114
ASYNCARIONOUS TraNSTEIS . ..oooiiiiiiiiiiiiiiiiiiieeee ettt 11-115
BN. Operating MOAESuiiiiiiieeiieeec e 11-115
1 a) o o Yo [Tox o o] o 1S 11-116
Operating Mode TranSITIONSuuiii i e e e e e e e e et e e e e e e eeeennan s 11-116
SyStemn CONTrolIer MOEt e e e e et e e e e e e eeeennnas 1-117
System Controller, Not Active Controller Mode.........ccoooieiiiiiiiiiiii e 11-117
NoOt System CoNtroller MOAE oo 11-119
Active Controller, Not System Controller Mode............coovvviiiiiiiiiiiiicccee e 11-119
1@ I O) 4] 1) oY = o Te | =T o 1S 11-120
Printer & Serial RedireCtiON. ... e e e 11-120
Removal & ReINSTAIIAtIONuiiiiiiiiiiiiiiiiiiiiii et ee e eeeeeeseeaeeeeseseeeeeeeees 11-122
MARKDRVR & REMDRVRooiiiiiiiiiiiiiite sttt ettt et e et e e e snstae e e snssaeaesnnnaeaesnnsneeas 11-122
Moving Files from an IEEE 488 (HP-IB) Controllertoa PCcccccoooovviiiiieii e, 11-123
PRINTEMUL FIIES.....uiiiiiiiiiie ittt ettt ettt e st e e st e e e st e e e st e e e snsteeeeanstaeeeansseeeean 11-123

vili Personal488 User’s Manual, Rev. 3.0

Configuration of the IEEE Interface for PRNTEMULcccccccvveiiiiiiiiiiieeneee e 11-123

RUNNING PRNTEMUL ...ttt ettt e st e e e s stae e e e ensbe e e e astaeeeenntaeaeeannes 11-124

D L= I = 10 £ (=] ST 11-124
8P. Command DeSCIIPTIONS........ccoviviiiiiiiiiee e e e 11-124
([} geTo 18 Tox 1 o] o NP TR PUPRR 11-124
0] g 0 1 T= L ST TP PPPTTTRPPPPPPPPPIN 11-125
SYIEAX e 11-125
=TT 0] 7= PSP 11-127
oo L= OSSPSR 11-127
BUS STATES ...ttt ettt e e e e e et e e e e r e e e e e e r et e e e e e e 11-127
=T 0 0] 0] [T TP 11-131
(2= Y = T IRV 01T SRR 11-131
O 0F I 2 L=TS1=T @V =To VLY (o] o TR 11-132
LiSt OFf RESEIVEA WOKAS ...ttt ettt e e e st e e e ennbe e e e ennees 11-132
8Q. Command RETEIrENCEuuuiiiiiiiiiiiiiiiiii e 11-132
9. DIIVEIN4B8/SUB ... 11-133
V- WU 1 ¢ 1 ¢ oo |5 o o To] o [FU PSPPSR PP PPPPPPPPPPP 11-133
9B. Installation & Configuration...........ccooooeiiiviiiiiiiiii e 11-134
Before YOU Get STArTd..... oottt e et e e e e e eaaeaan s 11-134
Making Backup DisK COPIEScouuuiuiiiiiiiiieeii et e e e e e e e e e e e e e e e eenennnan 11-135
Driver INSTAIIAtIoNottt e e e e e e e eat e e e e aaeeeenes 11-135
Configuration ULTHILYcoooiiii e e e e e e e e e e e e e e e e annena s 11-135
a1 (] = 1ol PRSP 11-136
EXTEINIAI DBVICES. ...ciiiiiiiieiiitiit ettt sttt e ettt e e sttt e e s enb e e e enbbe e e e enbe e e e enbeeeeennees 11-136
Opening the Configuration ULHTITYc..oeeiiiiii e 11-136
Configuration of IEEE 488 INterfacesccovii i 11-136
Configuration of Serial INterfaces. ... e 11-139
Configuration of IEEE 488 External DEVICESuuuceiiiiiiiiiiiiie e 11-140
9C. External Device INterfaCingcccccceeviiiieiiiieiiiicie e 11-141
([} geTo 18 o 1 o] o NP TSP PPPRRR 11-141
SUBFOUTING CAlIS ... ettt e et e et e e e s bt eeesnaneeaeans 11-142
Configuration of Named DEVICES.......coooiiiiiiii e e e 11-142
USE OF EXTEINEAL DEVICES. ... bbb bbb bbbbbbebnneees 11-143
Extensions for MuUltiple INterfaces. ... e 11-144
DUPLICAtE DEVICE NAMIESuveiiiieee i iciiiieeie e e e e sttt e e e e e e s et e e e e e e s st n e e e aeeesansnteeeeaaeeesannnnneees 11-144
ACCeSS Of MUItIPIE INTEITACES ... 11-144
= 1 0] o] [PSP SPPPR 11-145
OD. Getting Started........ccooiiiiiiiie e 11-145
([} £ geTo 18 Tox 1 o] o NP PSPPI 11-145
LR 1= T o T 11 = Vo = P 11-145
R To [UT] =To [o == To [T PR 11-146
=T U] =To [N I o] o= U= PSSP 11-146
QUICKBASIC ... 11-148
Required Definition FIle ... e e e e e e 11-149

R o U 1] =To I I o] = 1= RO PRRPP 11-149
L= L] o= 1 11-149
ReqUITEd LIDIAries ...ttt e e e e e 11-149
| O - o [0 [U F= Vo [T 3T PPTRR 11-150
AN ot=TIY T aTe I i o) 0 1= N @3 = o T | = o o N 11-150
Establishing COMMUNICALIONScouuuuuiiiiiii e e e e e e eeaeennns 11-151
Confirming COMMUNICATIONuuuiiii e e e e e e e e e e e et e e e e e eeeeaan s 11-152
Setting Up Event HaNAIiING ... 11-152

R CT= Lo Tl aTe B g AV oY g = 1 A 11-152
External Device INitialiZationo 11-153

Personal488 User’s Manual, Rev. 3.0 iX

[} =Y g BT ol o =T T T T 11-153

Basic Data ACQUISTEION ..ottt e e e e e e e et eeaaaaeeeees 11-154
(2] [oTod QI DT 1 = WA oo [6 1 11 11 4 Lo o 1N 11-154
Y= T g] o] L3 ol oo | or= o £ [TSRS 11-155
COMMANA SUMIMIAEY ...ttt s 11-158
OF. QUICKBASIC ... e e e 11-159
Accessing from a QUICKBASIC PFrOgIrammooouuuuiiiiiiaiieiiiiie et eeeaa e e e aeees 11-159
Establishing ComMMUNICATIONS..........uuuiiiii e e e e et e e e e eeaaennas 11-159
Confirming CoOMMUNICATIONSoouiiii e e e e e e e eaa e e e e aeeeeennas 11-160
Setting Up EVENt HANAIING ..coooeiieee e 11-160
ReadiNg DIriIVEr STATUSoiiiiiiiii e e e et e e e e e e eeata e e e e e eeeeennnns 11-161
External Device INTHaliZationooiiiiiiiiiiiiiiiiiiiiiieeeeeeeee e 11-161
INTErrUPt HaNAliNg. ... e e e e 11-162
[SF= 1Y [o D X= 1 = A oo [U 1T 1 o o] o [11-162
BloCK Data ACUISTEION ..ot e e e e e et e e e e aaaeeees 11-162
ST= g o] L=T =d o To | o= o o 1SS 11-163
COMMANA SUNMIMIATY ..ot e e e e e et eetaa e e e e e e eeeeaaa e e e aaaeeeesnnnnaeeaaeeenennnnn 11-166
OG. PASCAl ... 11-166
Accessing from a PasCal Program...........ccoiii i e e e e e eeeann e e e eeeees 11-166
Establishing ComMMUNICATIONS.couuiuiiiieii e et e e e e eeaeennns 11-167
Confirming CoOMMUNICATIONooiiiiiii i e e e e e e e et e e e e e e eeaeaa e e eeeeennnnnns 11-168
Setting Up Event HaNAIiNgooooeni e 11-168
(Y= To LT aTe B g AV Y S = 1 A 11-168
External Device INitialiZation oo 11-169
INterrupt HanNAling.......ooooi e 11-169
Basic Data ACQUISTEIONoo.uieii ettt e e e e e e et eeeaaaeeeees 11-170
BIOCK Data ACQUISTTIONcciiiiiiiiiiiiiiiiiii e 11-170
Y=gl o] LI ol oo | or= o £ [SRR 11-171
COMMANT SUMIMIAEY ...ttt s 11-174
OH. Data TranSTerSccooiieccii e 11-175
BT g 0 T T g =1 (0] T TSR RPPTTPTT 11-175
L =LA =T € 4 1T F= L] PP PRRUPRRN 11-175
Data INPUL @aNd OUTPUTL ..o e e e et e e e e e e e e eaba e e e e 11-176
ASYNCNIONOUS TraNSTEIS ..o e e e e e e e e e e e e 1-177
S I O] o 1=T = Y 1 o 1Y/ Fo o [11-177
([} geTo 18 Tox 1 To] o DU PSP 1-177
Operating Mode TranSITIONSuuiii i e e e e e e e e et e e e e e e eeeennan s 11-178
SyStermn CONTrolIer MOE e e e e ee et e e e e e e eeeeennas 11-179
System Controller, Not Active Controller Mode.........ccoooooiiiiiiiiiiii e, 11-179
NoOt System CoNtroller MOOE oo 11-181
Active Controller, Not System Controller Mode............ooovviiiiiiiiiiiiice e 11-181
S0 B U)] 1 Y2 o o T | =1 g 1S 11-182
Printer & Serial RedIreCHIONcoouiii e eeeaaaaas 11-182
Removal & ReINSTAIIAtIONuiiiiiiiiiiiiiiiiii et eeeeeeeeseeeeeseeeeeeeennes 11-184
MARKDRVR & REMDRVRooiiiiiiiii ittt ettt et a et e e s snstaeaesssaeaesnnsaeeesnnssees 11-184
Moving Files from an IEEE 488 (HP-IB) Controllertoa PCccccoooovviiviiiiiieeeeeee, 11-185
PRINTEMUL FIIES.....uiiiiiiiiiie ittt ettt ettt e st e e st e e stb e e e sssa e e e snstaeeesnstaeeeansaeeeean 11-185
Configuration of the IEEE Interface for PRNTEMULcoocciiiiiiie e 11-185
RUNNING PRNTEMUL ...ooiiiiiiiiii ettt s et e e st e e e st e e e sstae e e s nnsaeeessnseeeeas 11-185

D L= I = 10] (=] PP PPSPP 11-186
OK. Command DeSCriPtiONS.....ccccoiiiiiiiiiiiiie e 11-186
([} geTo 18 o3 1 To] o FUu TP 11-186
(0] g 01 T= L TP PRP TP 11-187
SYITEAX .ttt s 11-187
[T (U] o o 1S PO PP PP PP PTOTPPPPPPPPN 11-187

Personal488 User’s Manual, Rev. 3.0

o B ISR =1 = PSS 11-187
=T 0] 0] 1= SRR 11-189

[1= L= T Y/ 01T USSP 11-189
Arm Condition Bit IMASKSuuiiiiiiiiii e 11-189
Control Line Bit MasKS ..o, 11-189
TErMINATOr STIUCTUIES ...ttt ettt e sttt e e sttt e e e snbbe e e e snbaeeeesnnneeas 11-189

Y K= LU LS X g U T L = PR 11-190
Completion Code Bit IMASKS.uuuiiiiiiiiiiiiiiie et e e e e e e e e e e s s e e e e e e e anns 11-190
MISCEIHANEOUS CONSTANTS.uuuuiiiiiiiiiiiiiiieiiieieieiereeerererere erererersterererersrsrsrersrarerersrersrsresnrerernrnnns 11-190
OL. Command ReferenCe..........coouiiiiiiiiii e 11-190
10. DIIVEIABS8/W3L ... oo e e e e e e aaaeees 11-191
10A. INErOAUCTION c..oeveci e e e e e eanes 11-191
10B. Installation & Configuration............cccceeiiiiiiiiiiiiiiiiie e 11-192
BefOore YOU GEt STAITEA. bbb bbb bbb bbb bbereees 11-192
Making Backup Disk COPIESot e e e e e e eeeeeanas 11-193
(DT A=Y gl [g1y =1 | = X Lo o IO 11-193
Enhanced Mode DMA TraNSTEIScoviiiiiiiiieieieieeeeeeeeeeeeeeeeeeeeee et eveaeeevesesesesesesesssesessseseseresernnes 11-194
Configuration ULTHILY ... e e e e e e e e e e e e e e e e ananaa s 11-195
IO ACES .. e ——————— 11-195
EXTEINIAI DBVICES. ...ciiiiiiiieiiiiiit ettt sttt e e sttt e sttt e e s e bt e e s enn b e e e e snbbe e e e enbeeeeennees 11-195
Opening the Configuration ULITITYc..oeeiiiiiii e 11-195
Configuration of IEEE 488 INterfacesccovii i 11-196
Configuration of IEEE 488 External DeVvICESccouuuuiiiiiiiiiiiiiiii e 11-198
Modification of the Initialization Filecccccccoiii . 11-199

B Y] Ofo] =TT ot u (o] o IR 11-200
10C. External Device INterfacingccouceiiiiiiiiiiiiiiiiiic e 11-202
INErOAUCTION o 11-202
SUDBFroUtIiNE CallS........coo oo, 11-202
Configuration of Named DEVICES........cccouuuiiiii e e e e e e e e aaa s 11-202
USE OF EXTEINAI DEVICES. .. . it e et e e et e e e e et e e e e st e e e e eaanaeaees 11-204
Extensions FOr MUItiple INTerfaces. ... 11-204
DUPHICALE DEVICE NAIMIESeeiiiiieeiiieiie ettt e ettt e e e e e e e be e e e e e e e e e s e nnabeeeeaaaeeeaannneeees 11-205
ACCESS Of MUILIPIE INTEITACESeiiiiiiiiie e s 11-205
=T 0 0] 0 [PR 11-205
10D. Getting Started........ooooiiiiiiiiiiie e 11-205
INErOAUCTION o 11-206
€ LABNGQUAGES -t 11-206

A A0 E= ST 1] o PRSP 11-206

O =T o [0 {6 F= Lo 2SS TOTUPPRTRPPIN 11-206
T U] =To [N o T=T= To (= PSR 11-206

R To W 1] =To I I o] = U 1= PP PRPP 11-207

AV S8 T = = T Lo PP 11-207
S To W TT =To I o] =PRI 11-207
LOE. © LANQUAGES ... ciiiiiiieeeiiti ettt ettt e et e e e e et e e e e e eaa e e e eeennns 11-208
Accessing from a WiNAOWS Program.........cccciiuuiiiiiiee e e e e e et e e e e e eeannnn e e e e e eeeenes 11-208
Opening & ClOSING The DIFIVEooiiiiiiiieee ettt e e e e e e e ae e e e e e e e e aanes 11-208
Establishing COMMUNICALIONSuuuiiiiiiiicciis e e e e e e e e e e e e e e eaaeennns 11-209
Confirming COMMUNICATIONSuuuiiiiiiii e e et e e e e e eeeana e ns 11-211
IEEE 488 EVENT IMESSATE .. .ccieieieeiiiii e et e e e et e e e ete e e e et s e e e et e e e e et s e eeaa s e e eeanaeeeannaeeeennnaeeeeen 11-211
ReadiNg DIIVEE STATUS ...t e e e e e eat e e e e e e e eeaaennn s 11-213
External Device INTHaliZation s 11-214
Basic Data ACQUISTEION e e e et e e e e e eeananan s 11-214
127 [oTod QDT 1 = A oo |6 1111 4 Lo o 1 11-215

Personal488 User’s Manual, Rev. 3.0 Xi

Y= 1] o] L=T o o To o= 0 1 11-216

Data Acquisition Sample ProgramsS.........c..ueeiiiii i a s 11-216
IEEE 488 Event Message Sample Programsccociiiiiiiireee s icciiieee e e e e e ssivneee e e e e s s nnseeees 11-224
COMMANA SUNMIMIATY ...ttt e e e e et ettt e e e e e e eeeeaaa e e e e aeeeeessnnaaeaaeeenennnnn 11-231
L0F. VISUAI BASIC..couuiiiiiiii ittt anan s 11-232
Accessing from a WinNAOWS Programccooocciieeeiiiinie e e e e e eeeein e e e e e eeeennnnneeeeeeees 11-232
Opening & CloSING The DIFIVEL ... it e e e e e e e e e eenneees 11-233
Establishing CoOmMMUNICATIONS..........uuuiiiiiiiiiieie e e e e e e e e e e eeaaanaas 11-234
Confirming CoOMMUNICATIONSoouiiii i e e e e e eeaa e e e e eeeeeennas 11-235
IEEE 488 Event CUSTOM CONTIOLuuiiiiiiiiiiiiiiiiiii s 11-235
ReadiNg DIriVEr STATUSeiiii e e e e et ettt e e e e e e ee et e e e aaaeeeens 11-238
External Device INTHaliZationooiiiiiiiiiiiiiiiiiiieeieeeeeeeeeeee e eeeees 11-238
Basic Data ACQUISTEIONo.uueii ettt e e e e e e e et e e e aaaaeeees 11-239
(2] [oTod QI BT 1 = WA o0 [6 111 1 4 Lo o 1 11-239
Dynamic Data EXchange (DDE)coouuuuiiiiiiiiiii et e e e aaeees 11-241

2 o] o= 1o T o OSSR 11-241

1T V=T ol I T | G PP EEPT R PPP 11-241
ACQUISTEION ENQGINE ...eiiiiiiii ittt ie e et e e e e e s st e e e e e s s st e e eeeessssntaaaeeaaeesaaasnnnnnneeaeeesnnnne 11-243
ST= T gl o] LI ol oo | or=T 0 £ 1T TSR 11-246
Data Acquisition Sample Programccuuieiiiiei it e e e e e nnraee e e e 11-246
IEEE 488 Event Custom Control Sample Program...........cccccooiiiiiiiiiiieeiniiiiieee e 11-249
Acquisition ENgine SampPle Program...........ceiiiiciiiiiiieeessieiiieeese e e e s ssiineeeeeaessssnsnnneeeeeesssnnns 11-250
COMMANA SUNMIMIATY ...ttt e e e e et eeeaa e e e e e e eeeeaaa e e e aaaeeeesannaaaaaeeeneennnn 11-251
10G. ULIHHTY ProgramsS. ...ttt e e 11-251
1 (o T 116 o e o 11-251
W N T E S T .t e e 11-251
Opening a Device Handle for CommUNICAtION...........c.cuviiiiieeei e e e 11-252

[P2 LT TR I 1 PR 11-252
WINTEST SESSION ...itiiiieiiiiie ittt ettt ettt e st e e e st e e e e sabte e e e sttt e e e snbee e e e anteeeesanneeaeean 11-253

L0 L 1 N 5 11-254

y A o]] 1 Toz= 1o T TN T =SSR 11-254
oISy =11 F= L o] o IO RRP ST 11-254
Operation of the APPIICALIONoo i 11-255
Cutting & Pasting to Other ApplicatioNSoiiiiiiiii e 11-255
Dynamic Data EXChange (DDE)ccooocuiiiiiiie ettt e e e e e e s e e e e e e e e 11-255
Loading the Project into Visual BasSiC...........coiiiiiiiiiiiiiiiae et 11-256

I o= o 1S 1 Vo [11-256
10H. Command REefErencCeccccccovviiiiiiiiiiiiiiiieeeeeeee 11-256
11, DIIVEINA88BIWOD ...t e e e e e e e e e e e e e eennae 11-257
12, DIFIVEFA8BB/WWINT .oeiiii et e e e e e e e e e e e e e e e e aeeeeannes 11-258
SECTION 11I1: COMMAND REFERENCES..........iiii e, 111-259
13, OVEIVIEW i 111-261
14, Command SUMMAFTESccouiiiiiiiiiiiiiieee e 111-262
14A. Driver488/SUB, C LanNQUAQEScccceeeeiieeeeeieeieiriiiininaseeaeaseeeseennnnns 111-262
FUNCLION DESCIIPTIONS ...ttt e e e e et e e e e e e eesaa e e e e 111-262
THe COMMEANTAS ... 111-264
SYNTAX PAFAIMETELS ... ettt e e et e e e et e eeeaa s 111-264
(D123 H] o T=To B @ 0] g 1 =1 o | K= 111-265
SEruCture DefiNiTIONS ... et e e e e e e et eaeaaaeeees 111-265
14B. Driver488/SUB, QUICKBASICccooiiiiieeeeeeee e, 111-266
(ST o [ox A 0] @ T 0 L= o]] 1 o] o 1 111-266
THE COMMEANAS ... oottt ettt e e ettt ettt e e e e e e e e e etbba e e e e e aeeeennennn s 111-268
S L= D = g U L] T 111-268

Xii Personal488 User’s Manual, Rev. 3.0

(D1 A T g [=To B O] g o] =1) £ 111-269

STruCtUre DefINitiONS e e e e e e 111-269
14C. Driver488/SUB, Pascalccccooooviiiiiii e, 111-270
(ST o T3 A 0] g I D L= | o1 6 Lo o 1 111-270

B I g (=3 @] 1 011 ¢ 7= g Lo PPNt 11-272
L= D = U= U 0 L] T 11-272
DefIiNed CONSTANTS.ot e ettt e e e e e e e e ettt e e e e e e eeeesann e eaaaaeeeenes 11-272

Y A g (o1 (U =T 1= T g T o o 1 11-273
14D. Driver488/W31, C LaNQUAQESuuuuiiieeeeeeeeeeeeeeeiiiiiiiiaaeeeeeaeaasaennnnns 111-274
FUNCLION DESCIIPTIONS. ..ttt e e e e et et e e e e e e e eeaaa e e e e aeeeennes 11-274
JLIN 2 (=30 1 211 2 =112 T £ 111-276
SYNTAX PAFAIMETELS ... ettt e e et e e e e et e e e e aa e e e eeaaaaaees 111-276
DefIiNEd CONSTANTS.coiiiiie e e e e e e e e e e s s e e e eeeeeean 111-276
STruCtUre DefINitiONS e e e e e e 11-277
14E. Driver488/W31, Visual BasiCccoovviiiiiiiiiiiiicii e 111-278
(S o [o1 A 0] @ T D L= o] | o1 6 Lo o 1 111-278

B) g (=3 @] 1 011 ¢ 7= g Lo KPP 111-280
L= D = U= U L] T 111-280
DefIiNed CONSTANTS.ottt e e e e e e e et et e e e e eeeeesann e e eaaeeeeene 111-281

Y A g (o1 (U =TI 1= T T o 1 111-281

15. Command REFEIrENCESuuuiiiiii i 111-282
15A. Driver488/DRV COMMANAScuvuiiiiiiiieieeeeieieeeiiiieene e e e e eeeaaeannnnns 111-282
15B. Driver488/SUB, W31, W95, & WNT Commandscceeeeeeenee 111-312
SECTION 1V: TROUBLESHOOTING.......coiiiiiiiiiee e 1\VV-353
T O 1V Y Y4 1= P 1V-355
17. Radio Interference Problems.........ccccooiiiiiiie e, 1V-356
18. Troubleshooting CheckIists...........cccooviiiiiiiiiii e 1V-357
RSN g 1 f e Yo [o3 L] o [PPSR 1V-357
18B. DriIVEIF488/DRYV ..ottt 1\VV-357
18C. DrivEr488/SUB.........ccooviiiiiiiee et 1\VV-358
18D. DrIVEIr4AB8/WS3L.... oot 1\VV-359
18E. Driver488/W95 & Driver488/WNTccccoveviiiieeiieiee e, 1\VV-360
19, ENFOF MESSAQOES .. ittt ettt e e e e e e e e an s 1V-361
SECTION V: APPENDIIX ..o e e e e V-367
SECTION VI INDEX .. e e e e e e VI1-375

Personal488 User’s Manual, Rev. 3.0 Xiii

Xiv Personal488 User’s Manual, Rev. 3.0

Personal488 PC/IEEE 488 Controller

Introduction to this Manual

About this Manual
This edition of the Personal488 User’s Manual supersedes all previous editions.

The material in this manual reflects the particular combinations of |EEE 488 1/0 adapter and driver
software, and is comprised of four primary Sections. Hardware Guides, Software Guides, Command
References, and Troubleshooting, followed by two more Sections: Appendix and Index. The last two
pages contain a List of IEEE 488 Acronyms & Abbreviations and a List of ASCII Acronyms &
Abbreviations as additional references for this manual and for other related literature.

Before calling for technical assistance, check the Troubleshooting section for a possible solution to the
problem.

Since much of the hardware and software material in this manual is similar to material elsewhere in the
manual, make sure you view the material which corresponds to your specific hardware and software.
For example, do not read about Driver488/DRV when your application pertains to Driver488/W31

Information which may have changed since the time of printing will be found in arReEaDME . TXT file on
disk, or in an addendum to the manual.

How to Use this Manual

Because this manual contains alarge volume of information, a four-level table of contents systemis
used in addition to a complete Detailed Table of Contents. In thisfour-level system, the General Table
of Contents at the front of this manual should be used primarily to locate the main Sections of the
manual, i.e., specific hardware guides and software guides. The first page of each Section contains a
second-level table, listing the Chapters with their page locations. Next, many of these Chapters
contain athird-level table, listing the Sub-Chapters or specific Topics with their page locations.

Finally, many of these Sub-Chapters contain a fourth-level table, listing the specific Topics with their
page locations. While this multi-level method is easy to use, experienced users may prefer the
traditional table of contents.

As mentioned above, this manual also includes an Index, so you can quickly find the page(s) pertaining
to a specific topic.

Header Files & Command References

Since changes are taking place in Driver488/W95 and Driver488/WNT software as this publication
goes to press, please refer to your operating system header file for the latest available information
specific to your application.

Personal488 User’s Manual, Rev. 3.0 XV

XVi Personal488 User’s Manual, Rev. 3.0

Section I:

HARDWARE GUIDES

Personal488 User’s Manual, Rev. 3.0

Personal488 User’s Manual, Rev. 3.0

I. HARDWARE GUIDES

1. Overview

HARDWARE GUIDES

Chapters
I @ AV /T Y 1= VY 1-3
2. Personal488 (With GP488B)......cccccoiiiiiiiiiiiiiiiie e 1-8
3. Personald88/AT ... 1-13
4., PersONal488/NB ... 1-17
5. Personald88/MM ... 1-18
6. Personald488/CARD ... 1-22
1. Overview
Topics
LI o 1 o oo 16 [ox o o) o T 1-4
o |IEEE 488.2 Interface BoOardsS.........ccoooeuiiiiiiiiiiiiccieeeeee e 1-4
e Driver488 Software Interface.........cccoeviiiiiiiiii i 1-4
e Interface & Interface Board Specifications............cccccccceeeeneeennn. 1-6
IEEE 488.1-1987 INTEITACE ... cccu it eaaas 1-6
IEEE 488.2-1987 INTEITACEciiiiiieieiiee et e e e eea 1-6
GP488B INterface BOArdccoocuiiiiiiiiiiiiiiee e 1-6
ATA88 INtErface BOAKdcoovviiiiiiiiiie et e e eeenans 1-6
MPA488 INterface BOANdcuoiiiiiiiiiiiiieiie e ees 1-6
MP488CT INterface BOArdcovuiiiiiiiiiiiiiiie e e 1-7
GP488/2 INterface BOArd..........cocuiiiiiiiiiii e 1-7
GP488/MM INterface BOArdc.coviiiiiiiiiieiiiei et eat e e eva e 1-7
NB488 INnterface MOAUIE............oiiiiiie e 1-7
PCMCIA INtErface Cardouuiiiiiiiieeeiiieeeeeee ettt e e e e e e eenans 1-7
Introduction

The Hardware Guides section contains chapters pertaining to different Personal 488 Drivers, as
indicated in the previous Section | Table of Contents. Each Driver488 section contains information
regarding specific PC/IEEE 488 controllers. The hardware guide describes the 1/0 adapter and
includes instructions for inspecting, configuring, and installing the adapter.

In addition to this manual, Power488 and Power488CT users receive a manual supplement describing
the Standard Commands for Programmable Instruments (SCPI) command set and the TIOTTIMER.DLL,
a Microsoft Windows Dynamic Link Library of functions. This overview introduces the hardware and

software sections of this manual.

The Personal 488 converts your PC or PC/AT into an | EEE 488.2-compliant controller. Each controller

package includes an interface board or module, driver software and complete documentation. The
following information provides a brief overview of a specific PC/IEEE 488 interfaces and software
drivers, and of the Driver488 components.

Personal488 User’s Manual, Rev. 3.0

1. Overview

I. HARDWARE GUIDES

IEEE 488.2 Interface Boards

The family of PC/IEEE 488 controllers includes the GP488B, the GP488/2, the AT488, the MP438,

the MP488CT, the GP488/MM and the NB488. All are |IEEE 488.2 compatible and supported by
Driver488 software. The MP488 and MP488CT also provide digital 1/0, and the MP488CT provides a
set of programmable counter/timers, all of which are fully supported by Driver488. Some features of
theinterfaces are listed below:

o (GP488B interface board (for PC/XT/AT): Features five jumper-selectable interrupt lines. Three
8-bit jumper-selectable DMA channels are also available. The 8-bit DMA mode provides full
compatibility with programs written for GP488 series boards.

e AT488interface board (for PC/XT/AT and PS/2 with the I SA bus): Features eleven jumper-
selectable interrupt lines. Three 16-bit and four 8-bit jumper-selectable DMA channels are also
available. The 8-bit DMA mode provides full compatibility with programs written for the GP488
series boards.

o MP488 interface board (for PC/XT/AT and PS/2 with the ISA bus): Features eleven jumper-
selectable interrupt lines. Three 16-bit and four 8-bit jumper-selectable DMA channels are also
available. The 8-bit DMA mode provides full compatibility with programs written for the GP488
seriesboards. Thedigital 1/0 section of this board provides 40 digital 1/0O lines which can be
programmed for a mix of input and output.

e MP488CT interface board (for PC/XT/AT and PS/2 with the | SA bus): Features eleven jumper-
selectable interrupt lines. Three 16-bit and four 8-bit jumper-selectable DMA channels are also
available. The 8-bit DMA mode provides full compatibility with programs written for the GP488
series boards. The digital 1/0 section of this board provides 40 input or output lines which can be
programmed for a mix of input and output. The counter/timer section features a programmable
clock generator plus 5 fully independent versatile counter/timer channels.

o (GP488/2 interface board (for Personal Systems/2 with MicroChannel architecture): Features seven
software selectable interrupt lines and fourteen 8-hit software selectable DMA arbitration levels.

e GP488B/MM interface board: Converts your Ampro PC/104 Single Board PC into an | EEE 488.2
compliant controller or peripheral.

e NB488 external interface module (for notebook, laptop and desktop PCs): Connectsto aPC's
parallel port eliminating the need for an internal expansion slot.

Driver488 Software Interface

Driver488 is the software interface between DOS or Windows and the |EEE 488 controller board.
Driver488 software includes the driver itself, an installation program, other utility programs, and
programming examples. Driver488 provides afull implementation of the |EEE 488.2 standard, plus
advanced capabilities such as high-speed DMA data transfers, interrupt vectoring on specified events,
automatic error detection, callable subroutines, and serial (COM) port support.

Driver488 monitors all |EEE 488 bus monitoring and control lines and generates an interrupt based on
SRQ status and various other bus conditions. Driver488 software supports automatic program vectoring
to service routines for C, Pascal, and BASIC. On a specified event (Error, SRQ, Peripheral,
Controller, Trigger, Clear, Talk, Listen, Idle, ByteIn, ByteOut, Change),
Driver488 can either call a specified application routine or simulate alight pen interrupt to signal that
the event has occurred.

Versions with HP-style character commands can be accessed by virtually any language that can
communicate with DOS files, and additionally provide standard DOS device driver interfaces which
permit communications with the | EEE 488 bus and/or connected devices in the same manner as LPT1,
COM1, etc. Versionswith the Subroutine API offer higher performance and can be used with most
popular C, Pascal, and Basic languages. The Driver488 commands and bus protocol are very similar to
those used by the Hewlett-Packard HP-85 controller.

Personal488 User’s Manual, Rev. 3.0

I. HARDWARE GUIDES

1. Overview

Versions of Driver488 are described in the following text and table.

Driver488/DRV: Theindustry's easiest-to-use | EEE 488.2 driver, offering HP-style commands,
support for al programming languages and spread sheets, and features such as automatic program
Vectoring on SRrQ.

Driver488/SUB : A subroutine-style |IEEE 488.2 driver that provides all the function of
Driver488/DRV, as well as high performance for fast, interrupt-driven programmed 1/0
operations.

Driver488/W31: A Dynamic Link Library (DLL) that brings |EEE 488.2 control to Microsoft
Windows 16-bit applications. Includes support for Visual Basic, C, Quick C, Turbo C and
Borland C++.

Driver488/W95: A Dynamic Link Library (DLL) that brings |EEE 488.2 control to Microsoft
Windows 95 for 32-bit applications. Pending software revisions, it includes support for Microsoft
C, Visua Basic, and Borland C++.

Driver488/WNT: A Dynamic Link Library (DLL) that brings IEEE 488.2 control to Windows NT
version 3.1 or 3.5 applications. Pending software revisions, it includes support for Windows NT
SDK, or C language compiler Visual Basic 4.

Driver488/L1B: An |EEE 488.2 library of C function callsthat link directly to your application for
maximum speed with minimal memory requirements, adding as few as as 25 Kbytes to a compiled
program. Available with an optional license that allows unlimited copies of compiled applications.

Driver488/OEM: A compact | EEE 488.2 function-call library that enables quick and easy
integration of |EEE 488.2 capability into PC-based instruments.

o Driver488/IUX: A high performance | EEE 488.2 driver for running Interactive Systems UNIX
SystemV and AT& T UNIX STREAMS.

e Driver488/SCX: A high performance driver for SCO UNIX SystemV and AT& T UNIX

STREAMS.
Driver488 Family Overview
Driver488 Description Compatible Compatible Driver Architecture COM Power 488 Digital
Driver Type Operating L anguages Support 1/0O & Counter-
System Timer Support
wost High performance driver for Microsoft C, C++ for Dynamic Link Library No No
Windows 95 Windows 95 Windows & (DLL)
Visua Basic
WNT? High performance driver for Microsoft C Dynamic Link Library No No
Windows NT Windows NT (DLL)
W31 High performance driver for Microsoft C & Visua Basic | Dynamic Link Library No Yes
Windows Windows 3.x (DLL)
SUB Higher performance driver DOS C, Pascal, & Memory resident Yes Yes
for subroutine-style QuickBASIC
programming.
DRV Device driver, compatible DOS All, including Memory resident Yes Yes
with all languages spreadsheets
LIB? Fast, compact, no resident DOS C Linkable function No No
driver. cals
OEM? Specially designed to operate DOS® C Linkable function Optional No
as an |EEE 488.2 peripheral. calls
% For Interactive Systems & UNIX C Memory resident. No No
Scx? SCO UNIX.

I Note: Driver488/W95 and Driver488/WNT are minimally discussed in this manual, pending current software revisions. Refer to your operating
system header file for the latest available information specific to your application.

2 Note: Driver488/LIB, OEM, IUX, and SCX are not discussed in this manual. These drivers are shipped with their respective manuals.

3Note: Call the factory regarding Driver488/OEM compatibility with other operating systems.

Personal488 User’s Manual, Rev. 3.0

1. Overview I. HARDWARE GUIDES

Interface & Interface Board Specifications

Note 1: The lOT7210 |IEEE 488 Controller Chip is 100% compatible with the NEC pPD7210 chip
and exhibits better performance, as well as lower power consumption.

Note 2: Specifications subject to change without notice.

IEEE 488.1-1987 Interface

SH1, AH1, T6, TEO, L4, LEO, SR1, PPO, RLO, DC1, DT1, E1/2
Controller Subsets: C1, C2, C3, C4 and C9

Terminator: Software selectable characters and/or Eox
Connector: Standard Amphenol 57-20240 with metric studs

IEEE 488.2-1987 Interface

| EEE 488 Bus Readback Registers. NDAC, NRFD, DAV, EOI, SRQ
Bus Error Handling

GP488B Interface Board

| EEE 488 Controller Device: 10T7210 (See Note)

Power Consumption: 750mA max @ 5V from PC supply

Dimensions: Occupies one short PC dlot size (5.25" long, plus | EEE 488 connector)
Speed: 8-bit DMA: 330K byte/s (reads); 220K byte/s (writes)

Environment: 0 to 50° C, 0 to 95% RH, non-condensing

DM A Capability: 8-bit on channels0 - 3

Interrupt Capability: IRQ2-7

I/O Base Address: &H02E1, &H22E1, &H42E1, Of &H62E1

AT488 Interface Board

| EEE 488 Controller Device: 10T7210 (See Note)

Power Consumption: 750mA max @ 5V from PC supply

Dimensions: Occupies one short PC dot size (5.25" long, plus | EEE 488 connector)

Speed: 16-bit DMA: 1M byte/s (reads); 800K byte/s (writes).8-bit DMA: 330K byte/s (reads); 220K
byte/s (writes)

Environment: 0 to 50° C, 0 to 95% RH, non-condensing

DM A Capability: Channels 1 - 3 (8 - bit) are selectablein a PC/XT or PC/AT.Channels 0 - 3 (8 - hit)
and 5 - 7 (16 - hit) are selectable in aPC/AT. Multiple AT488 boards may share the same DMA
channel.

Interrupt Capability: IRQ 2 - 7 for PC/XT,IRQ 2- 7,9, 10 - 12, 14, or 15 for PC/AT 16-bit dlot
I/O Base Address. &H02E1, &H22E1, &H42E1, Of &§H62E1

MP488 Interface Board

| EEE 488 Controller Device: 10T7210 (See Note)

Power Consumption: 2A max @ 5V from PC supply

Dimensions. Occupies one 16-bit PC/AT full dlot or 8-bit PC/XT full dot. Fitsin PC/ATwith low
PC/XT form-factor. 13.13" long x 3.9" high (333mm x 99mm).

Speed: 16-bit DMA: 1M byte/s (reads); 800K byte/s (writes).8-bit DMA: 330K byte/s (reads); 220K
byte/s (writes)

Environment: 0 to 50° C, 0 to 95% RH, non-condensing

DM A Capability: Channels 1-3 (8-hit) are selectable in a PC/XT or PC/AT.Channels 0-3 (8-bit) and
5-7 (16-bit) are selectable in a PC/AT. Multiple MP488 boards may share the same DMA channel.
Interrupt Capability: IRQ 2-7 for PC/XT,IRQ 2-7,9, 10 - 12, 14, or 15 for PC/AT 16-bit slot
I/O Base Address. &H02E1, &H22E1, &H42E1, Of &§H62E1

Digital 1/0: 40 digital 1/O lines; 24 configurable as input or output, 8 fixed input,and 8 fixed output
lines.

1-6 Personal488 User’s Manual, Rev. 3.0

I. HARDWARE GUIDES 1. Overview

MP488CT Interface Board

| EEE 488 Controller Device: 10T7210 (See Note)

Power Consumption: 2A max @ 5V from PC supply

Dimensions. Occupies one 16-bit PC/AT full slot or 8-bit PC/XT full dot. FitsinPC/AT with low
PC/XT form-factor. 13.13" long x 3.9" high (333mm x 99mm).

Speed: 16-bit DMA: 1M byte/s (reads); 800K byte/s (writes).8-bit DMA: 330K byte/s (reads); 220K
byte/s (writes)

Environment: 0 to 50° C, 0 to 95% RH, non-condensing

DM A Capability: Channels 1-3 (8-hit) are selectable in a PC/XT or PC/AT. Channels 0-3 (8-hit) and
5-7 (16-bit) are selectable in a PC/AT.Multiple MP488 boards may share the same DMA channel.
Interrupt Capability: IRQ 2 - 7 for PC/XT,IRQ 2-7,9, 10 - 12, 14, or 15 for PC/AT 16-bit dlot
I/O Base Address: &H02E1, &H22E1, &H42E1, Of &H62E1

Digital 1/0: 40 digital 1/0O lines; 24 configurable as input or output, 8 fixed input, 8 fixed output lines.
Counter/Timer: AMD Am9513A, 1 frequency output, 5 counter/timers.

Counter/Timer Frequency: DC - 7 MHz.

Internal Timebase: Up to 1 MHz, accuracy of 0.01%.

GP488/2 Interface Board

| EEE 488 Controller Device: 10T7210 (See Note)

Power Consumption: 1A max @ 5V from PC supply.
Dimensions. Occupies one full length slot in a MicroChannel bus.
Speed: 8-bit DMA: 330K byte/s (reads); 220K byte/s (writes).
Environment: 0 to 50° C, 0 to 95% RH, non-condensing

DM A Capability: 8-bit on channels 0 through 14

Interrupt Capability: IRQ 4, 5, 6, 7, 10, 11, or 15.

GP488/MM Interface Board

| EEE 488 Controller Device: 10T7210 (See Note)

Maximum Transfer Rate: 330K byte/s (reads and writes)

Connector: 26-pin header ribbon cable to standard |EEE 488 connectors
Environment: 0to 70° C; 0 to 95% RH (non-condensing)

DM A Capability: Channels0, 1, 2., or 3 (jumper selectable)

Interrupts. IRQ 2, 3,4,5,6,0r7

|EEE Base|/O Addresses: sH02E1, §H22E1, §H42E1, Of §H62E1

NB488 Interface Module

Speed: 170 Kbyte/s (reads and writes)

Dimensions: 5.5" x 4" x 1.5"

| EEE 488 Connector: Accepts standard |EEE 488 connector with metric studs

Parallel Port Input Connector: Male DB25

Parallel Port Output Connector to Printer IEEE: Female DB25

Instrument Fan-out: Can control up to 14 |EEE instruments

Power : 400-500 mA at 5 VDC from PC keyboard port or 7-15 VDC at 400-500 mA from external
power source

Environment: 0to 70° C; 0 to 95% RH (non-condensing)

PCMCIA Interface Card

Speed: 1.0M byte/s

Dimensions. Type Il (5 mm) PCMCIA Card
Power: 100 mA

1/0O: 16-byte, relocatable

Personal488 User’s Manual, Rev. 3.0 -7

2. Personal488 (with GP438B) I. HARDWARE GUIDES

2. Personal488 (with GP488B)

Topics
I I 0 1o o= Vo 2= Vo [R 1-8
e Hardware Installation (for PC/XT/AT) .o 1-8
Installation & Configuration of the Interface Card.................o.ooooiiiiinnnnnnn. 1-8
(D=3 =X Y=Y 1 T 1-9
1/0O Base AAAress SEIECTIONuui i e e e 1-9
1) u=] g 8T o) diS =1 <o o] o 1 1-9
DMA Channel SEleCtiON........coouiiiii e 1-10
Walit State ConfigUIratioNcoooiiiiiiiii e e e e e 1-11
Internal CIOoCK SEIeCtioNooiiiiii e 1-11
270 r= 1o I F o TS] = 1l =1 A o] o PP PPPPPPPIN 1-11

The Package

Personal488, including the IEEE 488 interface board and the Driver488 software, is carefully
inspected, both mechanically and electrically, before shipment. When you receive the product, unpack
all items carefully from the shipping carton and check for any obvious signs of physical damage that
may have occurred during shipment. Report any such damage to the shipping agent immediately.
Remember to retain all shipping materialsin the event shipment back to the factory becomes necessary.

For the following software versions, the Personal 488 package varies:

e Driver488/DRV, SUB, or W31: This package includes: The GP488B |EEE 488 Bus Interface
Board, Driver488 Software Disks (Driverd88/DRV, Driver488/SUB, Driver488/W31), and the
Personal488 User’'s Manual.

e Driver488/W95: This package includes: The GP488B |EEE 488 Bus Interface Board, Driver488
Software Disks (Driver488/\W95), and the Personal 488 User’s Manual.

e Driver488/WNT: This package includes: The GP488B |EEE 488 Bus Interface Board, Driver488
Software Disks (Driver488/WNT), and the Personal488 User’s Manual.

Hardware Installation (for PC/XT/AT)

Installation & Configuration of the Interface Card

The following paragraphs explain configuration and physical installation of the interface card.
Software installation and setup are covered in a separate section. After configuring your board, please
make note of the following. Thisinformation is needed for Driver488 software installation.

e |/OBase Address

e Interrupt Channel

e DMA channel, if applicable

e Whether or not the board is the System Controller

-8 Personal488 User’s Manual, Rev. 3.0

I. HARDWARE GUIDES

2. Personal488 (with GP488B)

No Wait States

Base Address 02E1

J5

)

On-board
8 MHz Clock

Interrupt Response Level 7

—
N

O O 0O 0 ©
o O O 0 O

i

Interrupt
Level 7

GP488B Default Settings

Channel 1

Note: The GP488B, asillustrated, has one DIP switch, two 12-pin headers and one 3-pin header,

labeled SW1, J3, J4, and J5, respectively. The DIP switch setting, along with the arrangement

of the jumpers on the headers, set the hardware configuration.

Default Settings

The figure indicates the GP488B default configuration. Notice that SW1 controls the wait state
generation, the 1/0 base address and interrupt response level, J4 sets the interrupt request level, J3
selectsthe DMA channel, and J5 selects the clock source.

1/O Base Address Selection

The I/O base address sets the addresses used by the computer to communicate with the | EEE 488
interface hardware on the board. The addressis normally specified in hexadecimal and can be 02E1,
22E1, 42E1, or 62E1. Theregisters of the |IOT7210 |EEE 488 controller chip and other auxiliary
registers are then located at fixed offsets from the base address.

Most versions of Driver488 are capable of managing as many as four | EEE 488 interface boards. To
do so, the board configurations must be arranged to avoid conflict among themselves. No two boards
may have the same 1/0O address, but they may, and usually should, have the sasme DMA channel and

interrupt level.

The factory default 1/0 base addressis 02E1. To use another, set SW1 switches 4 and 5 according to
the following table and figure.

I/O Base Address Register
02E1l 22E1 42E1 62E1 Read Reg|ster Write Reg|ger
02E1 22E1 42E1 62E1 Dataln Data Out
06E1 26E1 46E1 66E1 Interrupt Status 1 Interrupt Mask 1
ORE1l 2AEl 4AEl 6AEL Interrupt Status 2 Interrupt Mask 2
OEE1 2EE1 4EE1 6EE1 Serial Poll Status Seria Poll Mode
12E1 32E1 52E1 72E1 Address Status Address Mode
16E1 36E1 56E1 76E1 CMD Pass Through Auxiliary Mode
1AE1 3AE1 5AE1 7AE1 Address 0 Address 0/1
1EE1l 3EEl 5EEl 7EEl Address 1 End of Stri ng

Personal488 User’s Manual, Rev. 3.0

2. Personal488 (with GP438B) I. HARDWARE GUIDES

02E1 22E1 42E1 62E1
o1 o1 [<'e | — o1
~N—— ~N—— [N — [N —
o/ or— o—] or—]
WA Z O Z PNl WL Z
{ <L S <A <~ 5 < 5
o—— o—— o L% —
[\ — [— [m— [—
—— —— —— ——

GP488 I/O Base Address Settings, SW1 Configurations

Interrupt Selection

The GP488B interface board may be set to interrupt the PC on the occurrence of certain hardware
conditions. Thelevel of the interrupt generated is set by J4. The GP488B adheresto the “AT-style”
interrupt sharing conventions. When an interrupt occurs, the interrupting device must be reset by
writing to I/O address 02Fx, where X isthe interrupt level (from 0-7). Thisinterrupt response level is
set by switches 1, 2, and 3 of SW1 which must be set to correspond to the J4 interrupt level setting.
Interrupt selection isillustrated in the following figure.

J4
IRQ2| @ o [3] [3] o o [3]
IRQ3| e e) [e o] L)) ° e)
IRQ4| @ o o o o o [e o] o o o o o o
IRQ5| ® o L) o o ° o [o o] o o ° o
IRQG6| ¢ * oo . o o [e o] .
IRQ7 |[®] L) L) L) mo
N N N N N N N
(o — (o — o—] [/ m— (o — o 1] (o —
W 1F (W F | F (v F |wF (w13 |13
S — o & | & |« & |~ B |« IR —

(I 1 (E— |
5 | O L) L) 15 | 5 | 27 N P —
LT LT LA N NN LT [N —
A’ N\ L) A’ N PN A’ N\ SN A S—

Interrupt Interrupt Interrupt Interrupt Interrupt Interrupt Interrupts
Level 7 Level 2 Level 3 Level 4 Level 5 Level 6 Disabled

GP488B Interrupt Selection

DMA Channel Selection

Direct Memory Access (DMA) is a high-speed method of transferring data from or to a peripheral, such
as adigitizing oscilloscope, to or from the PC's memory. The PC has four DMA channels, but channel
0 isused for memory refresh and is not available for peripheral datatransfer. Channel 2 isusually used
by the floppy disk controller, and is also unavailable. Channel 3 is often used by the hard disk
controller in PCs, XTs, and the PS/2 with the | SA bus, but is usually not used in ATs. So, depending
on your hardware, DMA channels 1 and possibly 3 are available. Under some rare conditions, it is
possible for high-speed transfers on DMA channel 1 to demand so much of the available bus bandwidth
that simultaneous access of a floppy controller will be starved for data due to the relative priorities of
the two channels. Configure the board according to which DMA channel, if any, isavailable.

[-10

Personal488 User’s Manual, Rev. 3.0

I. HARDWARE GUIDES 2. Personal488 (with GP488B)

J3
[o o]) o o
[o o] °) o
o o [e o] e o .
T [o o])
o o . [o o] o e|e
° o [o o] [0 o]e
Channel1 Channel2 Channel 3 Disabled

GP488B DMA Selection

Wait State Configuration

The GP488B is fast enough to be SW1
compatible with vi r_tually every o s —a S,
PC/XT/AT-compatible computer on the N N N N
market. Even if the computer is very fast, (7 (7 N (P N O L)
the processor is normally siowed to 8MHz | °—— & pi— g o G p— &
or below when accessing the 1/0 channel. pii— pi— pi— pii—
If the 1/O channel runs faster than 8 MHz, N—— N—— N — N —
it may be faster than the GP488B card. If i i i i
you suspect thisis a problem, the computer , , , _
can be made to wait for the GP488B by gtoa:g :'t ;t\;\@'t ?s’évéi gt\g{zg
enabling wait states. Increasing the number
of wait states slows down access to the GP488B Wait State Configurations
GP488B card, but the overall performance
degradation is usually only afew percent.

Internal Clock Selection
The |EEE 488 bus interface circuitry requires a J5
master clock. This clock isnormally connected to an o0
on-board 8 MHz clock oscillator. However, some g\ JS%
compatible |EEE 488 interface boards connect this = 8 Mﬁ:;};gck
clock to the PC's own clock signal. Using the PC SWH1
clock to drive the |IEEE 488 bus clock is not [or,
recommended because the PC clock frequency Jj J3
depends on the model of computer. A standard PC PG Bus Clock
has a4.77 MHz clock, while an AT might have a6
MHz or 8 MHz clock. Other manufacturers GP488B Internal Clock Settings, via J5

computers may have almost any frequency clock. If

you are using a software package designed for an interface board (that derived its clock from the PC
clock) and you need to do the same to use GP488B with that particular software, the clock source can
be changed. However, the clock frequency must never be greater than 8 MHz, and clock frequency
must be correctly entered in the Driver488 software.

Board Installation

The |EEE 488 interface board(s) are installed into expansion slots inside the PC's system unit. PC/AT-
compatible computers have two types of expansion slots: 8-bit (with one card-edge receptacle), and 16-
bit (with two card-edge receptacles). Eight-bit boards, such as the | EEE 488 interface boards, may be
used in either type of dot, 8- or 16-bit. Some machines may have special 32-bit memory expansion
slots which should not be used for | EEE 488 interface boards.

Install each IEEE 488 interface board into the expansion slots as follows: Ensure the PC is turned off
and unplug the power cord. Remove the cover mounting screws from the rear of the PC system unit.
Remove the system unit cover by dliding it forward and tilting it upward.

Personal488 User’s Manual, Rev. 3.0 1-11

2. Personal488 (with GP438B) I. HARDWARE GUIDES

A rear panel opening is provided at the end of each expansion slot for mounting 1/0 connectors. If a
dot isunused, this opening is covered by ametal plate held in place with a screw. Remove this screw
and the cover plate from the desired expansion slot, saving the screw.

Insert the |EEE 488 interface board carefully into the expansion dlot, fitting the | EEE 488 connector
through the rear panel opening, and inserting its card edge into the motherboard card edge receptacle.
With the board firmly in place, fix its mounting bracket to the rear panel, using the screw removed from
the cover plate.

Slide the system unit cover back on, re-attaching it with the screws. Plug the power cord in and turn on
the PC. If al iswell, the system should boot normally. If not, carefully check that none of the I/O
addresses conflict with any other devices or boards. If you are not sure, contact your PC's dealer or
manufacturer.

1-12 Personal488 User’s Manual, Rev. 3.0

I. HARDWARE GUIDES 3. Personal488/AT

3. Personal488/AT

Topics
o The PacCKagecoooooiiiiiiiei e 1-13
e Hardware Installation (for PC/XT/AT) oo 1-13
Installation & Configuration of the Interface Card...................ccovveennnnnnn. 1-13
Default SEtUINGS. ... oot e et e e e e eeeeaaas 1-13
1/0O Base AAAress SEIECTIONoviiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeee e 1-13
INTErTUPTL SEIECTION ..o 1-14
DMA Channel SeleCtiON 1-15
Board Installation ... e 1-15

The Package

Personal488/AT, including the |EEE 488 interface board and the Driver488 software, is carefully
inspected, both physically and electronically, before shipment. When you receive the product, unpack
all items carefully from the shipping carton and check for any obvious signs of physical damage that
may have occurred during shipment. Report any such damage to the shipping agent immediately.
Remember to retain all shipping materials in the event shipment back to the factory becomes necessary.

The Personal488/AT includes:
e ATA488 |EEE Bus Interface Board

o Driver488 Software Disks
(Driver488/DRV, Driver488/SUB, Driverd88/W31, & Driver488W95)

e Personal488 User's Manud

Hardware Installation (for PC/XT/AT)

Installation & Configuration of the Interface Card

The following paragraphs explain configuration and physical installation of the interface card.
Software installation and setup are covered in a separate section. After configuring your board, please
make note of the following: the I/O Base Address, the interrupt channel, the DMA channel, if any, and
whether or not the board is the System Controller. Thisinformation is needed for Driver488 software
installation.

The Personal488/AT has two DIP switches (S1 and S2), and three 14-pin headers (IRQ, DACK and
DRQ). The DIP switch settings, along with the arrangement of the jumpers on the headers, set the
hardware configuration.

Default Settings

Notice that S1 and IRQ set the interrupt response level, S2 controls the I/O base address, and DACK
and DRQ select the DMA channel.

Personal488 User’s Manual, Rev. 3.0 1-13

3. Personal488/AT

I. HARDWARE GUIDES

1/0O Base Address Selection

The 1/O base address sets the addresses used by the computer to communicate with the |EEE 488
interface hardware on the board. The addressis normally specified in hexadecimal and can be 02E1,
22E1, 42E1, or 62E1. Theregistersof the |OT7210 |EEE 488 controller chip and other auxiliary
registers are then located at fixed offsets from the base address.

Most versions of Driver488 are capable of
managing as many as four |EEE 488 interface
boards. To do so, the board configurations
must be arranged to avoid conflict among
themselves. No two boards may have the
same |/O address, but they may, and usually

should, have the same DMA channel and

interrupt

level.

2

OPEN EN EN
I/0 PORT I/0 PORT I/0O PORT I/0 PORT
&HO2E1 &H22E1 &H42E1 &H62E1
(DEFAULT)

The factory default 1/0 base addressis 02E1.
To use adifferent base address, set S2
according to the figure.

Personal488/AT 1/O Base Address Settings

I/O Base Address Register
02E1 22E1 42E1 62E1 Read Reg|s[er Write Reg|§er
02E1 22E1 42E1 62E1 Dataln Data Out
06E1 26E1 46E1 66E1 Interrupt Status 1 Interrupt Mask 1
0AE1l 2AEl 4AEl 6AEL Interrupt Status 2 Interrupt Mask 2
OEE1 2EE1 4EE1 6EE1 Serial Poll Status Seria Poll Mode
12E1 32E1 52E1 72E1 Address Status Address Mode
16E1 36E1 56E1 76E1 CMD Pass Through Auxiliary Mode
1AE1 3AE1 5AE1 7AE1 Address 0 Address 0/1
1EE1l 3EE1l S5EE1l 7EE1 Address 1 End of Stri ng

Interrupt Selection

The AT488 interface board may be set to interrupt the PC on the occurrence of certain hardware
conditions. The main board interrupt may be set to IRQ level 3 through 7, 9 through 12, 14, or 15.

1234

bt

1234

!t

1234 1234

—OPEN— — OPEN— — OPEN— —OPEN—
[XX NI N N NN X] 000000OCGOS O X X N N NN NN] [XN A N RN NN]
[EX NN NN X] 0000000OOGOFS o000 cs00OOS O EX NN NN)
mﬂ'm@r\c‘xe“zggﬁ mﬁ'mwl\mezggﬁ mvmwr\m‘o_::ls_ru‘_) mvmmmmg:giﬁ
INTERRUPT 7 (DEFAULT) INTERRUPT 3 INTERRUPT 4 INTERRUPT 5
12 3 4 12 3 4 1234 12 34
— OPEN— —OPEN— —OPEN— —OPEN—
[A NICLA X KN NN J [E XX NI NN NN [AN RN NI N NN [XXX R NI N N]
[A NI XX RN NN [E X XN LN NN X] 0000 GO SOOGOS 00000 OGOGOOOS
mvmwy\cve:‘(_ls_rﬁ mwmwr\m‘o_::_lf_r‘uz mvmwmmg:g:ﬁ m?mmlxme:gie
INTERRUPT 6 INTERRUPT 9 INTERRUPT 10 INTERRUPT 11
%2 3@ %2 3@ 123 4
— OPEN— —OPEN— —OPEN—
XX rxxxuorxl 00 000OGOOOS S 0600000 OS
oooooooo|:|oo [X R XXX NN XI] eoccocc000

OFTWONDO =N T W

- -

INTERRUPT 12

OTOONDO =N W0

INTERRUPT 14

OTOWONDO =N T W0

INTERRUPT 15

Personal488/AT Interrupt Selection

[-14

Personal488 User’s Manual, Rev. 3.0

I. HARDWARE GUIDES 3. Personal488/AT

Interrupts 10 through 15 are only available in a 16-bit ot on an AT-class machine. Interrupt 9
becomes synonymous with interrupt 2 when used in a PC/XT bus. The selected interrupt may be
shared among several AT488sin the same PC/AT chassis. The AT488 adheresto the “AT-style”
interrupt sharing conventions. When the AT488 requires service, the IRQ jumper determines which PC
interrupt level istriggered. When an interrupt occurs, the interrupting device must be reset by writing
to an 1/O address which is different for each interrupt level. The switch settings determine the 1/0
address to which the board’ s interrupt rearm circuitry responds. The IRQ jumper and switch settings
must both indicate the same interrupt level for correct operation with interrupts. The previous figure
shows the settings for selected interrupts.

DMA Channel Selection

Direct Memory Access (DMA) is a high-speed method of transferring data from or to a peripheral, such
as adigitizing oscilloscope, to or from the PC'smemory. The AT class machine has seven DMA
channels. Channels 0-3 (8-hit), 5, 6, and 7 (16-hit) are available only in a 16-bit slot on a PC/AT-class
machine. Channel 2 is usually used by the floppy disk controller, and is unavailable. Channel 3is
often used by the hard disk controller in PCs, XTs, and the PS/2 with the I SA bus, but is usually not
used in ATs. Channels 5 through 7 are 16-bit DMA channels. They offer the highest throughput (up to
1 Megabyte per second). Channels 0 through 3 are 8-bit DMA channels. Although slower, they offer
compatibility with existing GP488B applications that only made use of 8-bit DMA channels. Under
some rare conditions, it is possible for high-speed transfers on DMA channel 1 to demand so much of
the available bus bandwidth that simultaneous access of a floppy controller will be starved for data due
to therelative priorities of the two channels. Both the DRQ and DACK jumpers must be set to the
desired DMA channel for proper operation. Configure the board according to which DMA channel is
available. The following figure shows settings for selecting the DMA channels.

5670123

5670123

5670123

ceeeecl

doeeess

celeest

DRQ

seeeil

deeeses

9 P

5670123

DMA 8-BIT
CHANNEL 3

5670123

DMA 16-BIT
CHANNEL 6

5670123

DMA 16-BIT
CHANNEL 7

DACK
5670123 5670123 5670123 5670123
DX X XX N (X RO N (XN XL R (XXX X IO
UL XXX N (X XX N (XX R LN XN X XL
DRQ
OLEX XXX N (X XL N (XX X IO N (XX X I
UL XXX N (X XL N (XX XN (XX X
5670123 5670123 5670123 5670123
DMA 16-BIT DMA 8-BIT DMA 8-BIT DMA 8-BIT
CHANNEL 5 CHANNEL 0 CHANNEL 1 CHANNEL 2
(DEFAULT)
DACK

Personal 488/AT DMA Selection

Board Installation

The |EEE 488 interface board(s) are installed into expansion slots inside the PC's system unit. PC/AT-
compatible computers have two types of expansion slots: 8-bit (with one card-edge receptacle), and 16-
bit (with two card-edge receptacles). Eight-bit boards, such as the | EEE 488 interface boards, may be
used in either type of dot, 8- or 16-bit. Some machines may have special 32-bit memory expansion
slots which should not be used for | EEE 488 interface boards.

Personal488 User’s Manual, Rev. 3.0 1-15

3. Personal488/AT I. HARDWARE GUIDES

Install each IEEE 488 interface board into the expansion slots as follows: Ensure the PC is turned off
and unplug the power cord. Remove the cover mounting screws from the rear of the PC system unit.
Remove the system unit cover by dliding it forward and tilting it upward.

A rear panel opening is provided at the end of each expansion dot for mounting 1/0 connectors. If a
dot isunused, this opening is covered by ametal plate held in place with a screw. Remove this screw
and the cover plate from the desired expansion slot, saving the screw.

Insert the |EEE 488 interface board carefully into the expansion dot, fitting the | EEE 488 connector
through the rear panel opening, and inserting its card edge into the motherboard card edge receptacle.
With the board firmly in place, fix its mounting bracket to the rear panel, using the screw removed from
the cover plate.

Slide the system unit cover back on, re-attaching it with the screws. Plug the power cord in and turn on
the PC. If al iswell, the system should boot normally. If not, carefully check that none of the I/0O
addresses conflict with any other devices or boards. If you are not sure, contact your PC's dealer or
manufacturer.

I-16

Personal488 User’s Manual, Rev. 3.0

I. HARDWARE GUIDES 4. Personal488/NB

4. Personal488/NB

@ The PaCKaAQgecooi it 1-17
e Hardware Installation (for Notebook, Laptop, & Desktop PCs)I-1

The Package

Personal488/NB, including the | EEE 488 interface hardware and the Driver488 software, is carefully
inspected, both mechanically and electrically, before shipment. When you receive the product, unpack
all items carefully from the shipping carton and check for any obvious signs of physical damage that
may have occurred during shipment. Report any such damage to the shipping agent immediately.
Remember to retain all shipping materialsin the event shipment back to the factory becomes necessary.

Personal 488/NB includes:

e NBA488 |EEE 488 Bus Interface Board

e Driver488 Software Disks (Driver488/DRV, Driver488/SUB & Driver488/\W31)

e Printer Port to Interface Cable (CA-35-2)

e Keyboard Port Power Adapter (CA-107)

e AC Power Adapter (TR-2)

e DIN-5to DIN-6 Adapter (CN-15-6) for CA-107 (Optional; Contact factory if required)
e Driver488 User's Manua

Hardware Installation (for Notebook, Laptop, & Desktop PCs)

Personal488/NB does not need to be disassembled during installation, as there are no internal switches
or controlsto set. Simply connect the Personal488/NB to any PC parallel printer port (female DB25)
by unplugging the printer cable and plugging the supplied cable's (CA-35-2) male end into the
computer and the female end into the mating connector on the Personal488/NB. Any printer port:
LPT1, LPT2, Or LPT3 may be used, but should be noted for future software installation. Next connect
the |EEE 488 cable to the mating connector on the Personal 488/NB.

Personal488/NB alows for LPT pass-through for simultaneous | EEE 488 instrument control and
printer operation. When using a printer in the system configuration, attach the original printer cable
(male DB25) into the remaining mating connector on the Personal 488/NB.

The Personal488/NB may be powered with a supplied cable (CA-107) from the PC’ s keyboard port or
viaa supplied external power unit (TR-2) that plugsinto any standard AC wall outlet.

If powering the unit through the PC keyboard port, attach the supplied power cord to the keyboard port
and connect to the power jack on the Personal488/NB. If using an AC power adapter, plug it into a
120 VAC outlet and attach the low voltage end to the jack on the Personal488/NB. The POWER LED
should now be on and hardware installation complete.

At power-on, the printer should behave normally and can be checked by issuing aPrint Screen
command (or any other convenient method of checking the printer). However, installation of the
software will be necessary before the Personal 488/NB can communicate with |EEE 488 instruments.

Once the NB488 isinstalled, a utility program has been included to help identify the LPT port type.
Software installation requires the user to specify whether the LPT port is astandard IBM
PC/XT/AT/PS/2 compatible port or a slower 4-bit option. Type NBTEST . EXE to run this program.

Personal488 User’s Manual, Rev. 3.0 1-17

5. Personal488/M M I. HARDWARE GUIDES

5. Personal488/MM

Topics
® The PacCKage. ... 1-18
e Hardware Installation (for PC/XT/AT) ..o 1-18
Installation & Configuration of the Interface Card..................cccoevvennnnnnn. 1-18
DefaUlt SETUINQOS ettt e e e e eaa e e e e aaaeees 1-18
1/0 Base AAAress SeleCtion..........cooooiiiiiiiiiiiii 1-19
INTErTUPTE SEIECTION ...uu e 1-20
DMA Channel SeleCION.........uuiiiiiiiiiiiiiiiiiiiiieiiiieeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeee 1-20
Internal CIOoCK SEIeCtiONoiiiiiii e e 1-21
2Tor= 1o I F oS = 1l =1 A o] o PP PPPPPPPPPIN 1-21

The Package

Personal488/MM, including | EEE 488 interface board and Driver488 software, is carefully inspected,
both physically and electronically, before shipment. When you receive the product, carefully remove
all items carefully from the shipping carton and check for any obvious signs of physical damage that
may have occurred during shipment. Report any such damage to the shipping agent immediately.
Remember to retain all shipping materialsin the event shipment back to the factory becomes necessary.

The Personal488/MM includes:
e (GP488/MM |IEEE 488 Bus Interface Board

e Driver488 Software Disks
(Driver488/DRV, Driver488/SUB, Driver488/W31 & Driver488/W95)

e Persona488 User's Manual

Hardware Installation (for PC/XT/AT)

Installation & Configuration of the Interface Card

The following paragraphs explain configuration and physical installation of the interface card.
Software installation and setup are covered in a separate section. After configuring your board, please
make note of the following. Thisinformation is needed for Driver488 software installation.

e |/OBase Address

e Interrupt Channel

e DMA channel, if applicable

e Whether or not the board is the System Controller

Note: The GP488/MM is only compatible with the Ampro PC/104. The board includes one DIP
switch, two 12-pin headers and one 3-pin header, labeled SW1, JP2, JP3, and JP1,
respectively. The DIP switch setting, along with the arrangement of the jumpers on the
headers, set the hardware configuration.

1-18 Personal488 User’s Manual, Rev. 3.0

I. HARDWARE GUIDES 5. Personal488/MM

Default Settings

There are presently two revision levels of GP488/MM board, Rev. A and Rev. B. The following figure
indicates the GP488/MM default configuration on a Rev. B board. The configuration is the same for

Rev. B Board (see note) JP3 JP1
SW1 o o]2
O T © o|3 E
<~ S © o 14
o ols
1/0 Port o ols On-board
&h02E1 [0 o] 7 8 MHz Clock
DMA Interrupt
Channel 1 Level 7

Note: On Rev. A Boards JP2 and JP3
labels are reversed.

GP488/MM Default Settings

Rev. A, however, on Rev. A boards the JP2 and JP3 |abels are reversed from that illustrated. Switch
SW1 controls the wait state generation and the |/O base address and interrupt response level. Onthe
Rev. B board, JP2 sets the interrupt request level and JP3 selects the DMA channel. On Rev. A boards,
the JP2 and JP3 labels are reversed from those shown in the following diagram. For both board
revision levels JP1 selects the clock source.

1/0O Base Address Selection

The 1/O base address sets the addresses used by the computer to communicate with the | EEE 488
interface hardware on the board. The addressis normally specified in hexadecimal and can be 02E1,
22E1, 42E1, or 62E1. Theregisters of the |OT7210 |EEE 488 controller chip and other auxiliary
registers are then located at fixed offsets from the base address.

Most versions of Driver488 are capable of managing as many as four |EEE 488 interface boards. To
do s0, the board configurations must be arranged to avoid conflict among themselves. No two boards
may have the same 1/0O address, but they may, and usually should, have the sasme DMA channel and
interrupt level.

The factory default 1/0 base addressis 02E1. To use another, set SW1 switches 4 and 5 according to
the following table and figure.

I/O Base Address Register
02E1 22E1 42E1 62E1 Read Reg|s[er Write Reg|§er
02E1 22E1 42E1 62E1 Dataln Data Out
06E1 26E1 46E1 66E1 Interrupt Status 1 Interrupt Mask 1
0AE1l 2AEl 4AEl 6AEL Interrupt Status Interrupt Mask 2
OEE1 2EE1 4EE1 6EE1 Serial Poll Status Seria Poll Mode
12E1 32E1 52E1 72E1 Address Status Address Mode
16E1 36E1 56E1 76E1 CMD Pass Through Auxiliary Mode
1AE1 3AE1 5AE1 7AE1 Address 0 Address 0/1
1EE1 3EE1l S5EE1l 7EE1 Address 1 End of Stri ng

Personal488 User’s Manual, Rev. 3.0 1-19

5. Personal488/M M

I. HARDWARE GUIDES

SWH1 Configurations

A Z
S Nl

1/0 Port
&h22E1

1 2
L)

I/0 Port
&h42E1

oL

OPEN

I/0 Port
&h62E1

GP488/MM I/O Base Address Settings

Interrupt Selection

The GP488/MM interface board may be set to interrupt the PC on the occurrence of certain hardware
conditions. Thelevel of the interrupt generated is set by JP3 on Rev. B boards (JP2 on Rev. A boards).
The GP488/MM interface board adheres to the “AT-style” interrupt sharing conventions. When an
interrupt occurs, the interrupting device must be reset by writing to 1/0 address 02Fx, where X isthe
interrupt level (from 0-7). Thisinterrupt response level is set by switches 1, 2, and 3 of SW1 which
must be set to correspond to the JP3 (Rev. B board) interrupt level setting. Interrupt selection for a
Rev. B board isillustrated in the following figure.

Note: The jumper label would read JP2 for Rev. A boards.
JP2 1o o2 [e_e]]2 o o)2 |o o])2 o o]2 o o]2 o o])2
o o3 003|00|3 o o]3 o o]3 o o]3 o o3
o o |4 o o |4 o o4 |e e]l4 o o |4 o o |4 o o |4
o o5 o ol]s o ols 005|..|5 o o5 o ols
o olp o ols o o6 o ols o o6 ..|6 e|lo |6
EI 7 o ol7 o ol7 o ol7 o ol7 o ol7 ol)7
SW1 | o—— P — P — P — P — e — P —
[E— N N N N [— N
(o I— (o I— (o I— o] (o I— o] o]
W F | 1F (w13 |w—1F |([wC—F |w__ 13 |w_— 13
S N § (e S| (e S| ([8] (e Y (e S
2 N O Ll =N 2 Nl 2 N P N N
N LA AT NN N AT Nl
 ” N L P N\ ~Th) T Ll [l
Interrupt Interrupt Interrupt Interrupt Interrupt Interrupt Interrupts
Level 7 Level 2 Level 3 Level 4 Level 5 Level 6 Disabled
(Default)
GP488/MM Interrupt Selection
DMA Channel Selection
Direct Memory Access (DMA) is a high-speed method of ~ JP3 JP3 JP3 JP3
transferring data from or to a peripheral, such asa '_'I o © o ©
digitizing oscilloscope, to or from the PC’'s memory. (: ; f f 2 ©
The factory default selection is DMA channel 1. Note o o ﬁ‘ o 2
that jumper JP2 is used to configure revision B boards o o S O o elo
while the jumper labeled JP3 is used to select the DMA o o o o o elo
channel on version A boards.]
DMA 1 DMA 2 DMA 3 Disabled
Note: Check your computer documentation to ensure (Default)

the selected DMA channel is not being used by
another device. The GP488B/MM board has

circuitry which allows for more than one

GP488/MM board to share the same channel.
Most computers use DMA channel 2 for floppy
disk drives, making that channel unavailable.

GP488/MM DMA Selection

[-20

Personal488 User’s Manual, Rev. 3.0

I. HARDWARE GUIDES 5. Personal488/MM

Internal Clock Selection
The |EEE 488 bus interface circuitry requires amaster clock. This

clock is normally connected to an on-board 8 MHz clock oscillator. P P
However, some compatible | EEE 488 interface boards connect this E

clock to the PC's own clock signal. Using the PC clock to drive E

the | EEE 488 bus clock is not recommended because the PC clock

frequency depends on the model of computer. A standard PC hasa On-board System Clock
4.77 MHz clock, while an AT might have a6 MHz or 8 MHz 8 MHz Clock from
clock. Other manufacturers computers may have almost any (Defaulf) Main Board

frequency clock. If you are using a software package designed for ~ps0/m/ns Internal Clock Selection
an interface board (that derived its clock from the PC clock) and

you need to do the same to use GP488/MM with that particular

software, the clock source can be changed. However, the clock frequency must never be greater than 8
MHz, and clock frequency must be correctly entered in the Driver488 software.

Board Installation

| EEE 488 interface board(s) are installed into expansion slots Pin 1
inside the PC’ s system unit. PC/AT-compatible computers have D}

To IEEE 488

two types of expansion slots: 8-bit (with one card-edge
Connector

receptacle), and 16-bit (with two card-edge receptacles). Eight-
bit boards, such as the | EEE 488 interface boards, may be used SW1

in either type of dot, 8- or 16-bit. Some machines may have JP1
special 32-bit memory expansion slots which should not be used JP3 P2

for IEEE 488 interface boards. =

Install each IEEE 488 interface board into the expansion slots as

follows: Ensure the PC is turned off and unplug the power cord. IEEE 488 Connection
Remove the cover mounting screws from the rear of the PC

system unit. Remove the system unit cover by sliding it forward and tilting it upward.

A rear panel opening is provided at the end of each expansion slot for mounting 1/0 connectors. If a
dot isunused, this opening is covered by ametal plate held in place with a screw. Remove this screw
and the cover plate from the desired expansion slot, saving the screw.

Insert the |EEE 488 interface board carefully into the expansion dot, fitting the | EEE 488 connector
through the rear panel opening, and inserting its card edge into the motherboard card edge receptacle.
With the board firmly in place, fix its mounting bracket to the rear panel, using the screw removed from
the cover plate.

Slide the system unit cover back on, re-attaching it with the screws. Plug the power cord in and turn on
the PC. If al iswell, the system should boot normally. If not, carefully check that none of the I/O
addresses conflict with any other devices or boards. If you are not sure, contact your PC's dealer or
manufacturer.

Personal488 User’s Manual, Rev. 3.0 1-21

6. Personal488/CARD I. HARDWARE GUIDES

6.

Personal488/CARD

Topics
L I o 1o = Vo = T [1-22
LI o o oo 16 Tox o o) i TR 1-22
e Hardware Installation (for Notebook & Desktop PCS)............ 1-23
INtErfaces & CONNECTOIS.......couuiiiieeeieeeee et e e e e e e e e e e e e e eeanees 1-23
Interface Cable CONNECLIONuiiiiiiiieecee e 1-23
INStallation INTO @ PC. ..ot e e e ea e eaeaees 1-24
Interface Cable & IEEE 488 ACCESSONIEScocccvvuiieiiiiieeieriiieeeetinieeesreeeeenens 1-24
o Software INstallationcoooiviiiiii e 1-24
INitialization SOTEWAE.........ooiiii e 1-24
Configuration SOTtWAIE.........coouiiiiii e e e e e 1-27
L | Vo o To] = 1 T Y/ 1-29

The Package

The Personal 488/ CARD components were carefully inspected prior to shipment. After receiving your
order, carefully unpack all items from the shipping carton and check for any signs of physical damage
which may have occurred during shipment. Immediately report any damage to the shipping agent.

Retain all shipping materialsin case you must return the unit to the factory. If the unit is damaged, a
RMA # (Return Material Authorization Number) must be obtained before returning it. An RMA # can
be obtained by calling (216) 439-4091 or your sales representative.

Every Personal488/CARD is shipped with the following items:
e |EEE 488 PCMCIA interface Card

o Interface Cable (CA-137)

e Initialization Software: Client Driver, and Enabler

e Driver Software (Programming Support including Configuration Utilities):
Driver488/DRV, Driver488/W31, and Driver488/SUB

e Personal488 User's Manua

Introduction

The Personal488/CARD is alow-power Type Il PCMCIA |EEE 488 interface that enables | EEE 488.2
control from notebook and desktop PCs. This card plugsinto any Type Il (5mm) PCMCIA socket and
is PCMCIA PC Card Standard Specification 2.1 compliant. CardSoft™ Card and Socket services are
available on the majority of notebook PCs currently sold. If your notebook has different software, you
may purchase the CardSoft™ software from the Personal 488/CARD manufacturer. The
Personal488/CARD does not require an | SA-bus expansion slot or external power.

The Personal488/CARD is highly flexible with respect to 1/O addressing and interrupt level use. It can,
by default, automatically configure itself upon insertion into your notebook or desktop PC or upon
system startup. I1n addition, users may specify any interrupt level and any 1/O space base address for
the Personal488/CARD. The card permits “Hot-Swapping”, that is, insertion of the PCMCIA card
while the system is powered.

[-22

Personal488 User’s Manual, Rev. 3.0

I. HARDWARE GUIDES 6. Personal488/CARD

Hardware Installation (for Notebook & Desktop PCs)

Hardware installation topics are covered in the following paragraphs. It is strongly suggested that you
read and perform the following instructions to assure the proper installation and usage of the
Personal 488/CARD.

The hardware installation topics include:

¢ Personal488/CARD-to-Interface Cable connection

e Installation of Personal488/CARD into PC

o |nterface Cable connection with |EEE 488 compatible accessories

The plug and play operation of the Personal488/CARD allows for the operating parameters to be
configured via software, circumventing the need for switch or jumper settings.

IEEE 488
Connector

Interfaces & Connectors

The Personal 488/CARD is shipped with an interface
cable (CA-137) that permits the card to directly
interface with up to fourteen (14) |IEEE 488
instruments.

The PCMCIA card connects to the CA-137 cable via
the female slot connector found along its “bottom”
edge, as shown in the figure. The unit itself, being a
PCMCIA socket card, congtitutes a Type |1 (5mm)
PCMCIA socket interface.

The opposite end of the CA-137 Interface Cable is
terminated in an | EEE 488 connector with metric
studs. A pin-out of this connector is provided below.

[[Recepiacis] [

Housing

Personal488/CARD
Bottom Edge

CA-137
Interface Cable

Personal488/CARD and Interface Cable

Interface Cable Connection
Follow the instructions below to connect the Personal 488/CARD to the Interface Cable (CA-137).

Note: The PCMCIA Card and the Slot NRFD DAV
Connector End of the Interface NDAC EOI
IFC DIO4
Cable are keyed to ensure proper SRQ— ——DIO3
connection. The card and cable SHIELD | " Dor
should connect easily and fit
snug. DO NOT forcethe

PCMCIA Card / Interface @\\!//@

Cable mating. Refer to the
figures on this page while &
performing these instructions.

Signal Ground — —DIO5
P/O Twisted Pair with 11— —DIO6
1. Inonehand, hold the PCMCIA Card /0 Twisted Pair with 10— ——DIO7
. P/O Twisted Pair with 9 DIO8
so that the company logo is face up PIO Twisted Pair with 8 REN
H P/O Twisted Pair with 7
and the bottom edge of the card is PIO Turstod Pair with 6

facing you.

2. Inthe other hand, hold the Slot
Connector End of the Interface Cable
so that the groove (keyed portion of the connector) is face down and the company logo is face up.

3. Pressthe Slot Connector into the PCMCIA Card. The Personal488/CARD should now be firmly
connected to the Interface Cable.

IEEE 488 Connector Pin-Out

Personal488 User’s Manual, Rev. 3.0 1-23

6. Personal488/CARD I. HARDWARE GUIDES

Note: The slot connector is keyed to match the PCMCIA Card so that an improper connection can
not be made. Therefore, DO NOT for ce this connection as damage may result! For proper
contact, the connection of the card and cable must be snug.

Installation into a PC

With your PC powered-down (turned off), install your Personal488/CARD using the instructions
provided below.

Note: If the Client Driver Software is used, you are not required to power down your PC before
installing the Personal488/CARD. The Client Driver Software enables insertion and removal
of the card into any Type Il socket at any time, and automatically configures the card upon its
insertion (“Hot-Swapping”).

Note: Enabler Software, on the other hand, does not allow “Hot-Swapping.” More detailed
information is provided later in this chapter.

Note: “Hot-Swapping” refersto the insertion and removal of the PCMCIA card while the system is
powered.

1. With your PC powered down (turned off), insert the PCMCIA Card into the PCMCIA socket with
the company logo face up (for most Notebook PCs).

2. Pushthe PCMCIA Card into the PCMCIA socket asif you were loading a diskette into a diskette
drive. Stop oncethe card is engaged into the socket. Thisis marked by hearing a*“click” and
seeing that the socket gject button has been engaged (pushed out).

Note: CardSoft™ Card and Socket Services are available on the magjority of notebook PCs currently
sold. If your notebook hasincompatible software, you may purchase the CardSoft™ software
from the Personal488/CARD manufacturer.

Interface Cable & IEEE 488 Accessories

Only |EEE 488 compatible accessories (instruments) can interface with the Personal 488/CARD. The
Personal488/CARD and cable permit afan-out of fourteen (14) directly interfaced | EEE 488
instruments.

1. Plug the IEEE 488 connector end of the Interface Cable into any compatible | EEE 488 accessories.

2. With your fingers and/or applicable flat bladed screw driver, tighten the screw pins (metric studs)
located on the | EEE 488 connector to secure the connection.

Note: You will need additional IEEE 488 interface cables (terminated at both ends with |EEE 488
connectors) for subsequent |EEE 488 instruments.

At this point, the default configuration of the Personal488/CARD will be used. The default
configuration is the initialization of the “CARD” upon system boot-up having not used the Client
Driver or Enabler to make changesto the“ CARD’S’ settings. Once al connections have been
checked for correctness, the “system” can be powered up. |If communication problems exist dueto
initialization conflicts, the Client Driver or Enabler will haveto be installed in order to make
initialization changes. This subject is covered in the following paragraphs.

Note: The Client Driver or Enabler is needed even if there are no configuration conflicts but adesire
to change the Personal488/CARD’ s configuration to meet predetermined specifications and/or
needs.

Software Installation

The Personal488/CARD is provided with both Initialization and Configuration Software (the
Configuration Software is driver specific and therefore included with each driver). Thistext introduces
support for the Initialization Software (Client Driver and Enabler). For more information, refer to the
driver-specific “Installation & Configuration” Sub-Chapters found in Chapters 8 through 12. The

[-24

Personal488 User’s Manual, Rev. 3.0

I. HARDWARE GUIDES 6. Personal488/CARD

following drivers are available for the Personal 488/CARD: Driver488/DRV, Driver488/SUB, and
Driver488/W31.

Initialization Software

Initialization of the Personal488/CARD is software oriented. The Client Driver and Enabler files
conform to the PCMCIA (PC Card) Card Services Specification 2.1. When used with CardSoft™ Card
and Socket Services (or compatible) software, the Personal488/CARD automatically configures itself
upon system start-up. The use of CardSoft™ is not required, however, the chosen utility software must
be compatible with the PCMCIA (PC Card) Card Services Specification 2.1.

If you need to control which resources the Personal488/CARD utilizes, you must load either the Client
Driver or Enabler, but not both. The Personal488/CARD’ s resources are IRQ level, base 1/0 port
address for sixteen consecutive ports, and PCMCIA Type |1 socket number (with O being the first
socket).

Using the Client Driver

The Client Driver setsthe IRQ, Socket # (if more than one PCMCIA socket is available), and an I/0O
Address Range for communication purposes. The settings which result are referred to as default.
There is no predetermined default setting since these settings depend on what the Client Driver finds
vacant and, therefore, usable. This does not take into account transparent devices not seen by the
Client Driver.

Note: Depending on your system configuration, the default settings may conflict with the IRQ,
Socket #, and |/O Address Range that your system has already allocated to another device. If
thisisthe case, change the initialization settings as described below.

Using the Enabler

The Enabler performs the same function of setting up the needed system resources as the Client Driver,
but in amore direct and somewhat limited way. The only real advantage of using the Enabler isthe
amount of PC memory rescued (about 7 kb). This memory would be used indefinitely by the Client
Driver, since the Client Driver must store a program in memory to manage “Hot-Swapping.” If the
Card and Socket Services are only needed for the Client Driver, you could save more memory by not
loading them when using the Enabler.

On the down side of using the Enabler, the Personal488/Card must be installed before you run the
Enabler. Also, every time the Personal488/Card is removed, and reinstalled, the Enabler must be run.

The Enabler requires explicit IRQ, Socket #, and 1/0O Address Range parameters. If Card and Socket
Services are running, they will not know that the Enabler allocated some resources, and may therefore
allocate them to another device.

Changing I nitialization Settings

Use the following steps to change the initialization settings, or to initialize the Personal 488/ CARD
system to your specifications and/or needs.

Note: If your PC hasavalid version of PCMCIA Card and Socket Services software, itis
recommended that you use Client Driver, since Client Driver supports

Note: “Hot-Swapping” refersto the insertion and removal of the PCMCIA card while the system is
powered.

1. Choose between the Client Driver (1oT488CL.sYS) or Enabler (1oT488EN. EXE) files asto which
one best suits your needs. The choice heavily depends upon the host computer environment and
the desire for Plug and Play functionality.

2. If you choose the Client Driver file option, you will need to update your conF1c. sys file by
adding the following command line:

DEVICE=path\IOT488CL.SYS options

Personal488 User’s Manual, Rev. 3.0 1-25

6. Personal488/CARD I. HARDWARE GUIDES

3. The Personal488/CARD must be installed before using the Enabler. Theinitialization is only valid
aslong as the Personal 488/CARD is present. Y ou will need to update your AUTOEXEC . BAT file
with the following command line:

path\IOT488EN.EXE options

Client Driver
The Client Driver has the following conrFic. sys file line syntax:

DEVICE=path\IOT488CL.SYS [(GROUP) [(GROUP) [... 111

where the following parts are described as follows:

Part Client Driver Description

GROUP [ITEM[, ITEM[, ITEM]]]

ITEM Sxx | Bxxx | Ixx

Sxx The socket number, xx in [0...15], default to any available socket, if omitted.

Bxxx The 1/0 base address (hex), xxx in [100...3F0], default to any available I/O
address, if omitted.

Ixx ThelRQ level, xx in [0...151, 0 means no interrupt, default to any available IRQ
level, if omitted.

IOT488CL.SYS

The simplest command line, shown above, will configure the card in any PCMCIA socket with
available consecutive 16 bytesin the system 1/O space, and an available IRQ level. Note that you
should not assume the resource selections will always be the same.

I0T488CL.SYS (s0,b300,1i5)

The command line above will configure the card in socket O with 1/O base address at 3001 and IRQ
level 5, if those resources are available.

I0T488CL.SYS (b300,1i5) (i10) ()

This command line tells the client driver to configure the card in any socket with a base address of
300H and IRQ 5. If not available, the client driver will then try to configure it with a base address and
socket number assigned by the Card and Socket Servicesand IRQ 10. If IRQ 10is not available, the
Client Driver will then try to configure the card with a base address, socket number, and an IRQ level
assigned by the Card and Socket Services.

Space characters are only allowed in between the groups, not inside agroup. The items within a group
are separated by a single comma. The order of itemsin a group does not make any difference. Nor are
the charactersin an item case sensitive.

Enabler

The command line syntax for the Enabler is similar to that used by the Client Driver.
DEVICE=path\IOT488EN.EXE (Sxx,Bxxx, Ixx[,Wxx])

where the following parts are described as follows:

Part Enabler Description

GROUP [ITEM[, ITEM[, ITEM]]]

ITEM Sxx | Bxxx | Ixx

Sxx The same as the Client Driver syntax, except it must be specified to enable the card.

Bxxx The same as the Client Driver syntax, except it must be specified to enable the card.

Ixx The same as the Client Driver syntax, except it must be specified to enable the card.

Wxx Specifies the PCIC memory window, xx (hex) in [80. . .EF], default to DO if
omitted.

IOT488EN.EXE (Sxx,RI[,Wxx])

1-26 Personal488 User’s Manual, Rev. 3.0

I. HARDWARE GUIDES 6. Personal488/CARD

To reset the card, the command line syntax above can be used, in which R isthe reset switch. Socket
number must be specified, but wxx can be omitted (default memory window at DOOOOH). After
executing an T10T488EN. EXE command with the reset option, 10T488EN. EXE must be run again to set
the card’ s resources.

IOT488EN.EXE (s0,r)

This command line resets the card in socket O (default memory window at DOOOOH),
IOT488EN.EXE (sl,r,wc8)

This command line resets the card in socket 1 (with PCIC memory window at C8000H).

Configuration Software

For ease of use, thistext repeats material found in the driver-specific “Installation & Configuration”
Sub-Chapters found in Chapters 8 through 12 of this manual. In addition, thistext includes
Personal488/CARD information not contained el sewhere. Aside from this chapter on
Personal488/CARD, you should also read through the “External Device Interfacing” Sub-Chapters
found in Chapters 8, 9, and 10 of this manual.

Configuration Utility

The configuration utility permits you to specify the Driver488 system configuration, add interfaces,
define external devices, etc. It does so by modifying the Driver488 startup configuration and is
specified in aWindows-style initialization file named brRvrR488 . INI. Thefirst screen of the
CONFIG.EXE program is used to enter the configuration settings so the Driver488 software can be
correctly modified to reflect the state of the hardware.

The driver can be reconfigured at any time by running the coNF1G. EXE program. Changesto the
configuration will not be recognized by the driver until the driver is unloaded and reloaded. Typically,
thisis accomplished by rebooting your computer or using the utilities MARKDRVR and REMDRVR. For
details regarding utilities, refer to the “Utility Programs’ Sub-Chapters found in Chapters 8, 9, and 10
of this manual

To start the coNF1e program, type coNFIe within the directory in which the configuration utility
resides, typically c: \IEEE488.

The minimum requirement for configuring your system isto make certain that your Personal 488/ CARD
is selected under “Device Type.” The default settingsin al of the other fields match those of the
interface as shipped from the factory. If you are unsure of a setting, it is recommended that you leave it
asis.

Interfaces and External Devices

The conF1e program can configure both interfaces and external devices. Interfaces are the
Personal488/Card and serial ports. External devices are instruments or other devices attached to the
|EEE 488 bus or the MP488(CT) Counter/Timers and Digital 1/O devices.

Configuration Program Screens

In general, all Driver488 configuration utility screens have three main windows: the “name” of the
interfaces or devices on the left, the “ configuration” window on the right, and the “instruction” window
at the bottom of the screen. Based on current cursor position, the valid keys for each window will
display in the Instructions box.

To begin the interface configuration, move the cursor in the name window to select an interface
description for modification. (Interfaces can be added or deleted using <F3> and <F4>). Notice
moving the cursor up and down the list of interfaces or devices in the left window changes the
parameters in the configuration window. The configuration fields always correspond with the currently
selected interface and device type.

Once all modifications have been made to the configuration screen, <F10> must be pressed to accept
the changes made or <F9> can be pressed to exit without saving any change. Additional function keys

Personal488 User’s Manual, Rev. 3.0 1-27

6. Personal488/CARD I. HARDWARE GUIDES

allow the user to continue onto the configuration of external devicesvia <F5> or to view agraphic
representation of the interface card with the selected settings via <F7>.

Configuring Driver 488 I nterfaces

Driver488 supports two types of interfaces: IEEE and Serial. Once the CONFIG.EXE programis
entered, highlight the Device Type selection from the Configuration Window and choose the
CARDA488 option from the resulting pop-up menu. The Driver488/DRV screen, shown next, or one
similar, will be displayed.

Once an interface is selected, the fields and default entries which appear in the configuration window
depend on the device type specified. To add another |EEE interface, select <F3>. If you will be using
more than one interface, refer to other sections of this manual for additional information, as needed.
The configuration parameters of the |EEE interface are described following the figure of the
Driver488/DRV screen.

Configuration Parameters

e Name Thisfieldisa
descriptive instrument Driver488/DRV Configuration Utility Version X.X All Rights Reserved
namewhichis Interfaces Configuration
manually assigned by >|EEE Name: IEEE
. IEEE2 IEEE Bus Add 21
the user. This must be us Address
i Interrupt: 7
aun_lque name. SysController (X) Fill Mode
Typically, IEEE or Lightpen X (off
. Timeout (ms): 10000 () Error
coMmisused (upto 8 Device Type: CARD488 (X) 00
-- /0 Address --
characters). IEEE 488 0300
e |EEE BusAddress: Wait State None
Thisisthe setti ng for Bus Terms Buffer Terms
n Out In Out
the | EEE bus address Char EX))CCRR LF EX))CCRR LF |Char EX))CCRR LF EX)gchR LF
of the board. It will be F3: Add interface board E gk‘F 5 ;H: E ;IIZJF g gk‘F
1 one one one one
Cha:ked agal ng a” the F4: Delete selected board ()OD OA()OD 0A ()OD OA()OD 0A
instruments on the bus ' Eol_(X) (X)
for conflicts. 1t must
H P ight 1 di t fi this interf:
be avalid |IEEE bus F5. Configute Extemdl Doviees 7. umber atinge Fo! Qut FI0F Save & Exit
addressfrom o to 30.

° Interr Upt: A Configuration of Personal488/CARD

hardware interrupt

level can be specified to improve the efficiency of the I/O adapter control and communication
using Driver488. Personal488/CARDs may not share the same interrupt level. If no interrupt level
isto be used, select NONE. Valid interrupt levels depend on the type of interface, since interrupt
sharing is not permitted in the PCMCIA 2.1 specification. Settings are as follows: Levels 3-7,
Levels9-12, Levels 14-15, or NONE.

e SysController: Thisfield determines whether or not the Personal488/CARD isto be the System
Controller. The system controller has ultimate control of the IEEE 488 bus, and the ability of
asserting the interface clear (1Fc) and remote enable (REN) signals. Each IEEE 488 bus can have
only one system controller. If the PCMCIA |EEE Card is a peripheral, it may still take control of
the IEEE 488 bus if the Active Controller passes control to it. The “CARD” may then control the
bus and, when it is done, pass control back to the System Controller or another controller, which
then becomes the active controller. If the “CARD” will be operating in Peripheral mode (not
System Controller), leave thisfield blank.

e LightPen: Thisfield determines whether the LightPen command isto be used. If selected, it will
disable the detection of interrupts via setting the light pen status. The default islight pen interrupt
enabled.

e Timeout (ms): Thetime out period isthe amount of time that data transfers wait before assuming
that the device does not transfer data. 1f the time out period el apses while waiting to transfer data,

1-28 Personal488 User’s Manual, Rev. 3.0

I. HARDWARE GUIDES 6. Personal488/CARD

an error signal occurs. Thisfield isthe default timeout for any bus request or action, measured in
milliseconds. If no timeout is desired, the value may be set to zero.

e Device Type: Thisfield specifiesthe type of board or module, in this case a Personal 488/CARD
(CARDA488), represented by the |EEE device name selected.

1/0 Address

e |EEE 488: Thisfield isthe /O base address which sets the addresses used by the computer to
communicate with the |EEE interface hardware on the board. The addressis specified in
hexadecimal and can be 100 through 3FO0 on even 16-byte boundaries (those ending in 0). The
Personal488/CARD uses sixteen (16) consecutive 1/O ports.

Note: Since many 1/O portsin the allowed range are [or may be] in use by other system hardware,
we recommend using port 300 to 360 hex. Using a port already in use could cause loss of
data, or physical damage.

o Wait State; Wait States can be generated if IEEE 488 bus 1/0O synchronization between the
Personal488/CARD and PC isanissue. It should be noted that the time out specification is
independent of wait state(s). The Personal488/CARD is fast enough to be compatible with
virtually every PC/XT/AT-compatible computer on the market. Even if the computer isvery fast,
the processor is normally slowed to 8 MHz or bel ow when accessing the 1/0O channel. If thel/O
channel runs faster than 8 MHz, it may be faster than the Personal 488/CARD. If thisisa
suspected problem, the computer can be made to wait for the “CARD” by enabling wait states.
Increasing the number of wait states slows down the access to the “CARD”. The overall resultant
performance degradation is usually only afew percent.

e BusTerminators: The |EEE 488 bus terminators specify the characters and/or end-or-identify
(moz) signal that are to be appended to data that is sent to the external device, or mark the end of
datathat is received from the external device.

In conclusion, to save your changes to disk press <F10>. All changeswill be saved in the directory
where you installed Driver488. If at any time you wish to alter your Driver488 configuration, simply
rerun coNFIG. The changes made will not take effect until the system isrebooted (Warm or Cold).

Driver488/W 31 Configuration Utility

The configuration utility provided with Driver488/W31 has been updated to provide a familiar
Windows user interface. The interface contains the same characteristics as the DOS configuration
program, however, the file storage differs as indicated by the table below.

Driver File Storage
Driver Version File Name File L ocation
Windows DRVR488W.INI WIN.coM (in Windows Directory)
DOS DRVR488.INI CONFIG.EXE (in assigned directory)
Functionality

The Personal 488/CARD transfers data to the host computer viathe PCMCIA interface. Thisinterface
provides access to the PC’ s data bus, allowing real-time data collection and storageto disk at 1.0 M
byte/sec.

The Personal488/CARD built-in 7210 controller device controls the |EEE 488 bus using the I0OT7210
Controller Chip, which is 100% compatible with the NEC pPD7210. However, the |IOT 7210 exhibits
better performance and lower power consumption.

The programmed /O mode allows the host computer to acquire individual data samples or large blocks
of data under application control.

Personal488 User’s Manual, Rev. 3.0 1-29

6. Personal488/CARD I. HARDWARE GUIDES

Theinterrupt transfer mode allows the host computer to perform other tasks until the
Personal488/CARD has sent or received a programmed amount of data. This mode provides the most
efficient use of computer resources and data transfer.

Note: For more information on the functionality of the Personal488/CARD, refer to the “Data
Transfers,” “Operating Modes,” and “Command Descriptions’ Sub-Chapters found in
Chapters 8 and 9 of this manual.

1-30 Personal488 User’s Manual, Rev. 3.0

Section |IlI:

SOFTWARE GUIDES

11-32 Personal488 User’s Manual, Rev. 3.0

Personal488 User’s Manual, Rev. 3.0 11-33

Driver488/DRV Software Guides
II. SOFTWARE GUIDES
Chapters
AR © 1V /=Y oV =1 P 11-33
8. DIIVEIA88/DRV ... 11-34
9. DIIVEIr488/SUB ... 11-133
10. DIFIVEIA88/W3L.. ..ot e 11-191
11, DriIVErA88/WOS.... ..o e 11-257
12, DriVEr488/WNT ..o e 11-258

1.

Overview

The Software Guides section contains chapters pertaining to various Driver488 software. Information
includes instruction for installation and configuration, device interfacing, and APl (Application
Program Interface) command references. Note that more detailed topic-specific tables of contents are
included with each of the topicsidentified above.

In addition to this manual, Power488 and PowerCT users receive a manual supplement describing the
Standard Commands for Programmable | nstruments (SCPI) command set and the IOTTIMER.DLL, a
Microsoft Windows Dynamic Link Library of functions.

11-34

Personal488 User’s Manual, Rev. 3.0

I1. SOFTWARE GUIDES 8. Driver4838/DRV

8.

Driver488/DRV

Sub-Chapters

BA. INrodUCTIONcooiiii i 11-34
8B. Installation & Configuration...........ccccccceeiiiiiiiiiieeeeicee e, 11-35
8C. External Device InterfaCing........ccccvvviiiiiiiiiieiieeeeciee e 11-45
8D. Getting Started.........ccooooeiiiiiice e 11-49
BE. MICrosSOft C ...ooooiiiiiiii 11-53
8F. MICrosoft FOrtranccccooiiiiii, 11-63
8G. QUICKBASIC ... 11-64
BH. TUIDO Cooeeeeeiiieeeeee e 11-71
8l. Turbo Pascal ... 11-82
8J. SpreadsheEets..........iiiiii i 11-90
BK. Other LangQuages.........cccoviviiiiiiiiiie e 11-95
8L. Language-Specific Information................cccevvvvvviiiiiiineeeenn, 11-104
BM. Data Transfers....... 11-108
8N. Operating MOOEScccoooeiiieeeeice e 11-115
80. ULIILY Programsccoooiiiiiiiiiiee et 11-120
8P. Command DeSCriptiONSccceiiiiiiiiiiieiiiiiie e 11-124
8Q. Command ReferencCeccoovviiiiiiiiii i 11-132
8A. Introduction

Driver488 represents a family of software drivers for IEEE 488 interfaces and other peripherals,
emphasizing a consistent, easy to use interface to simplify |EEE 488 instrument control and application
program development. Different versions of the driver are available to suit almost any application. For
maximum functionality and ease of use, aresident driver is accessible via both Character Command
Language (CCL) and subroutine callsto control a multitude of |EEE 488 interfaces and other
instruments. At the opposite extreme isa small, fast driver entirely linked to the application program,
which can control just one |EEE 488 interface and instruments attached thereto. Portability of any
given application among the Driver488 family membersis ensured with a consistent interface, which
allows an application using CCL to use any driver offering that interface with minimal change.
Similarly, any application using the subroutine interface would require little if any change to be used
with another version of Driver488.

Driver488/DRV uses HP (Hewlett-Packard) style commands which simplify |EEE 488 instrument
control and application development by transparently executing multiple low-level bus management
tasks, shielding the user form the complexities of |EEE 488 protocol. These commands can be used in
application programs written in any popular software language. Driver488/DRV features a menu-
driven installation/configuration program with options for programming language; type and number of
hardware interfaces (IEEE 488 board type and options); and external devices, such as time out limits,
terminators, symbolic device names, and device numeric addresses.

To get optimal use of your PC's conventional 640K byte memory, Driver488/DRV automatically
detects and loads itself into high memory when used with a system employing DOS 5.0 or higher.

Driver488/DRV provides PC serial (COM) port support, enabling direct serial communication from
programming languages and spreadsheets. In addition, Driver488/DRV supports asynchronous

Personal488 User’s Manual, Rev. 3.0 11-35

8A. Overview I1. SOFTWARE GUIDES - 8. Driver488/DRV

communication and automatic program vectoring to service routines for Basic, C and Pascal programs.
For example, upon the occurrence of a specified event, such as srRQ, TRIGGER, TALK, Of ERROR,
Driver488/DRV will automatically vector to your interrupt service routine.

Using Driver488/DRV, SCPI (Standard Command for Programmabl e Instruments) programmability
can be brought to Power488 /0 functions. SCPI is alanguage that defines common commands and
syntax for communication between controller and instruments. As such, it provides a consistent
programming environment for all SCPI-compatible equipment, simplifying programming and letting
you exchange instruments regardless of their make or type, without the need for extensive
reprogramming.

Driver488/DRV supports up to four IEEE 488 interfaces. There can be multiple external devices on
each interface up to the limitsimposed by either electrical loading (14 devices), or with a product such
as Expander488, to the limits of the |EEE 488 addressing protocols.

Driver488/DRV supports the GP488B, AT488, GP488/MM, MP488, MP488CT and NB488 series of
|EEE 488.2 interface hardware. All interaction between the application and the driver takes place via
subroutine calls.

8B. Installation & Configuration

Topics
o Before You Get Startedoooovviiiiiiiiiiieiece e 11-35
e Making Backup Disk COPIESccoeiiiiiiiiiiiiiiiii e 11-36
o Driver Installation............ccooviiiiiiiii e 11-36
Selective Installation of Support files.........cccoiiiiiii, 11-36
Driver INStallation t0 DiSKuuiiiiiiiiiiiiiiiiiiiiiieiieeeeeeeeeeeeeeeeeeeee e 11-37
o Configuration ULIHITYcoovriiiiiiiii e 11-38
[0} 1= @ = Uod = PSPPSR 11-38
=T g g F= L B LoV Lo PP 11-38
Opening the Configuration UtTlity ..., 11-38
e Configuration of IEEE 488 Interfaces.........ccccccevvvviiiiiiiiiciiinnnnnns 11-39
e Configuration of Serial Interfaces............cccoooeiiiiiiiiiiiiiiiie, 11-41
e Configuration of IEEE 488 External Devices........ccccccccceceennnn. 11-42
e Multiple Interface Management...........cccoevviiiiiiiniee e 11-43

Before You Get Started

Prior to Driver488/DRV software installation, configure your interface board by setting the appropriate
jumpers and switches as detailed in “ Section | : Hardware Guides.” Note the configuration settings
used, as they must match those used within the Driver488/DRV software installation.

Once the |IEEE 488 interface hardware isinstalled, you are ready to proceed with the steps outlined
within this Sub-Chapter to install and configure the Driver488/DRV software. The Driver488/DRV
software disk(s) include the driver files themselves, installation tools, example programs, and various
additional utility programs. A file called README . TXT, if present, is atext file containing new material
that was not available when this manual went to press.

11-36 Personal488 User’s Manual, Rev. 3.0

I1. SOFTWARE GUIDES - 8. Driver488/DRV

NOTICE

1. The Driver488/DRV software, including all filesand data, and the diskette on which it is
contained (the“ Licensed Software”), islicensed to you, the end user, for your own internal use.
You do not obtain titleto the licensed software. You may not sublicense, rent, lease, convey,
modify, trandate, convert to another programming language, decompile, or disassemble the

8B. Installation & Configuration

licensed software for any purpose.

2. You may:

e only usethe software on one single machine

e copy the softwareinto any machine-readable or printed form for backup in support
of your use of the program on the single machine

e transfer the programsand licenseto useto another party if the other party agreesto
accept the terms and conditions of the licensing agreement. If you transfer the
programs, you must at the sametime either transfer all copieswhether in printed or
in machine-readable form to the same party and destroy any copies not transferred.

The first thing to do, before installing the software, is to make a backup copy of the Driver488/DRV
software disks onto blank disks. To make the backup copy, follow the instructions given below.

Making Backup Disk Copies

1.

2
3.
4

Boot up the system according to the manufacturer’ s instructions.
Type the command ¢\ to go back to your system’sroot directory.
Place the first Driver488/DRV software disk into drivea:.

TypeDISKCOPY A:A: and follow theinstructions given by the pxskcory program. (Y ou may
need to swap the original (source) and blank (target) disksin drive a: several timesto complete
thepzskcory. If your blank disk is unformatted, the bIskcopy program allows you to format it
before copying.)

When the copy is complete, remove the backup (target) disk from drive a: and label it to match
the original (source) Driver488/DRV software disk just copied.

Store the original Driver488/DRV software disk in a safe place.

Place the next Driver488/DRV software disk into drive a: and repeat steps 4-6 for each original
(source) disk included in the Driver488/DRV package.

Place the backup copy of theinstallation disk into drive a:, type a: INsTALL, then follow the
instructions on the screen.

Driver Installation

There are two steps involved in installing Driver488/DRV onto your working disk: The required files
must first be extracted from the distribution disk to the working disk, and the software must be
configured. Since the Driver488/DRYV files are compressed on the distribution disks, the INSTALL
program must be used to properly extract them.

Driver488/DRV should normally beinstalled on ahard disk. Installing Driverd88/DRV on afloppy
disk, while possible, is not recommended. Assuming that the Driver488/DRV disk isin drive a:, start
theinstallation procedure by typing A: INSTALL at the prompt.

Selective Installation of Support files

Theinstallation program allows you to choose which files are to be copied to your working disk. A
menu will display alisting of the following files:

Personal488 User’s Manual, Rev. 3.0 11-37

8B. Installation & Configuration Il. SOFTWARE GUIDES - 8. Driver488/DRV

Files Description
Driver488/DRV Driver Modules Contains the driver modules needed for the initial installation
and proper execution.

Driver488/DRV Executable The primary file which loads the driver; required for proper
execution.

ReadMe File Contains any new information about the driver not already
included in the user manual.

Default Config Files These are . IN1 files which contain suggested configurations

for the variousinterfaces.

Character Command Language Files | Programming language specific examples and utilities.
|EEE 488 Utility Files Includes utilities for redirection of COM and LPT ports, the
Keyboard Controller, and utilities for removing
Driver488/DRV from memory after use.

Transfer488 Utilities Utilities for transferring files to and from HP computers
using HP BASIC (Rocky Mountain Basic).
Example Files Sample programs.

All the files will appear with a check mark beside them, indicating that they are selected for installation.
If you wish to unselect an item, please move the cursor to the item bar and pressthe <space Bar> to
toggle the check mark off. Pressingthe <space Bars> again will toggle the check mark on. Inthis
way you can select or omit those file categories you wish to install.

For anormal first installation, allow INsTALL to install all parts of Driver488/DRV. For afirst-time
installation, the Device Driver files are mandatory. However, if hard disk spaceis extremely limited,
certain parts, such as language support and examples for languages not immediately used, may be
omitted. The distribution disks may be used to install or reinstall any or all parts of Driver488/DRV at
alater time. You may rerun INSTALL at any timeto install files that you previously omitted.

When you have finished your selection, press <enter>. The Directory Selection screen will appear
with two horizontal windows.

Driver Installation to Disk

The Directory Selection screen allows you to specify where the Driver488/DRYV files are to be
installed. The upper window will be highlighted and contain the words “Install from:” on the first line,
and the path from which you are installing Driver488/DRV (typically “A:") on the second line. If this
“Install from:” path is correct, press <Enter> to accept and move to the next window. If it isnot
correct, edit the path before pressing <Enters.

Pressing <Enter> will move you to the second window, with the words “Install to:” on the first line
and the default directory “ C\IEEE488" on the second line. Simply press <Enter> to accept the
default or edit the path as you prefer and then press <Enters.

Two smaller boxes will display below the two directory windows: “ Start” and “Cancel.” “ Start” should
be highlighted. To proceed with installing Driver488/DRV, press <Enter>. Otherwise move the
cursor to “Cancel” and press <Enter> to abort the installation.

If you proceed with the installation, the files selected from the previous menu will be extracted from the
distribution disk to your hard disk. nsTALL will prompt you for disk insertion if you have amultiple
disk distribution set of Driver488/DRV. When INSTALL is finished transferring the files to your hard
disk, the message “Driverd88/DRV Software Installation is Complete” will appear. At this point, press
<Enter> to continue with the installation.

Next, the install program displays a prompt regarding the modification of your AuToEXEC. BAT file.
Thisfile holds operating system commands that are executed after all other system setup and
configuration is done, and just before commands are accepted from the keyboard. The AUTOEXEC. BAT
file can be used for many purposes. For more details, see your operating system manual.

The Driver488/DRV installation program provides the following options:

11-38

Personal488 User’s Manual, Rev. 3.0

Il. SOFTWARE GUIDES - 8. Driver488/DRV 8B. Installation & Configuration

o |f"Yes issdected, the Driver488/DRV command line will be added to the beginning of your
AUTOEXEC.BAT file.

e |f“NO0" isselected, no changes will be made to the AuToEXEC. BAT file.

o |f“Manually” is selected, you can choose where the Driver488/DRV command lineis to be added
in your AUTOEXEC. BAT file.

After modifying the auToexEc. BAT file, the installation program automatically invokes the
configuration program; CONFIG. You may also run coNFIe from the command line at alater timeto
modify your configuration asrequired. Noteif any error messages display when you are trying to load
DRVR488.EXE in memory, If so, refer to “ Section IV: Troubleshooting” in this manual.

Configuration Utility

The configuration utility permits you to specify the Driver488/DRV system configuration, add
interfaces, define external devices, etc. It does so by modifying the Driver488/DRV startup
configuration specified in a Windows-style initialization file named prRvr488 . INI. The first screen of
the coNFIG program is used to enter the configuration settings so the Driver488/DRV software can be
correctly modified to reflect the state of the hardware.

The driver can be reconfigured at any time by running the conrFzc program. Changesto the
configuration will not be recognized by the driver until the driver is unloaded and reloaded. Typically,
thisis accomplished by rebooting your computer or using the utilities MARKDRVR and REMDRVR. For
details on these utilities, refer to the “ Utility Programs’ Sub-Chapters found in Chapters 8 and 9 in this
manual.

To start the coNF1e program, type coNFIe within the directory in which the configuration utility
resides, typically c: \IEEE488.

Interfaces

The minimum requirement for configuring your system isto make certain that your |EEE 488.2
interface board or module is selected under “Device Type.” The default settingsin all of the other
fields match those of the interface as shipped from the factory. If you are unsure of a setting, it is
recommended that you leave it asis.

External Devices

The conF1e program can configure both interfaces and external devices. Interfaces are |EEE interface
boards and serial ports. External devices are instruments or other devices attached to the | EEE 488 bus
or the MP488(CT) Counter/Timers and Digital 1/0 devices. For more details, refer to the topic
“Configuration of |EEE 488 External Devices’ found later in this Sub-Chapter.

Opening the Configuration Utility

In general, al Driverd88/DRV configuration utility screens have three main windows: the “name” of
the interfaces or devices on the l€eft, the “ configuration” window on the right, and the “instruction”
window at the bottom of the screen. Based on current cursor position, the valid keys for each window
will display in the Instructions box.

To begin the interface configuration, move the cursor in the name window to select an interface
description for modification. (Interfaces can be added or deleted using <F3> and <F4>.) Notice
moving the cursor up and down the list of interfaces or devices in the left window changes the
parameters in the configuration window. The configuration fields always correspond with the currently
selected interface and device type.

Once all modifications have been made to the configuration screen, <F10> must be pressed to accept
the changes made or <F9> can be pressed to exit without making any change. Additional function keys

Personal488 User’s Manual, Rev. 3.0 11-39

8B. Installation & Configuration

I1. SOFTWARE GUIDES - 8. Driver488/DRV

allow the user to continue onto the configuration of external devicesvia <F5> or to view agraphic
representation of the interface card with the selected settings via <F7>.

Configuration of IEEE 488 Interfaces

The Driver488/DRV supports
two types of interfaces: |EEE Driver488/DRV Configuration Utility Version X.X All Rights Reserved
and Serial (COM). The Interfaces Configuration—————
i H >|EEE Name: |IEEE
f.O”OWI ng DerGI’488/DRV . IEEE Bus Address 21
figure displays the configuration Pl}[AA: . %
nterrupt:
screen of an MP488CT Eysﬁonﬁrouer (§> (Fi)u OMf?de
; n
|EEE 488.2 interface. Timeout (ms): {000 (). Error
. Device Type: MP488CT (X) 00
To add another |EEE interface, iE'E/E() &%dress - oE]
select <F3>. If you will be Digital 1/0 3E0
. than one interface Counter/Timer 3E4
using more : . | < Bus Terms : Bu1|’fer Terms n
“ n u n u
refer to the final tOpIC " M uItl_pIe Char (X)CR LF (X)CR LF | Char (X)CR LF (X)CR LF
Interface Management” in this : ()CR ()CR CR CR
F3: Add interface board (LF (LF (LF (LF
Stib-Cheper. s, (D | N e,
. . F4: Delete selected board
Once an interface is selected, E0l (X oY
thgfldd; and qefa““ entries Press <right arrows> to modify parameters for this interface
which display in the F5: Configure External Devices F7: Jumper Settings F9: Quit F10: Save & Exit
configuration window depend

on the device type specified.

Configuration Utility for MP488CT

The configuration parameters of
the interface, are as follows:

Configuration Parameters

Name: Thisfield isadescriptive instrument name which is manually assigned by the user. This
must be a unique name. Typically, |IEEE or COM is used.

|EEE Bus Address: Thisisthe setting for the IEEE bus address of the board. It will be checked
against al the instruments on the bus for conflicts. It must be avalid addressfrom o to 30.

DMA: A direct memory access (DMA)

channel can be specified for use by the 1/0O gggggrd fpzecg'(?n[())nMeA CETE
interface card. If DMA isto be used, select L

achannel as per the hardware setting. If no AT488 1,2,3 56, 7or none

DMA isto be used, slect NONE. The MP488 | 1,2 3 5 6, 7or none

NB488 does not support DMA, sotheDMA | MPA488CT | 1,2, 3,5, 6, 7 or none

field will not display if this device typeis NB483 Not applicable

used. Valid settings are showninthetable. | CARD488 | Not applicable

Interrupt: A hardware interrupt level can

be specified to improve the efficiency of the 1/0 Board | Specified Interrupt Level
I/O adapter control and communication GP48sB levels 2-7 or none

using Driver488/DRV. For DMA operation

or any use of onEvent and Arm functions, ATA88 levels 3-7, 9-12, 14-15 or none
an interrupt level must be selected. Boards MPA88 levels 3-7, 9-12, 14-15 or none
may share the same interrupt level. If no MP488CT | levels 3-7, 9-12, 14-15 or none
interrupt level isto be used, select NONE. NB488 level 7 for LPT1, level S for LPT2
Valid interrupt levels depend on the typeof | CARD488 | levels3-7, 9-12, 14-15 or none

interface. Possible settings are shown in the table.

SysController: Thisfield determines whether or not the |EEE 488 interface card isto be the
System Controller. The System Controller has ultimate control of the |EEE 488 bus, and the
ability of asserting the interface clear (1Fc) and remote enable (REN) signals. Each |IEEE 488 bus
can have only one System Controller. If the board isa peripheral, it may still take control of the
|EEE 488 bus if the Active Controller passes control to the board. The board may then control the

[1-40

Personal488 User’s Manual, Rev. 3.0

I1. SOFTWARE GUIDES - 8. Driver488/DRV

8B. Installation & Configuration

bus and, when it is done, pass control back to the System Controller or another computer, which
then becomes the active controller. If the board will be operating in Peripheral mode (not System
Controller), select NO in thisfield.

LightPen: Thisfield determines whether the LIGHET PEN command isto be used. If selected, it
will disable the detection of interrupts via setting the light pen status. The default is light pen
interrupt enabled.

Timeout (ms): Thetime out period is the amount of time that data transfers wait before assuming
that the device does not transfer data. 1f the time out period elapses while waiting to transfer data,
an error signal occurs. Thisfield isthe default timeout for any bus request or action, measured in
milliseconds. If no timeout is desired, the value may be set to zero.

Device Type: Thisfield specifies the type of board or module (such as GP488, MP488CT or
NB488) represented by the |EEE device name selected.

I1/O Address

This second Driver488/DRV
configuration example displays Driver488/DRV Configuration Utility Version X.X All Rights Reserved
an | EEE interface with the Interfaces Configuration
NB488 interface module Name: IEEE

. . IEEE Bus Address 1
specified. Thisscreen >IEEE
resembles the previous | EEE SyeCantroller & FillMode
i i LightPen X Error
i nterfag:e exampl_e with the Timeout (ms): X 0o %x)) e
exception of 3 different Device Type: NB488
configuration parameters which LPT Port LPT1

. Enable Printer Port X
are described below. LPT Port Type &) e
. . Bus T Buffer T
Configuration Parameters - Out T
Char (X)((:)R LF (X)gR LF | Char (X)gR LF (X)gR LF
. () () R)CR

. LFt)fT PO:t- ;he LaFI,I-I(—eIportt F3: Add interface board OF 0w OF O

isthe external par or one one

b P F4: Delete selected board ()ODOA ()OD ()ODOA ()ODOA
to be connected to the EOI (X) x)
NB488. Valid selections - - » e
| ress <right arrows> to modify parameters for this interface
are: LPT1, LPT2 Of LPT3. F5: Configure External Devices FT- Junxp%r Settings F9: Quit F10: Save & Exit
Thisfield takes the place

|EEE 488: Thisfield isthe I/O base address which sets the addresses used by the computer to
communicate with the |EEE interface hardware on the board. The addressis specified in
hexadecimal and can be 02E1, 22E1, 42E1 Of 62E1.

Note: Thisfield does not apply to the NB488. Instead, the NB488 uses the I/O address of the data
register (thefirst register) of the LPT port interface, typically 0x0378.

Digital 1/0: Thisfield isthe base address of the Digital 1/0 registers. Itisonly applicable for
MP488 and MP488CT boards. Note that the Digital I/O SCPlI communication parameters are
configured as an external device. Refer to the “Section |: Hardware Guides’ for more information.

Counter/Timer: Thisfield isthe base address of the Counter/Timer registers. Itisonly
applicable for MP488CT boards. Note the Counter/Timer SCPI communication parameters are
configured as an external device. Refer to the “Section |: Hardware Guides’ for more information.

Bus Terminators: The |EEE 488 bus terminators specify the characters and/or end-or-identify
(moz1) signal that isto be appended to datathat is sent to the external device, or mark the end of
datathat is received from the external device.

of the |/O Addressfield.

Enable Printer Port:

Because most laptop and notebook PCs provide only one LPT port, the NB488 offers LPT pass-
through for simultaneous | EEE 488 instrument control and printer operation. |f thisoptionis
selected, a printer connected to the NB488 will operate as if it were connected directly to the LPT
port. If not enabled, then the printer will not operate when the NB488 is active. The disadvantage

Configuration Utility for NB488

Personal488 User’s Manual, Rev. 3.0

11-41

8B. Installation & Configuration Il. SOFTWARE GUIDES - 8. Driver488/DRV

of pass-through printer support is that it makes communications with the NB488 about 20%
slower.

e LPT Port Type: Thisfield isused to specify whether the LPT port is a standard IBM
PC/XT/AT/PS/2 compatible port. Valid options are: Standard or 4-bit. The slower 4-bit optionis
provided for those computers which do not fully implement the IBM standard printer port. These
computers can only read 4 bits at a time from the NB488 making communication with the NB488
up to 30% slower.

A test program has been provided with NB488 to help identify the user’s LPT port type. Once the
NB488 isinstalled, type: NBTEST . EXE. This program will determine if your computer can
communicate with the NB488 and what type of LPT port isinstalled (Standard or 4-hit).

It isimportant to note there are four different versions of the NB488 driver. The conFie utility
determines which is to be used based on the user-defined parameters. If both pass-through printer
support and the 4-bit LPT port support are selected, then the communication with the IEEE 488 bit
may be slowed as much as 40% compared with the fastest case in which neither option is selected.
The actual performance will very depending on the exact type and speed of the computer used.

To save your changesto disk, press <F10>, or to exit without making any changes, press <r9>. All
changes will be saved in the directory where you installed Driver488/DRV. If at any time you wish to
alter your Driver488/DRV configuration, Simply rerun CONFIG.

Configuration of Serial Interfaces

The following Driver488/DRV
screen dISp| ays the Driver488/DRV Configuration Utility Version X.X All Rights Reserved
configuration of a Serial Interfaces Configuration

. Name: COM
(COM) interface. Baud Rate: 9600

e rl?W: t 4
ial i COM nterrupt:

To add another serial mtgrface, > Inout Buffer: 1000
select <F3>. Thefollowing Output Buffer: 1000)

. . Parity: CTS Timeout: 1000
serial interface parameters are Data Bits: 8 DSR Timeout: 0
available for modification. Timeout (ms): 10000 00 1IMeoHt 1000

. . Device Type: Serial
Configuration Parameters VO Address: 3F8
Fi’:us Terms out Bluffer TermsO "
. o i ; n u n u
e Name Thisfiedisa Char ()CRLF (JCRLF | Char (9 CRLF (QCRLF
FAtiva i R R R YCR
descriptive instrument F3: Add interface board (JLF ()LF (JLF ()LF
e which ismensly e i | s (e
assigned. Thismust be a F4: Delete selected board EOI () 0)
unigue name.
Press <right arrows> to modify parameters for this interface
® Baud Rate The F5: Configure External Devices F7: Jumper Settings F9: Quit F10: Save & Exit
allowable Data Rates range
from 75 to 115.2K and all Configuration Utility for Serial Interfaces

standard rates therein.

Thisincludes: 75, 110, 150, 300, 600, 1200, 1800, 2400, 4800, 9600, 19.2K, 38.4K, 57.6K, and
115.2K. Slower processors may have difficulty at the higher data rates because of the amount of
processing required for terminator, end of buffer, and fill processing.

e Flow: x-0N/x-OFF issupported. With this configured, Driverd88/DRV scans incoming
characters for an x-oFF character. Onceit is received, no more characters are transmitted until an
X-ON character isreceived. The driver also issues an x-oFF to ask the attached device to stop
sending when itsinternal buffer becomes three-quarters full and issues an x-oN when its buffer has
emptied to one-quarter full.

11-42 Personal488 User’s Manual, Rev. 3.0

Il. SOFTWARE GUIDES - 8. Driver488/DRV 8B. Installation & Configuration

e Interrupt: A hardware interrupt level can be 1/O Comm. Typical Interrupt Level
specified to improve the efficiency of the I/O COM1 typicaly level 4
adapter control and communication using COM2 typically level 3
Driver488/DRV. For any use of onEvent COM3 typicaly level 4 or 5
and arm functions, an interrupt level must be coMa typically level 2 or 3

selected. If nointerrupt level isto be used,
select NONE. Valid interrupt levels depend
on the device type.

e |Input Buffer: Thisfield isused to enter the buffer sizesfor I/O.
e Output Buffer: Thisfield isused to enter the buffer sizesfor 1/0.
e Parity: Parity can be EVEN, ODD, NONE, MARK, or SPACE.

e CTSTimeout: Thedriver supports 3 hardware handshake lines: Data Carrier Detect (pcp), Data
Set Ready (DsRr), and Clear To Send (cTs). Each line can be individually designated to be
ignored, used with no specified timeout, or used with a selected timeout. The timeout is selected
by specifying the number of milliseconds to wait for the indicated condition to become satisfied.

e DataBits: Dataformatsfrom 5 though 8 Data Bits are supported.

e DSR Timeout: The driver supports 3 hardware handshake lines: Data Carrier Detect (pDcp), Data
Set Ready (DsRr), and Clear To Send (cTs). Each line can be individually designated to be
ignored, used with no specified timeout, or used with a selected timeout. The timeout is selected
by specifying the number of milliseconds to wait for the indicated condition to become satisfied.

e Stop Bits: With 6, 7, or 8 Data Bits specified, either 1 or 2 Stop Bits are allowed. With 5 Data
Bits specified, 1 or 1.5 Stop Bits may be selected.

e DCD Timeout: Thedriver supports 3 hardware handshake lines. Data Carrier Detect (pcp), Data
Set Ready (DsRr), and Clear To Send (cTs). Each line can be individually designated to be
ignored, used with no specified timeout, or used with a selected timeout. The timeout is selected
by specifying the number of milliseconds to wait for the indicated condition to become satisfied.

e Timeout (ms): Thetime out period isthe amount of time that data transfers wait before assuming
that the device does not transfer data. 1f the time out period el apses while waiting to transfer data,
an error signal occurs. Thisfield isthe default timeout for any bus request or action, measured in
milliseconds. If no timeout is desired, the value may be set to zero.

o Device Type: Thisfield specifiesthe type of device represented by the serial external device

name selected.
* 1/OAddress Thel/O Addressisthe . /O Comm. Default Address Values
computer bus address for the board. Itisset to COM1 typically address 3F8

default values, aslisted in the table, during the

initial installation. These values can be oy L
changed, however, using the default address ypicary accress
COM4 typically address 2E8

valuesisrecommended. Any conflict will be

noted by a pop up help screen.

e BusTerminators:. The busterminators specify the charactersto be appended to data that is sent
to the external device, or mark the end of data that is received from the external device.

Configuration of IEEE 488 External Devices

Within your |EEE 488.2 application program, devices on the bus may be accessed by name. These
names must be created and configured with the conFIe program, after you have configured your
interfaces.

The following figure displays the configuration screen of an external device named pmM195. When
configuring an | EEE interface, this screen can be accessed by selecting <F5> Configure External
Devices.

Personal488 User’s Manual, Rev. 3.0 11-43

8B. Installation & Configuration Il. SOFTWARE GUIDES - 8. Driver488/DRV

To add additional devices, use <F3>. Note thisexternal device screenisalso used to configure
MP488CT Digital I/0 (pxez0) and Counter/Timers (TIMER).

The following parameters are available for modification.

Configuration Parameters

. Driver488/DRV Configuration Utility Version X.X All Rights Reserved
Name: External device

Interfaces Configuration
names are user defined Name: DMM195
names which are used to - OMM165 |IEEE Bus Address 16 Secondary None
convey the configuration DIGIO Fill Mode
information about each TER . E 3 Erfior
device, from the Doveoaime): 10000 0 00

initialization file to the
application program. Each
externa device must have

Bus Terms Buffer Terms

i i i Out

a nar.-ne to Identlfy Its Char ()CR LF () CLI-!Q LF | Char (X) CR LF (X) CR LF
Conflguranon to F3: Add interf: board E ; E gEIB g ;EFR E)L

. N in Ci {
Driver488/DRV. The creee e) None (X) None (YNone () None
name can then be used to F4: Delete selected board | £, §X>)OD 0A Ex))OD 0A ()ODOA ()ODOA
obtain a handle to that
device which will be used _ Press <right arrows> to modify parameters for this interface .
by al of the F5: Configure External Devices F7: Jumper Settings F9: Quit F10: Save & Exit
Driver488/DRV

commands. External Configuration Utility for External Devices

device names consist of 1

to 6 characters, and the first character must be aletter. The remaining characters may be letters,
numbers, or underscores (). External device names are case insensitive; upper and lower case
letters are equivalent. apc isthe same device as adc.

|EEE Bus Address: Thisisthe setting for the |EEE 488 bus address of the device. It will be
checked against all the devices on the bus for conflicts. The |IEEE 488 bus address consists of a
primary address from 00 to 31, and an optional secondary address from 0o to 31 or “NONE”.

Timeout (ms): Thetime out period is the amount of time that data transfers wait before assuming
that the device does not transfer data. 1f the time out period elapses while waiting to transfer data,
an error signal occurs. Thisfield isthe default timeout for any bus request or action, measured in
milliseconds. If no timeout is desired, the value may be set to zero.

Device Type: Thisfield specifies the type of device represented by the external device name
selected.

Bus Terminators: The |EEE 488 bus terminators specify the character(s) and/or end-or-identify
(moz) signal that isto be appended to datathat is sent to the external device, or mark the end of
datathat is received from the external device.

Note: Because secondary addresses and bus terminators are specified for each external device name,

it may be useful to have several different external devices defined for a single |EEE 488 bus
device. For example, separate names would be used to communicate with different secondary
addresses within a device. Also, different names might be used for communication of
command and status strings (terminated by carriage return/line feed) and for communication
of binary data (terminated by Eox).

Note: If installation or configuration problems exist, refer to “ Section IV: Troubleshooting.”

To save your changesto disk, press <F10>. All changes will be saved in the directory where you
installed Driver488/DRV. If at any time you wish to alter your Driverd88/DRV configuration, simply
rerun CONFIG.

[1-44

Personal488 User’s Manual, Rev. 3.0

Il. SOFTWARE GUIDES - 8. Driver488/DRV 8B. Installation & Configuration

Multiple Interface Management

When designing a complex data acquisition system, it might be necessary to have more than one
| EEE 488 bus interface controlled by the computer. Typical instances include: A system with more
than 15 devices, the use of distributed control or the simultaneous operation of multiple transactions.

System With More Than 15 Devices

The |EEE 488 electrical specification limits the number of devices on a single bus (including the
controller) to 15. While a bus expander, such as the Expander488, can increase that limit to 28,
complex systems may require two or more | EEE 488 buses and have more controllers.

In this case, two or more interfaces would be used, each configured as a System Controller. Because
they are attached to completely separate buses, the two interfaces do not affect each other. They can
have the same | EEE 488 bus address, and the addresses of the devices on one bus may be the same as
the addresses of the devices on the other bus.

Use of Distributed Control

Two or more | EEE 488 buses can also be useful when they have different functions. For example, a
computer might use one bus as a System Controller to control instruments, while using another bus as a
Peripheral, to communicate with another computer.

Simultaneous Oper ation of Multiple Transactions

Another use of two | EEE 488 buses isto allow simultaneous operation of two separate transactions.
Some instruments, such as spectrum analyzers, have the ability to send their results, through the

|EEE 488 bus, directly to a printer or aplotter. Such an instrument, along with a printer or plotter,
would be attached to one interface, while other devices would be attached to another | EEE 438
interface. The computer could configure the spectrum analyzer to plot its results and then pass control
toit, alowing it to control the printer or plotter. Meanwhile, the computer would be using the other
bus to control other equipment.

To allow such complex systems, Driver488/DRV supports as many as four interfaces on asingle
computer. The conF1e program helps you to configure multiple interfaces and notifies you of possible
conflicts.

The examples in this manual assume, for the most part, that only one board isinstalled in the system,
and that it is accessed through the three device names given above for the first board. If multiple
interfaces are installed, then they are accessed in just the same manner as the first board, except that
different device names, as given above, are used. If, for example, two interfaces are installed, then a
BASIC program to use them might be;

100 OPEN “\DEV\IEEEIN” FOR INPUT AS #1
110 OPEN “\DEV\IEEEOUT” FOR OUTPUT AS #2
120 OPEN “\DEV\IEEEIN2" FOR INPUT AS #3
130 OPEN “\DEV\IEEEOUT2" FOR OUTPUT AS #4
140 PRINT#2,"OUTPUT 10;ROX"

150 PRINT#4,"OUTPUT 10;R1X"

where line 140 sends rox to device 10 on the IEEE 488 bus controlled by board 1, and line 150 send
R1x to device 10 on the second | EEE 488 bus. Because they are on two physically different IEEE 488
buses, thereis no confusion as to which device 10 is being accessed.

Note: If installation or configuration problems exist, refer to “ Section IV: Troubleshooting.”

Personal488 User’s Manual, Rev. 3.0 11-45

8C. External Device Interfacing Il. SOFTWARE GUIDES - 8. Driver488/DRV

External Device Interfacing

Topics
LI 1 ') o e To 103 o 1o o HO PSPPI 11-45
e Character Command Language (CCL)ccccoeviiiiiiiiiiiiiiiiinneeen, 11-45
© DOS DBVICESu it 11-46
o Configuration of Named DeVICEScouuvvviiiiiiiiiiiiiiiiiiiee e 11-46
o Use of EXternal DEVICES.........ccooiiiiiiiiiiiiie e 11-47
e Direct I/O With DOS DEVICES.....ccccvviiiiiiiiiiiiceeeiie e 11-47
e Extensions For Multiple Interfaces.........cccccoooviiiiiiiiiiiiiiiiieee, 11-48
Duplicate DeVICE NAMES.ciiiieieieeiiiiiie e e e e e e e e e e e e 11-48
Access of Multiple INterfaces ... 11-48
= 1 0] o] = 11-49
Introduction

This Sub-Chapter isatechnical review of external device interfacing. It contains information on how
to use external devices, DOS devices and multiple interfaces.

Driver488/DRV controls 1/0 interfaces and their attached external devices. Inturn, Driver488/DRV is
controlled by one of two access methods: the Character Command Language (CCL), and direct DOS
1/O devices.

Driver488/DRV communicates directly with 1/0O interfaces, such as an |EEE 488 interface board and a
seria (RS-232) port. More than one 1/0 interface may reside on a single plug-in board. For example,
an RS-232 board often contains two or four functionally separate I/O interfaces, one for each port. The
GP488B board contains the |EEE 488 1/0 interface; and an MP488CT board contains an | EEE 488
interface, adigital 1/O interface, and a counter/timer 1/O interface.

I/O interfaces connect to external devices such as: digitizers, multimeters, plotters, and oscilloscopes
(IEEE 488 interface); and serial devices such as printers, plotters, and modems (serial RS-232 port).
Driver488/DRV allows direct control of IEEE 488 external devices, but it does not support other
external devices such asan RS-232 plotter. Such devices are supported by directly controlling the 1/0
interface (serial port).

Driver488/DRV is controlled by sending data and commands, and receiving responses and status by
one of two access methods: the Character Command Language, and Direct DOS 1/0O devices. These
methods, also known as Application Program Interfaces or APIs, are available to connect the
application (user’s) program to Driver488/DRV.

Character Command Language (CCL)

The Character Command Language (CCL) API isatype of DOS device driver that can control and
communicate with Driver488/DRV. A DOS device driver is a special type of program that appears to
the user’s program as afile that can be written to and read from like any disk file, but that does not
actually read and write the disk. For example, the DOS command:

COPY FILE.LST LPT1

copiesthe disk file FILE. LsT to the device driver LpT1 which prints FILE.LST. Thereisnofile
named L.pT1; the LPT1 device driver program has the responsibility for communicating with the
printer. The copy command can write to LrT1 just like an ordinary file, but DOS knows LpT1 isonly
adevice driver and allows it to process the data.

[1-46

Personal488 User’s Manual, Rev. 3.0

Il. SOFTWARE GUIDES - 8. Driver488/DRV 8C. External Device Interfacing

The Character Command Language is a device driver that writes commands to, and reads responses
from, Driver488/DRV. To use the Character Command Language, the application program opens afile
with a special name, such as: “\DEV\IEEE”, and uses standard DOS file /O commands to
communicate with the Character Command Language device driver. Since the CCL isadevice driver,
standard DOS commands such as. TYPE and cory may be used to communicate with Driverd88/DRV
viathe CCL.

DOS Devices

Driver488/DRV may also be controlled by using DOS Devices. A DOS Deviceis a specia type of
DOS device driver that uses Driver488/DRV to communicate with a single External Device.
Remember that, as a DOS device driver, a DOS Device may be written to and read from, like any disk
file. When writing datato a DOS Device, the device driver commands Driver488/DRV to send the
data to the corresponding External Device. Similarly, when reading from the DOS Device, the device
driver commands Driver488/DRV to read data from the External Device.

Driver488/DRYV allows DOS Devices to be created that refer to specific External Devices, just asLPT1
refersto the printer. For example, if an IEEE 488 plotter were configured as a DOS Device named
pLOTDD (DD for DOS Device), then we could use copry to send aplot file to it:

COPY PLOTFILE.PLT PLOTDD

Configuration of Named Devices

External Devices and DOS Devices are most easily configured by using coNF1e. The device names,
terminators, time out period, and bus addresses may be entered into conFzc which then writesa
configuration file containing the device configuration information. This configuration fileis
automatically read when Driver488/DRV loads to install the configured devices.

Every device to be accessed by Driver488/DRV must have avalid device name. Driver488/DRV
comes with several device and interface names preconfigured for use. Among those already configured
for the GP488B board, for example, are: IEEE and com1. Y ou can configure up to 50 external devices
for the IEEE 488 bus.

It is also possible to configure new named devices by using the Driver488/DRV command

MAKE DEVICE. TheMAKE DEVICE command creates atemporary device that isanidentical copy of
an aready existing Driver488/DRV device. The new device has default configuration settings identical
to those of the existing device. The new device can then be reconfigured by calling the proper
functions, such asBus ADDRESS, INT LEVEL, and TIME ouT. When Driver488/DRYV is closed, the
new device isforgotten unlessthe keEp DEVICE command is used to make it permanent.

The following code illustrates how the Character Command Language API version of the MakE
DEVICE command could be used to configure several new named devices:

100 PRINT#1,"MAKE DEVICE DMM =ADC"

110 PRINT#1, "BUSADDRESS 16"

120 PRINT#1,"TERM CR LF EOI"

200 PRINT#1, "MAKE DEVICE SCOPECMD =ADC"
210 PRINT#1, "BUSADDRESS 1200"

220 PRINT#1,"TERM LF"

300 PRINT#1, "MAKE DEVICE SCOPE =ADC"
310 PRINT#1, "BUSADDRESS 1201"

320 PRINT#1,"TERM EOI"

Lines 100-120 of the above example define an external device named pvm (digital multi-meter) as
device 16 with bus terminators of carriage-return line-feed (cR LF) and EOI. Lines200-220 configure
an oscilloscope command channel to use line-feed as its IEEE 488 bus terminator at a primary address
of 12 and secondary address 00. Lines 300-320 configure the oscilloscope data channel to use Eox
only as the bus terminator so that it can transfer binary data to its address of 1201: primary address 12,
secondary address 01.

External Devices and DOS Devices defined at installation time are permanent. Their definitions last
until they are explicitly removed or until the computer isrestarted. Devices defined after installation

Personal488 User’s Manual, Rev. 3.0 11-47

8C. External Device Interfacing Il. SOFTWARE GUIDES - 8. Driver488/DRV

are normally temporary. They are forgotten as soon as the program finishes. The XEEp DEVICE and
KEEP DOS NAME commands can be used to make these devices permanent. The REMOVE DEVICE and
REMOVE DOS NAME commands remove the definitions of devices even if they are permanent. These
commands are described in further detail in the “Section I11: Command Reference” of this manual.

Use of External Devices

Once we have configured the external devices, we can refer to devices by name. For example, using
the Character Command Language, the following program allows Driver488/DRV to communicate
with adigital multimeter:

200 PRINT#1, "CLEAR DMM"

210 PRINT#1, "OUTPUT DMM; VDC"

220 PRINT#1,"ENTER DMM"

230 INPUT#2,VOLTAGE

300 PRINT#1, "TRIGGER SCOPECMD"

320 PRINT#1,"ENTER SCOPE #1000 BUFFER 11";DS%;":";VARPTR (ARRAY)

In these commands we cLEAR the by, configure it for DC volts, take areading and storeit in the
variable voLTAGE. Next, we TRIGGER the scoPE at its command address and then read from its binary
data channel into an array. While these commands are hypothetical, they show how device names can
be used wherever a device addressis allowed.

As mentioned above, named devices have another advantage: they automatically use the correct bus
terminators and time out. When a named deviceis defined, it is assigned bus terminators and atime
out period. When communication with that named device occurs, Driverd88/DRV uses these
terminators and time out period automatically. Thus TERM Statements are not needed to reconfigure the
bus terminators for devices that cannot use the default terminators (which are usually carriage-return
line-feed Eo1). Itisstill possible to override the automatic bus terminators by explicitly specifying the
terminators in an ENTER or ouTPUT command. For more information, see the ENTER, ouTpuT, and
TERM commands described in “ Section I11: Command References.”

Direct 1/0 with DOS Devices

DOS Devices can be opened asfiles for direct communication. For example, we can configure two
names to refer to a plotter with an IEEE 488 bus address of 05:

400 PRINT #1,"MAKE DEVICE PLOTTER BUSADDRESS 05"
410 PRINT #1,"MAKE DOS NAME PLOT=PLOTTER"
420 PRINT #1,"MAKE DOS NAME PLOTIN=PLOTTER"

Then we can open them, one for input and one for outpuit:

430 OPEN “PLOT” FOR OUTPUT AS #3
440 OPEN “PLOTIN” FOR INPUT AS #4

Two different names are used to communicate with the plotter because, in BASIC, the same file cannot
be used for both input and output. In other languages, it might be possible to use the same file (with the
same device name) for both input and output. Also note that BASIC normally has a limit of 3 open
files. To open more than 3 files (asin this example; 2 for Driver488/DRV commands, and 2 for the
plotter), BASIC must be started with the parameter /F:n (where n isthe number of files). See your
BASIC manual for more details.

For clarity, the DOS Device names are not the same as External Device names. In normal use, one of
the DOS Device names might be chosen to be the same as an External Device name to show that they
communicate with the same External Device. Of course, the two DOS Device names must be different.

Once the files are opened, we can communicate PRINT commands to the plotter and INPUT responses
from the plotter without using the Driver488/DRV ouTPUT Or ENTER commands. When a named
deviceis used as afile, the ouTpuT and ENTER commands occur automatically.

500 PRINT#3,"IN; SP1l; PA1000,1000;" ‘Send plot commands
510 PRINT#3,"OE;" ‘Request plotter status
520 INPUT#4,STS ‘Read plotter status

11-48

Personal488 User’s Manual, Rev. 3.0

Il. SOFTWARE GUIDES - 8. Driver488/DRV 8C. External Device Interfacing
530 PRINT ST$ ‘and display it

Once a named deviceis configured, standard DOS commands may be used to transfer data to that
device. For example:

COPY PLOTFILE.DAT PLOT

copies the plot datafile pLoTFILE. DAT to the |EEE 488 bus plotter.

CAUTION

Because named devices can be used asfiles, some care must be taken so that they do not interfere
with other file or device namesin the system:

1. Device names should not be the same asthe primary name (the part before the period) of any
existing filesor directories. For example, if you define a device with the name“BASIC”,
then you cannot usethe program “BasIc.EXE”, and if you name a device“| EEE 488", then
you cannot access the Driver488/DRV subdirectory.

2. Device names should not be one of the standard DOS device names. COM, AUX, CON, LPT,
or PRN. Thiscould interferewith normal DOS oper ation.

3. Device names should normally not be duplicated. If duplicate device names are used, only
the last one of them installed is accessible. To avoid confusion, duplicate device namesare
not recommended.

With the considerations noted in the above warning, External Devices and DOS Devices make
Driver488/DRV significantly easier to use. External Devices allow | EEE 488 bus devicesto be
referenced symbolically, by a name, rather than by their bus address. They also automatically use the
appropriate | EEE 488 bus terminators and time out period. Finally, it is possible to communicate
directly with DOS Devices just as you would communicate with any file.

Extensions For Multiple Interfaces

Driver488/DRYV allows the simultaneous control of multiple interfaces each with several attached
devices. To avoid confusion, external devices may be referred to by their “full name” which consists of
two parts. The “first name” is the hardware interface name, followed by a colon separator (:). The
“last name” isthe external device name on that interface. For example, the “full name” of pMm might
be IEEE: DMM.

Duplicate Device Names

Duplicate device names are most often used in systems that consist of several identical sets of
equipment. For example, atest set might consist of asignal generator and an oscilloscope. If three test
sets were controlled by a single computer using three separate |EEE 488 interfaces, then each signal
generator and each oscilloscope might be given the same name and the program would specify which
test set to use by opening the correct interface (oPEN“IEEE” for one, oPEN“IEEE2" for the other), or
by using the interface names when communicating with the devices (7 IEEE : GENERATOR" for one and
“IEEE2 : GENERATOR” for the other.)

Unique names are appropriate when the devices work together, even if more than one interfaceis used.
If two different oscilloscopes, on two different interfaces are used as part of the same system, then they
would each be given a name appropriate to its function. This avoids confusion and eliminates the need
to specify the interface when opening the devices.

Access of Multiple Interfaces

If the computer only has one | EEE 488 interface, then there is no confusion, for every external device
isknown to be on that interface. However, if the computer has more than one | EEE 488 interface, then
rules apply when using the Character Command L anguage:

Personal488 User’s Manual, Rev. 3.0 11-49

8D. Getting Started I1. SOFTWARE GUIDES - 8. Driver488/DRV

Example

1. If the external device name is defined on the current hardware interface, then that interface is used
to communicate with that device. The current hardware interface is the one that was opened to
communicate with Driver488/DRV. Thiswould be 1EEE for the first IEEE 488 interface, IEEE2
for the second, etc.

2. If the nameis defined on another hardware interface, that other interface is used to communicate
with that device.

3. If the nameis defined on more than one other interface (and not on the current interface) then one
of those interfacesis used. The choice of which particular interface is not defined.

4. Inorder to specify the interface to use, the interface name may be prefixed with a colon to the
device name. For example, IEEE2 : DMM refers to the digital multimeter attached to interface
1EeE2. |f the specified device does not exist on the specified interface, then an error occurs.

Assume there are three |EEE 488 interfaces: IEEE, IEEE2, and IEEE3 controlling multiple devices:
SCOPE (On IEEE), DA (On IEEE2) and DA (on IEEE3). Sincethere are two external devices, both
named pa, their full name must be used to specify them.

After opening the interfaces with the following command lines:

OPEN “IEEE” AS #1
OPEN “IEEE2" AS #2
OPEN “IEEE3" AS #3

we can communicate with the external devices, according to the four rules above.

PRINT #1,"OUTPUT SCOPE;..." SCOPE ON IEEE. SeeRulel

PRINT #3,"OUTPUT SCOPE;..." SCOPE ON IEEE (not IEEE2). See Rule2

PRINT #1,"OUTPUT DA;..." DA On IEEE2 Or IEEE3 (not specified). See Rule 3
PRINT #1,"OUTPUT IEEE2:DA;..." DA ON IEEE2. SeeRule4

PRINT #1,"OUTPUT IEEE2:SCOPE;..." ERROR (NOt IEEE: SCOPE). SeeRule4

8D.

Getting Started

Topics
® INTrOAUCTION. ... 11-49
e Keyboard Controller Program...........ccccovviiiiiiiiiiiie e 11-50
e Direct Control from DOS USiNg CCLccceieiiiiiiiiieeeeiiieee 11-51

Introduction

Once Driver488/DRV has been installed in your system, it is ready to begin controlling |EEE 488 bus
devices. This Sub-Chapter describes methods of controlling the bus directly from the keyboard. Other
Sub-Chaptersin this Chapter develop short programs, in various languages, to control a Keithley
Instruments Model 195 digital multimeter. The techniques used in these programs are quite general,
and apply to the control of most instruments.

It is not necessary to write programs to control |EEE 488 bus devices using Driver488/DRV. Instead,
using the Character Command Language Application Program Interface (CCL API), commandsto the
bus may be sent directly from the keyboard, with responses displayed on the screen or sent to afile.
The Keyboard Controller program provides this capability, as do the standard MS-DOS commands.

[1-50

Personal488 User’s Manual, Rev. 3.0

I1. SOFTWARE GUIDES - 8. Driver488/DRV 8D. Getting Started

Keyboard Controller Program

The program KBC. EXE iSa utility program that allows you to enter Driver488/DRV commands from
the keyboard and see what effect they have. When xBc isrun, it displays an IEEE> prompt and waits
for acommand to be entered from the keyboard. When the <Enter> key is pressed, kBc sends the
command to Driver488/DRV and displays any response or error messages that occur. This allows you
to test the various Driver488/DRV commands and their effects on your instruments without having to
write aprogram. A dialog with kBc might be:

First, we can use the HELLO command to display the Driver488/DRV revision identification:

IEEE> HELLO <Enter>
Driver488 Revision X.X ©199X IOtech, Inc.

Then check the Driver488/DRV status:

IEEE> STATUS <Enter>
Cs21 1 I000 000 TO CO PO OK

The following indicators describe each component of the Driver4d88/DRV status:

Indicator | Driver488/DRV Status

C It isin the Controller state.

S It isthe System Controller.

21 The value of its |EEE 488 bus address.
1 An Address Change has occurred.
I Itisidle (neither atalker nor alistener).
0 Thereisno ByteIn available.
0
0

It is not ready to send aByteoOut.
Service Reguest (srRQ) is not asserted.

000 Thereis no outstanding error.

TO It has not received a bus device TRIGGER command (only applicable in the Peripheral
mode).

co It has not received a c.ear command (only applicable in the Peripheral mode).

PO NO CONTINUE transfer isin progress.

OK The error message is “OK”.

Next, take areading from |IEEE 488 bus device 16:

IEEE> ENTER 16 <Enter>
NDCV=035.679E-3

Now, list the commands that have been executed so far and re-execute the ENTER command:

IEEE> .L <Enter>

3 HELLO

2 STATUS

1 ENTER 16

IEEE .1 <Enter>

IEEE> ENTER 16 <Enter>
NDCV+032.340E-3

Notice that the .. and . 1 commands are not Driver488/DRV commands. Instead, they are supplied by
thekBc program. The .. command is used to show alist of the previously entered commands. KBc
keeps the last 20 commands in thislist. Any of these commands can be reentered by typing a period
followed by the number of that command. For example, the . 1 command reenters the last command
that was entered. The user may then edit this command, or may just press <Enters re-executing the
command.

Personal488 User’s Manual, Rev. 3.0 11-51

8D. Getting Started I1. SOFTWARE GUIDES - 8. Driver488/DRV

Finaly, EXIT causes KBC to terminate:

IEEE> EXIT <Enter>

As already mentioned, kBc obeys the standard DOS editing keys. In using these editing keys, the
previous command is used as atemplate. Characters from the template are copied into the current
command line under control of the editing keys. These editing keys, coupled with the ability to retrieve
previous commands, greatly ease the task of trying various Driver488/DRV commands.

The editing keys and their actions are:

Editing Key Editing Function

<Fl> or <—> Copies one character from the template to the command line.

<F2>char Copies characters from the template to the command line up to the character
specified.

<F3> Copies al remaining characters from the template to the command line.

<F4>char Skips over (does not copy) characters from the template up to the character
specified.

<F5> Replaces the template with the current command line.

 Skips over (does not copy) one character in the template.

<Ins> Togglesinsert mode. When insert mode is off (the default) characters from
the template are skipped as characters are entered from the keyboard.
When insert mode is on, no charactersin the template are skipped.

<Esc> Clears the command line and leaves the template unchanged.

Direct Control from DOS Using CCL

Because Driver488/DRYV is a standard MS-DOS device driver, any program that can read and write
charactersto files can control the IEEE 488 bus. In particular, MS-DOS (and PC-DOS) provide
several commands that can communicate directly with Driver488/DRV. To begin communication, itis
helpful to turn on the Driver488/DRV automatic error display:

C:\> ECHO ERROR ON> IEEE <Enter>
and tell Driver488/DRV to end its responses with an end-of-file character (control-z, ASCII 26):
C:\> ECHO FILL $26> IEEE <Enter>

Note the format of these commands: the DOS command Ecto, followed by the Driver488/DRV
command ERROR ON Or FILL $26, whichisredirected by the > to afile named 1EEe. When EcHO
tries to write the command to 1EEE, DOS notices that IEEE is the name of a device driver, not afile,
and so sends the command to the device driver which of course is Driver488/DRV.

Once the input terminator isinitialized to the end-of-file character, DOS can be used to get responses
from Driver488/DRV and the attached | EEE 488 bus devices.

First, we can use the HELLO command to display the Driver488/DRV revision identification:

C:\> ECHO HELLO> IEEE <Enter>
C:\> TYPE IEEE <Enter>
Driver488 Revision X.X ©199X IOtech Inc.

Then check the Driver488/DRV status:

C:\> ECHO STATUS> IEEE <Enter>
C:\> TYPE IEEE <Enter>
Cs21 1 1000 000 TO CO PO OK

The following indicators describe each component of the Driver488/DRV status:

[1-52

Personal488 User’s Manual, Rev. 3.0

I1. SOFTWARE GUIDES - 8. Driver488/DRV 8D. Getting Started

Indicator | Driver488/DRV Status
C Itisin the Controller state.
S It isthe System Controller.
21 The value of its | EEE 488 bus address.
1 An Address Change has occurred.
I Itisidle (neither atalker nor alistener).
0 Thereisno ByteIn available.
0 Itis not ready to send aByteout.
Y Service Reguest (srQ) is not asserted.
000 There is no outstanding error.
TO It has not received a bus device TRIGGER command (only applicable in the Peripheral
mode).
co It has not received a cL.EaR command (only applicable in the Peripheral mode).
PO NO CONTINUE transfer isin progress.
OK The error message is “OK”.

Next, take areading from IEEE 488 bus device 16:

C:\> ECHO ENTER 16> IEEE <Enter>
C:\> TYPE IEEE <Enter>
NDCV=035.679E-3

Now, if an |EEE 488 bus device name has been defined using the INsTALL program, that name can be
used to refer to the bus device. For example, assume that a Keithley Instruments Model 195 digital
multimeter has been given the name x195. The meter could be reset to its power-on conditions with a
CLEAR cOmmand:

C:\> ECHO CLEAR K195> IEEE <Enter>

To program the 195 for the 2 VDC range, send it the R3F0x command:
C:\> ECHO OUTPUT K195;R3F0X> IEEE <Enter>

This could also be achieved by sending the command directly to the device:
C:\> ECHO R3F0X> K195 <Enter>
To check the status of the 195, use the SERIAL POLL, Of SPOLL command:

C:\> ECHO SPOLL K195> IEEE <Enter>
C:\> TYPE IEEE <Enter>

To display areading from the 195, use the ENTER command:

C:\> ECHO ENTER K195> IEEE <Enter>
C:\> TYPE IEEE <Enter>

To view continuous readings from the 195, read directly from the k195 device:

C:\> TYPE K195 <Enter>

This causes readings to be taken from the 195 and displayed until <ctrl-Breaks> istyped. Note that
<Ctrl-Break> may halt Driverd88/DRV in the middle of atransaction, causing the first attempt at
another command to give a SEQUENCE ERROR. If thisshould occur, simply retry the last command.

It isalso possible to save the bus device datainto afile:

C:\> ECHO ENTER K195> IEEE <Enter>
C:\> TYPE IEEE> DATA <Enter>
C:\> ECHO ENTER FREQ> IEEE <Enter>
C:\> TYPE IEEE>> DATA <Enter>

The first two commands create a file named paTa that holds a reading from the 195. The next two
commands append a reading from the device FrReQ to the datafile. Note the use of the >> to indicate

append.

Personal488 User’s Manual, Rev. 3.0 11-53

8E. Microsoft C

I1. SOFTWARE GUIDES - 8. Driver488/DRV

Microsoft C

Topics
e Use of the Character Command Language...........ccccvvvvineennnn. 11-53
o Initialization of the System..........ccooooiiiiiiii 11-53
e Configuration of the 195 DMM ... 11-56
o TaKiNg REATINGSccooiiiiiiiie e 11-56
o BUTfer TransSTersS. ... 11-56
o INnterrupt HaNAIING ... 11-57
o IEEEIO.C ..o 11-59
e CRITERR.ASM (Microsoft C & Turbo C).....ccccoovviiiiiiiiiiiiiinnnn. 11-61
o SAMPIE Program ...t 11-62

Use of the Character Command Language

In order to simplify programming Driver488/DRV with C, the following files are provided on the
Driver488/DRV program disk:

e IEEETO.C: Communications routinesfor Driver488/DRV
e IEEETO.H: Header file, contains declarations from IEEETIO.C

e IEEEDEMO.C: Examplefile showing useof fputs and fgets with Driver488/DRV (included
with Microsoft C only)

e CRITERR.ASM: Critica error handler assembly language source file (included with Microsoft C
and Turbo C only)

e CRITERR.OBJ: Object file produced from cRITERR.AsM (included with Microsoft C and Turbo
Conly)

e CRITERR.H: Header file, contains declarationsfor using CRITERR.ASM
The actual demonstration program is contained in 195DEMO. C.
All filesfor Microsoft C are in the \mMsc directory.

To execute the demonstration program, the files must be compiled and then linked. The following
DOS commands perform these steps:

C> msc 195demo;
C> msc ieeeio;
C> link 195demo ieeeio;

Finally, the demonstration program is run by typing 195DEMO <Enters>. Notice that the critical error
handler cRITERR.ASM isnot required for the demonstration program. Its use is described later in
“CRITERR.ASM (Microsoft C & Turbo C),” one of the last topicsin this Sub-Chapter.

The above command assumes that you have Microsoft C and that the files have been copied into the
appropriate directory for use with your C compiler. Notice that the program uses a small data model
because it uses less than 64K of code and data.

Initialization of the System

Any program using Driver488/DRV must first establish communications with the Driver488/DRV
software driver. In C, thisisaccomplished using the orEN statement. Communication both to and
from Driver488/DRYV isrequired. Thus, the file must be opened for both reading and writing (RDWR).

[1-54

Personal488 User’s Manual, Rev. 3.0

I1. SOFTWARE GUIDES - 8. Driver488/DRV 8E. Microsoft C

Also, in Microsoft C and Turbo C, the file must be opened in BINARY mode so that end-of-line
characters are not translated.

In Microsoft C and Turbo C, the file is opened with the following statement:
ieee=open(“ieee”,0 RDWR | O BINARY);

which is part of the IEEEINIT function contained in IEEEIO.C. IEEEIO.C suppliesseveral other
useful routines and definitions. These routines and definitions are described later in more detail in
“Interrupt Handling,” an upcoming topic in this Sub-Chapter.

In the above statement, the value returned by opEN and placed into the integer variable 1EEE, is either
the handle of the opened file, or -1 if some error has occurred. The IEEEINTT routine checks for this
error indication and returns a -1 if there has been such an error.

Of course, the file descriptor variable name TEEE may be changed as desired, but throughout this
manual and the program files, IEEE has been used. Once the file is opened, we can send commands
and receive responses from Driver488/DRV.

Normally, when DOS communicates with afile, it checks for special characters, such ascontrol-z
which can indicate end-of-file. When communicating with IEEE 488 devices, DOS's checking would
interfere with the communication. The RawMoDE function prevents DOS from checkings for special
characters:

rawmode (ieee) ;

As an additional benefit, communication with Driver488/DRYV is much more efficient when DOS does
not check for special characters.

Driverd88/DRV can accept commands only when it isin a quiescent, ready state. While
Driver488/DRV should normally be ready, it is possible that it was left in some unknown state by a
previous program failure or error. In order to force Driver488/DRV into its quiescent state, we use the
1ocTL_ Wt function:

ioctl wt(ieee, "break",5);

This zocTL_wt function is equivalent to the BASIC statement TocTL#1, “BREAK” Which sends the
BREAK command through a “back door” to Driver488/DRV. Driver488/DRV recognizes this “back
door” command regardless of what else it might be doing and resetsitself so that it is ready to accept a
normal command. We can then completely reset the Driver488/DRV with the RESET command:

ieeewt (“reset\r\n”);

which resets the operating parameters of the Driver488/DRV back to their normal values (those that
were set during system boot by the brRvr488 DOS command). Notice that the EoL ouT terminators
that mark the end of a Driver488/DRV command are reset to carriage return and line feed by the
10cTL_WT command. Thus, the RESET command must be terminated by both a carriage return (\r)
and alinefeed (\n). Asitismore convenient if Driverd88/DRV accepts line feed only asthe
command terminator, we use the EoL. ouT command to set the command terminator to just line feed
(\n):

ieeewt (“eol out 1lf\r\n”);

Notice that this command must also be terminated by both a carriage return and aline feed because the
command terminator is not changed until after the EoL. ouT command is executed.

Character stringsin C are normally terminated by anull (anascrz 0). Thus, it isappropriate for
Driver488/DRV to terminate its responses to the program with anull so that the response can be treated
asanormal character string. We can use the Eor. 1§ command to configure Driver4d88/DRV so that it
does provide an ASCII null terminator:

ieeewt (“eol in $0\n”);

Finally, we enable SEQUENCE - NO DATA AVAILABLE error detection by setting the FILL modeto
ERROR:

ieeewt (“fill error\n”);

Personal488 User’s Manual, Rev. 3.0 11-55

8E. Microsoft C I1. SOFTWARE GUIDES - 8. Driver488/DRV

All the commands discussed so far: OPEN, RAWMODE, IOCTL_WT, RESET, EOL OUT, EOL IN and FILL
ERROR are part of the 1EEEINIT functionincluded in IEEEIO.C. IEEEINIT returnsazero if these
steps were executed successfully, and a -1 if some error was encountered. Thus, to accomplish all the
above steps, we just use the following:

#include “ieeeio.h”
#include <stdio.h>

if (ieeeinit() == -1) {

printf (“Cannot initialize IEEE system.\n”);
exit(1);

}

The two INCLUDE statements provide the program with definitions of the standard I/O and IEEE 1/0O
functions so they can be referenced by the demo program. TEEEINIT iscalled to initialize the system,
and if it indicates an error (returnsa -1), we print an error message and exit. If there was no error, we
just continue with the program.

Once everything is reset, we can test the communications and read the Driver488/DRV revision number
with the HELLO command:

char response[256];
ieeewt (“*hello\n”) ;
ieeerd (response) ;

printf (“%s\n”,response) ;

Wefirst 1EEEWT the HELLO command, then IEEERD the response from Driver488/DRV into the
character string response (IEEEWT and IEEERD are both supplied in TEEETO.C). Finaly, we display
the response with a PRINTF.

It is not necessary to perform the HELLo command, but it isincluded here as a simple example of
normal communication with Driverd88/DRV. Its response is the revision identification of the
Driver488/DRV software; Driver488 Revision X.X ©199X IOtech, Inc.

We can aso interrogate Driver488/DRV for its status:

ieeewt (“status\n”) ;
ieeerd (response) ;
printf (“%s\n”, response) ;

Subsequently, the printed responseis similar to the following:
CS21 1 I000 000 TO CO PO OK

The following indicators describe each component of the Driver488/DRV status:

Indicator | Driver488/DRV Status
C Itisin the Controller state.
It isthe System Controller.
21 The value of its | EEE 488 bus address.
1 An Address Change has occurred.
I Itisidle (neither atalker nor alistener).
0 Thereisno ByteIn available.
0 Itisnot ready to send aByteout.
Y Service Reguest (srQ) is not asserted.
000 There is no outstanding error.
TO It has not received a bus device TRIGGER command (only applicable in the Peripheral
mode).
co It has not received a cL.EAR command (only applicable in the Peripheral mode).
PO NO CONTINUE transfer isin progress.
OK The error message is “OK”.

11-56 Personal488 User’s Manual, Rev. 3.0

I1. SOFTWARE GUIDES - 8. Driver488/DRV 8E. Microsoft C

Configuration of the 195 DMM

Once the system isinitialized we are ready to start issuing bus commands. The |EEE 488 bus has
already been cleared by the Interface Clear (1Fc) sent by the RESET command, so we know that all bus
devices are waiting for the controller to take some action. To control an |EEE 488 bus device, we
output an appropriate device-dependent command to that device. For example, the FOrRox command
line below sets the 195 to read DC volts with automatic range selection:

ieeewt (“output 16;FOR0X\n”) ;

The outpuT command takes a bus device address (16 in this case) and data (ForR0x) and sends the data
to the specified device. The address can be just a primary address, such as 12, or 05, or it can include
asecondary address: 1201. Note that both the primary address and, if present, the secondary address
are two-digit decimal numbers. A leading zero must be used, if necessary to make a two-digit address.

Taking Readings
Once we have set the 195’ s operating mode, we can take a reading and display it:

float voltage;

ieeewt (“enter 16\n”);

ieeescnf (“%*4s%e”, &voltage) ;

printf (“The read value is %g\n”,voltage);

The ENTER command takes a bus address (with an optional secondary address) and configures that bus
device so that it is able to send data (addressed to talk). No datais actually transferred, however, until
the IEEESCNF Statement requests the result from Driver488/DRV at which time datais transferred to
the program into the variable voltage. A typical reading from a 195 might be NDcv+1.23456E-2,
consisting of afour character prefix followed by afloating point value. The format passed to
IEEESCNF causes it to skip the four character prefix (s*4s) and then convert the remaining string into
the float variable voltage.

All the power of C may be used to manipulate, print, store, and analyze the data read from the
|EEE 488 bus. For example, the following statements print the average of ten readings from the 195:
int i;
float sum;
sum=0.0;
for (i=0; i<10; i++) {
ieeewt (“enter 16\n”);
ieeescnf (“%*4s%e”, &voltage) ;
sum=sum+voltage;

}

printf (“The average of 10 readings is %g\n”,sum/10.0);

Buffer Transfers

Instead of using an TEEERD (_) function to receive the data from a device, we can direct
Driver488/DRV to place the response directly into a data buffer of our choosing. For example, each
reading from the 195 consists of 17 bytes: afour-byte prefix and an eleven-byte reading followed by
the two-byte command terminator. So, we can collect 100 readings in a 1700-byte array. To do this,
we must first allocate the required space in an array:

char hundred[1700];

Now that we have allocated a place for the readings, we can direct Driver488/DRV to put readings
directly into hundred with the ENTER #count BUFFER command:

ieeeprtf (“ENTER 16 #1700 BUFFER %d:%d\n”,
segment (hundred) ,offset (hundred)) ;

This command consists of the keyword ENTER, followed by the bus device address (16), a number sign
(#), the number of bytesto transfer (1700), and the keyword BUFFER, followed by the memory address
of the buffer. The buffer address isspecified as segment :of fset Where segment and of fset are

Personal488 User’s Manual, Rev. 3.0 11-57

8E. Microsoft C

I1. SOFTWARE GUIDES - 8. Driver488/DRV

Interrupt

each 16-bit numbers and the colon (:) isrequired to separate them. The segment and of£set values
we need are returned by the segment and of£set functions, respectively.

Once the data has been received, we can print it out:

for (i=0; i<1700; i++) putchar (hundred[il);

The program could process the previous set of data while collecting a new set into a different buffer.
To allow the program to continue, specify continue in the command:

ieeeprtf (“ENTER 16 #1700 BUFFER continue\n”,
segment (hundred) ,offset (hundred)) ;

Once we have started the transfer, we can check the status:

ieeewt (“status\n”) ;
ieeerd(response) ;
printf (“%s\n”,response) ;

The status that is returned is typically:
CS21 1 L100 000 TO CO Pl OK

Notice p1 which states atransfer isin progress, and . which shows we are still alistener. If the bus
deviceis so fast that the transfer completes before the program can check status, the response is po
showing that the transfer is no longer in progress. We can also wazt for the transfer to complete and
check the status again:

ieeewt (“wait\n”) ;

ieeewt (“status\n”);

ieeerd(response) ;
printf (“%s\n”,response) ;

This time the status must be o asthe wazT command waits until the transfer has completed. Now that
we know the transfer is complete, we are ready to print out the received data as shown above.

Handling

The |EEE 488 busis designed to be able to attend to asynchronous (unpredictable) events or
conditions. When such an event occurs, the bus device needing attention can assert the Service
Request (srQ) line to signal that condition to the controller. Once the controller notices the sr, it can
interrogate the bus devices, using Parallel Poll (ppoL1) and/or Seria Poll (spoLL) to determine the
source and cause of the srQ, and take the appropriate action.

Parallel Poll isthe fastest method of determining which device requires service. Parallel Poll isavery
short, simple | EEE 488 bus transaction that quickly returns the status from many devices. Each of the
eight IEEE 488 bus data bits can contain the Parallel Poll response from one or more devices. So, if
there are eight or fewer devices on the bus, then just the single Parallel Poll can determine which
requires service. Even if the busis occupied by the full complement of 15 devices, then Parallel Poll
can narrow the possihilities down to a choice of no more than two.

Unfortunately, the utility of Parallel Poll islimited when working with actual devices. Some have no
Parallel Poll response capability. Others must be configured in hardware, usually with switches or
jumpers, to set their Parallel Poll response. If Parallel Poll isnot available, or several devices share the
same Paralléel Poll response hit, then Serial Polling is till required to determine which deviceis
requesting service.

Serial Poall, though it is not as fast as Parallel Poll, does offer three major advantages: it gives an
unambiguous response from a single bus device; it returns additional status information beyond the
simple request/no-request for service; and, most importantly, it isimplemented on virtually all bus
devices.

The srq line can be monitored in two ways: it can be periodically polled by using the sTaTus
command, or by checking the “light pen status.”

BASIC provides a method for detecting and servicing external interrupts: the on PEN statement. The
ON PEN statement tells BASIC that, when an external interrupt is detected, a specific subroutine,

[1-58

Personal488 User’s Manual, Rev. 3.0

I1. SOFTWARE GUIDES - 8. Driver488/DRV 8E. Microsoft C

known as the interrupt service routine (ISR), isto be executed. Normally, the interrupt detected by
ON PEN isthelight pen interrupt. However, Driver488/DRV redefines this “light pen interrupt” to
signal when an IEEE 488 bus related interrupt (such as srQ) has occurred.

Unlike BASIC, C does not provide an automatic method of checking for light pen interrupts.
Therefore, afunction is needed to check for the interrupt. The function could use the sTaTus
command, but it is much faster to check the interrupt status directly using aBIOS interrupt. The
ckLPINT (check light pen interrupt) function provided in IEEEIO. ¢ uses the BIOS to check for
Driver488/DRV interrupts and returnstrue (1) if oneis pending. Interrupts are checked automatically
by the 1EEEWT routine before sending any datato Driver4d88/DRV. However, IEEEWT does not call
ckLPINT directly. Instead, it callsthe routine that is pointed to by IEEE cKI (IEEE check interrupt).
If IEEE _CKI pointsto ckLPINT, then 1EEEWT checks for Driver488/DRV interrupts, but if

IEEE CKI pointsto false , afunction that alwaysreturns o, then interrupt checking is disabled.
Initially, IEEE_cKI doespointto false , and so interrupt checkingisdisabled. To enableinterrupt
checking IEEE_CKI must be redirected to CKLPINT:

int cklpint();
ieee cki = cklpint;

Once an interrupt has been detected, an interrupt service routine must be invoked to handle the
interrupting condition. When 1EEEWT detects an interrupt, it calls the interrupt service routine (1SR).
Just as tEEEWT does not call the check-for-interrupt routine directly, it does not call the ISR directly,
either. Instead, it callsthe routine pointed to by TEEE 1SR (IEEE interrupt service routine). If

IEEE ISR iSsetto point to some specific ISR, then that ISR is executed when IEEEWT detects an
interrupt. Initiadly, IEEE_ ISR pointstono_op, afunction that does nothing. So, unless IEEE_ISRis
redirected to another routine, nothing is done when an interrupt is detected. In the 195DEMO example
program an interrupt service routine, called isr, has been provided. So, IEEE_ 1SR must be set to
point this routine for interrupts to be handled properly:

ieee isr = isr;

Once we have enabled interrupt checking by setting IEEE_CKI to point to ckLPINT, and specified the
interrupt service routine by setting IEEE_ISR to point to isr, then we can specify which conditions are
to cause an interrupt. The arM command specifies those conditions. In this example we want the
interrupt to occur on the detection of a Service Request (SRQ):

ieeewt (“arm srq\n”);

The 195 can be set to request service on any of several different internal conditions. In particular, the
M2 command causes an SRQ on the detection of any invalid command or command option by the 195:

ieeewt (“output 16;M2X");

ThisouTpuT command is placed early in the program so that all subsequent commands to the 195
cause an srg, if they areinvalid.

Now that interrupt detection is enabled, and the interrupt service routine is specified, we must specify
the actions to take to service the interrupt. We first display a message indicating that an interrupt was
detected, and then turn off interrupt checking:

void isr()
{ int false ();
printf (“Interrupt detected...”);

ieee cki = false ;
We next check the Driver488/DRV Seria Poll Status to determineif an srQ actually caused the
interrupt:

int sp;

ieeewt (“spoll\n”) ;

ieeescnf (“%d”, &sp) ;

if (sp==0) {

printf (“Non-SRQ Interrupt!\n”);
exit (1) ;

}

Personal488 User’s Manual, Rev. 3.0 11-59

8E. Microsoft C I1. SOFTWARE GUIDES - 8. Driver488/DRV

We then Serial Poll the 195 to determine its status. |f there were other devices on the bus that could be
generating the srQ, each of them would be have to be checked in turn.

int stl195;
ieeewt (“spoll 16\n”);
ieeescnf (“%d”, &stl95) ;

if ((stl95 & 0x40) == 0) {
printf (“Non-195 SRQ!\n”) ;
exit();

}

Bit pxo7, with avalue of 0x40, isreturned astrue (1) in the Serial Poll response of those devices
requesting service. In our simple example we expect that the 195 is the only possible cause of an srg,
and if not, there must be some error.

Now that we have identified the device that is requesting service, we can further examine the Seria
Poll status to classify the request:

if ((stl95 & 0x20) == 0) {
if (stl95 & 0x01)

printf (“Overflow\n”) ;

if (stl95 & 0x02)

printf (“Buffer Full\n”);

if (stl95 & 0x04)

printf (“Buffer 1/2 Full\n”);
if (stl95 & 0x08)

printf (“Reading Done\n”) ;

if (stl95 & 0x10)

printf (“Busy\n”) ;

} else {

if (stl95 & 0x01)

printf (“"Illegal Command Option\n”) ;
if (stl95 & 0x02)

printf (“"Illegal Command\n”) ;
if (stl95 & 0x04)

printf (“No Remote\n”);

if (stl95 & 0x08)

printf (“Trigger Overrun\n”) ;
if (stl95 & 0x10)

printf (“Failed Selftest\n”);

}

The action taken depends on the system design, but in this example, a message display is adequate.
Now, after decoding the cause of the srQ, we can re-enabl e interrupts and return to the main program:

ieee cki = cklpint;

IEEEIO.C

The 1EEEIO0. C file contains several useful declarations and functions, many of which have been used
in the 195DEMO example program. They are:

e IEEE isaninteger that holds the file descriptor (MS-DOS handle) returned by opEN.
int ieee
e segment and offset return the 16-hit segment and of£set values that make up a pointer.

int segment (ptr)
void *ptr
int offset(ptr)
void *ptr

The implementation of these functions depends on the memory model being used. 1n the small
data model, pointers are 16 bits and are exactly the of £set desired. Here, the segment isaways
theinternal ds register value. In the large data model, pointers are 32 bits, one word of whichiis
the segment and the other isthe of£set. For more information on memory models, see the
“Other Languages’ Sub-Chapter in this Chapter.

11-60 Personal488 User’s Manual, Rev. 3.0

I1. SOFTWARE GUIDES - 8. Driver488/DRV 8E. Microsoft C

e ERRNO holdsthe error code for 1/O and other errors.

extern int errno;

e TIOCTL_RD and IOCTL WT are special versionsof rocTL 1o which reads and writes to the 1/0
control channel of adevice.

int ioctl io(handle,chars,size,iocall)
int handle,

size,

iocall;

char charslI];

#define ioctl rd(handle,chars,size) \
ioctl io(handle,chars,size,0x4402)
#define ioctl wt(handle,chars,size) \
ioctl io(handle,chars,size,0x4403)

The I/O control channel of adeviceisread from and written to exactly as the normal (data)
channel is read and written, but the data transferred is not to be treated in the same way. Normally,
the 1/0 control channel isused to communicate setup and status information regarding the device
without actually transferring any data to or fromit. When using Driver488/DRV, IOCTL WT iS
used to force Driver488/DRV to be ready to accept acommand, and IocTL RD isused to return
status information from the driver. These functions correspond exactly to the TocTL and T0CTL$
commands, as described in “Section I11: Command References.”

e CKLPINT, IEEE CKI, and IEEE_ISR are functionsand pointerswhich provide for automatic
interrupt detection and servicing.

int cklpint()
int _false ()

int (*ieee cki) () = false
void no_op()
void (*ieee isr) () = no_op

Driver488/DRV signals interrupts, which are enabled with the aARM command, by causing the light
pen signal to appear “true.” The ckLPINT checksthat Driverd88/DRYV is ableto service an
interrupt (the response from rocTL_RD is0) and then checks if an interrupt is pending by
checking the light pen status. The T1EEEWT routine (described below) calls the function pointed to
by IEEE cKI todetermineif an IEEE interrupt needsto be serviced. The IEEE cKRI normally
pointsto the function false which awaysreturnszero (0). To enable interrupt checking
IEEE CKI must be redirected to point to cKLPINT. Interrupt checking isdisabled by pointing
IEEE CKI backto false . Oncean interrupt has been detected, 1EEEWT calls the interrupt
service routine pointed to by IEEE ISR to servicetheinterrupt. The IEEE ISR initially pointsto
no_op, afunction that does nothing, but it may be redirected as needed to specify the appropriate
interrupt service routine for each part of a program.

e IEEEWTand IEEERD arevery similar to the unbuffered wRITE and READ routines provided in
the C library.

int ieeewt (handle,chars)

int handle

char chars|]

int ieeerd(handle,chars,size)

int handle,

size

char chars[]

#define ieeewt(chars) _ieeewt(ieee,chars)

#define ieeerd(chars) ieeerd(ieee,chars,sizeof (chars))

The 1eEEWT differsfromwriTE inthat it checksfor Driver488/DRV interrupts before writing,
determines the number of characters to write by using STRLEN, and prints an error message if an
error has occurred during writing. The 1EEERD differsfrom REaD only in that it prints an error
message if an error has occurred during reading. IEEEWT and IEEERD (without the leading
underscore) write and read to the file 1EEE. Notice that IEEERD uses S1zEOF to determine the
number of charactersto read. Thisonly worksif sTzeEoF can determine the number of bytesin the

Personal488 User’s Manual, Rev. 3.0 11-61

8E. Microsoft C

I1. SOFTWARE GUIDES - 8. Driver488/DRV

receive buffer, chars. Thismeans chars must be an array of known size, for example,
char chars[256], NOt char*chars.

e IEEEPRTF and IEEESCNF are |EEE 488 versions of PRINTF and SCANF, respectively.

int ieeeprtf (format,...)

char *format

int ieeescnf (format,a,b,c,d,e)
char *format, *a, *b, *c, *d, *e

The 1EEEPRTF accepts aformat string and alist of arguments. It formats its arguments according
to the specified format and sends the formatted string to Driverd88/DRV. The IEEESCNF accepts
aformat string and up to 5 pointers (to the types specified in the format string). It reads a string of
up to 256 bytes from Driver488/DRV, terminates it with a zero, convertsit according to the format
string, and places the converted values into the variables pointed to by the specified pointers.

e RAWMODE Sets the file specified by handle for “raw mode’ 1/0.

int rawmode (handle)
int handle

In“raw mode” MS-DOS does not interpret the characters received from the file. In particular,
control-Z isnot taken as end-of-file. “Raw mode” isusually appropriate for |EEE 488
communications because it does not interfere with the transfer of binary data and because it is
much more efficient than *“non-raw mode” 1/0O.

e IEEEINIT establishes communicationswith Driver488/DRV and configuresit for use with C.
int ieeeinit()

It first opens the file 1EEE for both reading and writing and puts the file descriptor into TEEE. It
then puts the fileinto “raw mode’. Driver488/DRYV isthen initialized by sending the TocTL
“BREAK” and RESET commands. Normal output from C is terminated by a new-line (line feed)
character, and returned strings should be terminated by anull, so Eor. ouT LF and EOL IN $0
commands are then issued. Finally arFILL ERROR command isissued to enable SEQUENCE - NO
DATA AVAILABLE error detection. If an error is detected during any of these commands,
IEEEINIT refurnsa -1, otherwise it returns azero (0).

CRITERR.ASM (Microsoft C & Turbo C)

Normally, when Driver488/DRV detects an error, perhaps due to a syntax error in acommand, it
responds with an 1/0O error to DOS. When this happens, DOS normally issues an ABORT, RETRY OF
IGNORE message and waits for a response from the keyboard. There is no way for the user’s program
to detect such an error, determine the cause, and take appropriate action. However, DOS does provide
amethod of redefining the action to be taken on such a“critical error”. CRITERR.ASM containsa
critical error handler that, when invoked, makes it appear to the calling program that some less-critical
error has occurred. Thecritical error handler isinstalled by crIT on() and removed by

CRIT OFF ().Thecritical error handler is also automatically removed by DOS when the program exits.
The following program fragment demonstrates the use of the critical error handler:

#include “criterr.h”

crit on(ieee);

if (ieeewt (“output 16;F0X”) == -1) {
printf (“Error writing FO0X to device 16, \n”);
crit off();

ioctl wt(ieee,"break",5);

ieeewt (“eol out 1lf\r\n”);

ieeewt (“status\n”);

ieeerd (response) ;

printf (“status = %s\n”,response);
crit on(ieee);

}

We must first #include the header file with the definitions of the critical error routines. We then
enable critical error trapping with crRIT oN which takes as a parameter the handle of the file for which

11-62

Personal488 User’s Manual, Rev. 3.0

I1. SOFTWARE GUIDES - 8. Driver488/DRV 8E. Microsoft C

critical error trapping isto be enabled. Only read and write commands to that handle are trapped.
Errors caused by other actions, or associated with other files are not trapped. Error trapping may only
be enabled for onefile at atime.

Now, if IEEEWT signals an error by returning a -1, we can check what happened. Wefirst PRINTF an
error message, then we turn critical error trapping off with cRIT oFF so that, if another critical error
occurs, we get the ABORT, RETRY OF IGNORE message and know a catastrophic double error has
occurred. Wethen rocTL_wT (_ BREAK) to force Driver488/DRYV to listen to our next command.
The roCcTL WT also resetsthe EoL ouT terminator so we can be sure that Driver488/DRV detects the
end of our commands. We next reset the EoL ouT terminator to our preferred line feed only and ask
Driver488/DRYV for its status. On receiving the response, we could interpret the status and take
whatever action is appropriate. However, in this example, we just display the status. Finaly, we re-
enable the critical error handler and continue with the program.

Sample Program

#include “ieeeio.h”
#include <stdio.h>

void main (void){

int ieee

char response[256];

float voltage;

int i;

float sum;

char hundred[1700];
ieee=open(“ieee”,0 RDWR | O BINARY);
rawmode (ieee) ;

ioctl wt(ieee,"break",5);
ieeewt (“reset\r\n”);
ieeewt (“eol out 1lf\r\n”):;
ieeewt (“eol in $0\n”);
ieeewt (“fill error\n”);

if (ieeeinit() == -1) {

printf (“Cannot initialize IEEE system.\n”);
exit (1) ;

}

ieeewt (“*hello\n”) ;

ieeerd(response) ;

printf (“%s\n”, response) ;

ieeewt (“status\n”);

ieeerd (response) ;

printf (“%s\n”, response) ;

ieeewt (“output 16;FOR0X\n”) ;

ieeewt (“enter 16\n”);

ieeescnf (“%*4s%e”, &voltage) ;

printf (“The read value is %g\n”,voltage);
sum=0.0;

for (i=0; i<10; i++) {

ieeewt (“enter 16\n”);

ieeescnf (“%*4s%e”, &voltage) ;
sum=sum+voltage;

}

printf (“The average of 10 readings is %g\n”,sum/10.0);
ieeeprtf (“ENTER 16 #1700 BUFFER %d:%d\n”,
segment (hundred) ,offset (hundred)) ;

for (i=0; i<1700; i++) putchar (hundred[il]);
ieeeprtf (“ENTER 16 #1700 BUFFER continue\n”,
segment (hundred) ,offset (hundred)) ;

ieeewt (“status\n”);

ieeerd(response) ;

printf (“%s\n”, response) ;

int cklpint();

ieee cki = cklpint;

ieee isr = isr;

ieeewt (“arm srqg\n”) ;

Personal488 User’s Manual, Rev. 3.0 11-63

8E. Microsoft C I1. SOFTWARE GUIDES - 8. Driver488/DRV

ieeewt (“output 16;M2X”) ;

}

void isr()
{ int false ();

int stl195;

printf (“Interrupt detected...”);
ieee cki = _false ;

int sp:;

ieeewt (“spoll\n”) ;

ieeescnf (“%d”, &sp) ;

if (sp==0) {

printf (“Non-SRQ Interrupt!\n”);
exit (1) ;

}

ieeewt (“spoll 16\n”);
ieeescnf (“%d”, &stl95) ;

if ((stl95 & 0x40) == 0) {
printf (“Non-195 SRQ!\n”) ;
exit();

}

if ((stl95 & 0x20) == 0) {

if (stl95 & 0x01)

printf (“Overflow\n”) ;

if (st1l95 & 0x02)

printf (“Buffer Full\n”);

if (st1l95 & 0x04)

printf (“Buffer 1/2 Full\n”);
if (st1l95 & 0x08)

printf (“Reading Done\n”) ;

if (stl95 & 0x10)

printf (“Busy\n”) ;

} else {

if (stl95 & 0x01)

printf (“Illegal Command Option\n”) ;
if (stl95 & 0x02)

printf (“"Illegal Command\n”) ;
if (stl95 & 0x04)

printf (“No Remote\n”);

if (stl95 & 0x08)

printf (“Trigger Overrun\n”) ;
if (stl95 & 0x10)

printf (“Failed Selftest\n”);

}

ieee cki = cklpint;

8F. Microsoft Fortran

Note: Thefollowing short program illustrates the use of Driver488/DRV with Microsoft Fortran.
Most of the program length is composed of utilities that simplify character 1/0 in Fortran.

Sample Program

Character Result*127
Integer StrLen

Call OpenIeee

Write(1l,*) 'RESET’
Write(1l,*) 'REMOTE 16’
Write(1l,*)’OUTPUT 16;Z1X’
Write(1l,*) ’ENTER 16’

Call FlushIeee

Read (2) Result

Write(*, *)Result(l:StrLen(Result,127))
END

11-64 Personal488 User’s Manual, Rev. 3.0

I1. SOFTWARE GUIDES - 8. Driver488/DRV

8G. QuickBASIC

SUBROUTINE Openleee
Open(1l,File='\dev\ieeeout’,Status='0LD’,
1 Access='SEQUENTIAL’)
Open(2,File='\dev\ieeein’,Status="0OLD’,
1l Access=’'SEQUENTIAL’,Form='BINARY’)
END

SUBROUTINE FlushIeee

Rewind 1

Rewind 2

END

FUNCTION StrLen (String,MaxLen)
Character String*127

StrLen=MaxLen-1

DO 10 i=1,MaxLen-2

If (String(i:i) .eq. CHAR(13) .and.

1 String(i+l:i+1l) .eqg. CHAR(10)) then
StrLen=i-1

Goto 20

EndIf

10 Continue

20 Continue

END

8G. QuickBASIC

Topics

Use of the Character Command Language

Initialization of the System..........cccccccceeviiieieieennns
Configuration of the 195 DMM.........ccccooeiiviieennne.
Taking Readings........cccccceeiiiiiiiiiieiciee e
Buffer Transferscccccocvvvviiiiiiiiiiiiiiiiiiiieeeeeeeeeeee
BASIC VARPTR & SADDRcoovviiiiiiiiiiiiieieeeees
Interrupt Handling ...
Sample Programcccceuviiiiiiiieeeeeceecies e

Use of the Character Command Language

Several versions of Microsoft QuickBASIC are currently popular: 2.0, 3.0, 4.0, and 4.5. While they
vary considerably in their user interface and performance, they are virtually identical when it comesto
controlling Driver488/DRV. Two demonstration programs are included for QuickBASIC:

195DEMO. BAS and 195DEMO4 . BAS. 195DEMO.BAS is compatible with versions 2.0 and higher of
QuickBASIC, while 195DEM04 . BAS requires version 4.0 or version 4.5. These examples can be found

on the Driver488/DRV disk in the \ @B directory.

To execute the demo program, start QuickBASIC with the gB /L command. The /L parameter tells

QuickBASIC to load the default library containing the ABsoLUTE subroutine. This /L parameter is not
needed in version 4.0 using 195DEMO4 . BAS. Also, in earlier versions of QuickBASIC, such as 2.0, the
EVENT TRAPPING and CHECKING BETWEEN STATEMENTS compiler options must be turned on for the

program to compile and execute correctly.

Initialization of the System

Any program using Driver488/DRV must first establish communications with the Driver488/DRV
software driver. In BASIC and most other languages this is accomplished using an oPEN statement.
Communication both to and from Driver488/DRV isrequired. In BASIC, this means that two files

Personal488 User’s Manual, Rev. 3.0

11-65

8G. QuickBASIC I1. SOFTWARE GUIDES - 8. Driver488/DRV

must be opened, one for input, and one for output. Other languages may allow the same file to be
opened for both input and output. Three file names are allowed: \DEV\IEEEOUT, \DEV\IEEEIN, and
\DEV\IEEE. By convention, they are used for output, input, and both input and output, respectively.
But in actuality, they are all the same and any one of them can be used for input, output, or both,
depending on the programming language.

In BASIC, the files are opened with the following commands:

110 OPEN “\DEV\IEEEOUT” FOR OUTPUT AS #1
200 OPEN “\DEV\IEEEIN” FOR INPUT AS #2

Of course, file numbers may change as desired, but throughout this manual, file #1 is assumed to output
to Driver488/DRV, and file #2 is assumed to input from Driver488/DRV.

Once these files are opened, we can send commands and receive responses from Driver488/DRV .
While Driver488/DRV should normally be in areset, inactive state, it is possible that it was left in
some unknown state by a previous program failure or error. In order to force Driver488/DRV into its
quiescent state we can use the ToCTL statement:

160 IOCTL#1, "BREAK"

10CTL iSaBASIC statement that sends commands through a “back door” to Driver488/DRV .
Driver488/DRV recognizes this “back door” command regardless of what else it might be doing and
resetsitself so that it is ready to accept anormal command. We can then completely reset the
Driver488/DRV with the RESET command:

170 PRINT#1, "RESET"

which resets the operating parameters of the Driver488/DRV back to their normal values (those that
were set during system boot by the brRvr488 DOS command).

The TocTL BREAK and RESET commands guarantee that Driver488/DRYV is ready for action. Note
that the 1ocTL BREAK and RESET commands are placed before the opEN statement for file #2. This
guarantees that BASIC is able to open Driver488/DRV for input. For more details, see the FILL
command in “Section |11: Command References.”

With the initialization commands and some comments, the program now appears as.

100 ‘Establish communications with Driver488/DRV
110 OPEN “\DEV\IEEEOUT” FOR OUTPUT AS #1

120

150 ‘Reset Driver488/DRV

160 IOCTL#1l, "BREAK"

170 PRINT#1, "RESET"

180

190 ‘Open file to read responses from Driver488/DRV
200 OPEN “\DEV\IEEEIN” FOR INPUT AS #2

Once everything is reset, we can enable the SEQUENCE - NO DATA AVAILABLE error detection by
setting the FILL mode to ERROR:

225 PRINT#1,"FILL ERROR"

We can also test the communications and read the Driver488/DRV revision number with the HELLO
command:

310 PRINT#1, "HELLO"
320 INPUT#2,A$
330 PRINT AS$

First we pPRINT the HELLO command to file #1, then we INPUT the response from file #2 into the
character string variable a$ (“A-string”). Finally we display the response with a PRINT to the screen.
Because BASIC cannot both prINT and INPUT from the same file, we use two opPEN statements, and
two different file numbers to communicate with Driver488/DRV. PRINT must reference thefile
opened for output (in these examples, file #1) and InpuT must reference the file opened for input (file
#2). Attempting to communicate with the wrong file (such as INPUT#1) resultsin an error.

11-66

Personal488 User’s Manual, Rev. 3.0

I1. SOFTWARE GUIDES - 8. Driver488/DRV 8G. QuickBASIC

It is not necessary to perform the HELLo command, but it isincluded here as a simple example of
normal communication with Driver488/DRV. Its response isthe revision identification of the
Driver488/DRV software; Driver488 Revision X.X ©199X IOtech, Inc.

We can aso interrogate Driver488/DRV for its status:

410 PRINT#1, "STATUS"
420 INPUT#2,STS$
430 PRINT STS$

Subsequently, the printed responseis similar to the following:
CS21 1 I000 000 TO CO PO OK

The following indicators describe each component of the Driver488/DRV status:

Indicator | Driver488/DRV Status

C Itisinthe Controller state.

S It isthe System Controller.

21 The value of its |EEE 488 bus address.
1 An Address Change has occurred.
I Itisidle (neither atalker nor alistener).
0 Thereisno ByteIn available.
0
0

It is not ready to send aByteoOut.
Service Reguest (srQ) is not asserted.

000 There is no outstanding error.

TO It has not received a bus device TRIGGER command (only applicable in the Peripheral
mode).

co It has not received a cL.EAR command (only applicable in the Peripheral mode).

PO NO CONTINUE transfer isin progress.

OK The error message is “OK”.

Configuration of the 195 DMM

Once the system isinitialized we are ready to start issuing bus commands. The |EEE 488 bus has
already been cleared by the Interface Clear (1Fc) sent by the RESET command, so we know all bus
devices are waiting for the controller to take some action. To control an | EEE 488 bus device, we
OUTPUT an appropriate device-dependent command to that device. For example, the command FOR0X
sets the 195 to read DC volts with automatic range selection:

610 PRINT#1, "OUTPUT 16;FOROX"

The ouTpuT command takes a bus device address (16 in this case) and data (ForR0x) and sends the data
to the specified device. The address can be just a primary address, such as 12, or 05, or it caninclude
asecondary address: 1201. Note that both the primary address and, if present, the secondary address
are two-digit decimal numbers. A leading zero must be used, if necessary, to make a two-digit address.

Taking Readings
Once we have set the 195's operating mode, we can take a reading and display it:
710 PRINT#1,"ENTER 16"

720 INPUT#2,R$
730 PRINT R$

The ENTER command takes a bus address (with an optional secondary address) and configures that bus
device so that it is able to send data (addressed to talk). No datais actually transferred, however, until
the INPUT statement requests the result from Driver4d88/DRV at which time datais transferred to the
program into the variable r$.

Once the result has been received, any BASIC functions or statements can be used to modify or
interpret it. Inthisexample, theresultisintheform NpDcv+1.23456E-2 showing the range (NpDcv)

Personal488 User’s Manual, Rev. 3.0 11-67

8G. QuickBASIC I1. SOFTWARE GUIDES - 8. Driver488/DRV

and the numeric value of thereading (+1.23456E-2). The BASIC mIp$ function can be used to strip
off the range characters and keep only the numeric part (the fifth character and beyond), and the vaL
function can be used to convert this string to a number:

740 N$=MIDS (RS$,5)
741 N=VAL (N$)
742 PRINT “The read value is”;N

These may be combined for efficiency:
740 PRINT “The read value is”;VAL(MIDS$ (RS$,5))

All the power of BASIC may be used to manipulate, print, store, and analyze the data read from the
|EEE 488 bus. For example, the following statements print the average of ten readings from the 195:

810 SUM=0

820 FOR I=1 TO 10

830 PRINT#1, "ENTER 16"

840 INPUT#2,R$

850 SUM=SUM+VAL (MID$ (R$,5))

860 NEXT I

870 PRINT “The average of ten readings is”;SUM/10

Buffer Transfers

Instead of using an INPUT#2 Statement to receive the data from a device, we can direct
Driver488/DRV to place the response directly into a data buffer of our choice. For example, each
reading from the 195 consists of 17 bytes: a four-byte prefix and an eleven-byte reading followed by
the two-byte command terminator. So, we can collect 100 readings in a 1700-byte string.

To do this, we must first allocate the required space in a string variable:
910 R$=SPACE$ (1700)

And then we must tell Driver488/DRV where rR$ islocated in memory.

In QuickBASIC 4.0, the varskg function allows us to determine the segment address of a variable.
DS%=VARSEG (R$)

Now that we know the segment address of rR$, we can get its offset address by using SADDR:

RDESC=0
RDESC=SADDR

Notice that we first create RDESC by setting it to zero. This preventsr¢ from being moved as a result
of creating RDESC after calling SADDR.

Now we have the segment and offset of r$, we can passit directly to Driver488/DRV with the
ENTER #count BUFFER cOommand:

PRINT#1, "ENTER16 #1700 BUFFER"; DS%; “:”;RDESC

This command consists of the keyword ENTER, followed by the bus device address (16), a number sign
(#), the number of bytesto transfer (1700), and the keyword BUFFER, followed by the memory address
of the buffer. The buffer addressis specified as segment : of £set Where segment and offset are
each 16-bit numbers and the colon (:) isrequired to separate them. The segment value we need, isthe
BASIC data segment value that we have just acquired into bs% with GET . SEGMENT. Theoffset
valueisthe offset of the string in that data segment, which isrRDESC.

Once the data has been received, we can print it out:
980 PRINT RS

The program can continue with other work while the transfer occurs. For example, the program could
process the previous set of datawhile collecting a new set into a different buffer. To allow the program
to continue, specify CONTINUE in the command:

PRINT#1, "ENTER16 #1700 BUFFER"; DS%; “:”;RDESC; “CONTINUE”

11-68

Personal488 User’s Manual, Rev. 3.0

I1. SOFTWARE GUIDES - 8. Driver488/DRV 8G. QuickBASIC

Once we have started the transfer, we can check the status:

980 PRINT#1, "STATUS"
990 INPUT#2,STS$
1000 PRINT STS$

The status that is returned is typically:
CS21 1 L100 000 TO CO Pl OK

Notice p1 which states atransfer isin progress, and . which shows we are still alistener. If the bus
deviceis so fast that the transfer completes before the program can check status, the response is po
showing that the transfer is no longer in progress. We can also wa1T for the transfer to complete and
check the status again:

1010 PRINT#1, "WAIT"
1020 PRINT#1, "STATUS"
1030 INPUT#2,ST$

1040 PRINT STS$

This time the status must be o asthe wazT command waits until the transfer has completed. Now that
we know the transfer is complete, we are ready to print out the received data as shown above.

BASIC VARPTR & SADDR

TheBasIc VARPTR and sapDR functions must be used with caution. The first time a variable such as
I or sT$ isencountered, or an array such asr% () isdimensioned, space is made for itin BASIC's data
space. The other variable or arrays may be moved to make room for the new item. If the memory
location of an item must be fixed, then BASIC cannot be allowed to encounter any new variables or
arrays. For example, in the ENTER statement shown above, Driver488/DRV istold the memory address
of r$ (for GW-BASIC, R% (0)). Then, while the transfer is going on, the Driver488/DRV statusisread
into the string variable sTs$. If sT$ has not been used previously then BASIC would have to create a
new st$ and might move rR$. Of course, Driver488/DRV would have no way of knowing that r$ has
been moved, and the data would not be placed correctly into rs.

Interrupt Handling

The |IEEE 488 busis designed to be able to attend to asynchronous (unpredictable) events or
conditions. When such an event occurs, the bus device needing attention can assert the Service
Request (srQ) lineto signal that condition to the controller. Once the controller notices the srg, it can
interrogate the bus devices, using Parallel Poll (ppoLL) and/or Seria Poll (spoLL) to determine the
source and cause of the srQ, and take the appropriate action.

Parallel Poll isthe fastest method of determining which device requires service. Parallel Poll isavery
short, simple | EEE 488 bus transaction that quickly returns the status from many devices. Each of the
eight IEEE 488 bus data bits can contain the Parallel Poll response from one or more devices. So, if
there are eight or fewer devices on the bus, then just the single Parallel Poll can determine which
requires service. Even if the busis occupied by the full complement of 15 devices, then Parallel Poll
can narrow the possihilities down to a choice of no more than two.

Unfortunately, the utility of Parallel Poll islimited when working with actual devices. Some have no
Parallel Poll response capability. Others must be configured in hardware, usually with switches or
jumpers, to set their Parallel Poll response. If Parallel Poll isnot available, or several devices share the
same Parallel Poll response bit, then Serial Polling is still required to determine which deviceis
reguesting service.

Serial Poall, though it is not as fast as Parallel Poll, does offer two major advantages: it returns
additional status information beyond the simple request/no-request for service, and it isimplemented on
virtually al bus devices.

The srq line can be monitored in two ways: it can be periodically polled using the sTaTUS command,
or it can be used to cause an external interrupt when asserted.

Personal488 User’s Manual, Rev. 3.0 11-69

8G. QuickBASIC I1. SOFTWARE GUIDES - 8. Driver488/DRV

BASIC provides a method for detecting and servicing external interrupts: the on PEN statement. The
ON PEN statement tells BASIC that, when an external interrupt is detected, a specific subroutine,
known as the interrupt service routine (ISR), isto be executed. Normally, the interrupt detected by
ON PEN isthelight pen interrupt. However, Driver488/DRV redefines this “light pen interrupt” to
signal when an IEEE 488 bus related interrupt (such as srQ) has occurred.

When Driver488/DRV detects an interrupt, it informs the user’s program that an interrupt has occurred
by making it appear that a light pen interrupt has occurred. To alow BASIC and Driver488/DRV to
work together to detect and service the interrupt, the following steps are required:

1. BASIC must be told which subroutine to execute upon detection of the interrupt.
2. BASIC interrupt detection must be enabled.
3. Driver488/DRV must be configured to detect the interrupt.

The oN PEN GOSUB, PEN ON, and ARM SRQ commands, respectively, perform these steps:

250 ON PEN GOSUB ISR
260 PEN ON
270 PRINT#1, "ARM SRQ"

1. Theon PEN GosuB command tells BASIC that the subroutine called 1SR isto be executed when
the light pen interrupt is detected. Driver488/DRV causes the light pen interrupt to occur on
detection of an IEEE 488 interrupt.

2. Theren on command enablesthe actual checking for light pen interrupt status.

3. ThearM srg command tells Driver488/DRV that an interrupt isto be signaled on detection of a
service request from the IEEE 488 bus.

These commands are placed near the beginning of the program to catch Service Requests (SrRQ)
whenever they occur.

The 195 can be set to request service on any of several different internal conditions. In particular, the
M2 command causes an SRQ on the detection of any invalid command or command option by the 195:

550 PRINT#1, "OUTPUT 16;M2X"

ThisouTpuT command is placed early in the program so that all subsequent commands to the 195
cause an srg, if they areinvalid.

At this point BASIC is checking for an interrupt, and knowsto cosuB srQ when an interrupt is
detected. Driverd88/DRV is set to generate an interrupt on detection of an SRQ generated by the 195
on detection of an invalid command. We must still, however, specify what action should be taken once
an interrupt is detected.

Upon entering the interrupt service routine, we first check Driver488/DRV to seeif it isready for a
command and if so, read the Serial Poll Statusto determineif an srQ actually caused the interrupt:

2000 SRQ: ‘Interrupt service routine—Entered due to SRQ
2010

2020 ‘RETURN if Driver488/DRV is not ready for commands.
2030 IF IOCTLS$(2)"O0" THEN RETURN

2040

2050 ‘Check that it is indeed an SRQ

2060 PRINT#1, "SPOLL"

2070 INPUT#2,SP

2080 IF SP=0 THEN PRINT “Non-SRQ Interrupt!”: STOP

Next we Serial Poll the 195 to determine its status. If there were other devices on the bus that could be
generating the srg, each of them would be have to be checked in turn.

2110 PRINT#1,"SPOLL 16"
2120 INPUT#2,ST195
2130 IF (ST195 AND 64) = 0 THEN PRINT “Non-195 SRQ!”: STOP

11-70 Personal488 User’s Manual, Rev. 3.0

I1. SOFTWARE GUIDES - 8. Driver488/DRV

8G. QuickBASIC

Bit bxo7, with avalue of 64, isreturned as true (1) in the Serial Poll response of those devices

requesting service. Inour simple example, we expect that the 195 is the only possible cause of an srQ,
and if not, there must be some error.

Now that we have identified the device that is requesting service, we can further examine the Serial
Poll statusto classify the request. If DIOG6 is set, then the 195 is signaling an error condition. If that bit

is clear, some

2160
‘Int
2210
2220
2230
2240
2250
2260
‘Int
2310
2320
2330
2340
2350
2360

Finally, once we have diagnosed the error, we are ready to return to the main program:

2400

Sample Program

100
110
120
150
160
170
180
190
200
225
250
260
270
310
320
330
410
420
430
550
610
710
720
730
740
741
742
740
810
820
830
840
850
860
870
910
980

non-error condition caused the srQ:

IF (ST195 AND 32)=0 THEN ‘Test ERROR Status Bit
erpret no-error status

IF ST195 AND 1 THEN PRINT “Overflow”

IF ST195 AND 2 THEN PRINT “Buffer Full”

IF ST195 AND 4 THEN PRINT “Buffer 1/2 Full”

IF ST195 AND 8 THEN PRINT “Reading Done”

IF ST195 AND 16 THEN PRINT "“Busy”

ELSE
erpret error status

IF ST195 AND 1 THEN PRINT “Illegal Command Option”
IF ST195 AND 2 THEN PRINT “Illegal Command”

IF ST195 AND 4 THEN PRINT “No Remote”

IF ST195 AND 8 THEN PRINT “Trigger Overrun”

IF ST195 AND 16 THEN PRINT “Failed Selftest”
END IF

RETURN

‘Establish communications with Driver488/DRV
OPEN “\DEV\IEEEOUT” FOR OUTPUT AS #1
‘Reset Driver488/DRV

IOCTL#1, "BREAK"

PRINT#1, "RESET"

‘Open file to read responses from Driver488/DRV
OPEN “\DEV\IEEEIN” FOR INPUT AS #2
PRINT#1, "FILL ERROR"

ON PEN GOSUB ISR

PEN ON

PRINT#1, "ARM SRQ"

PRINT#1, "HELLO"

INPUT#2,AS$

PRINT AS

PRINT#1, "STATUS"

INPUT#2,STS

PRINT ST$

PRINT#1, "OUTPUT 16;M2X"

PRINT#1, "OUTPUT 16;FOROX"

PRINT#1, "ENTER 16"

INPUT#2,R$

PRINT RS

N$=MIDS$ (R$,5)

N=VAL (N$)

PRINT “The read value is”;N

PRINT “The read value is”;VAL(MIDS$ (RS$,5))
SUM=0

FOR I=1 TO 10

PRINT#1, "ENTER 16"

INPUT#2, RS

SUM=SUM+VAL (MID$ (R$,5))

NEXT I

PRINT “The average of ten readings is”;SUM/10
R$=SPACES$ (1700)

PRINT#1, "STATUS"

Personal488 User’s Manual, Rev. 3.0

1-71

8G. QuickBASIC

I1. SOFTWARE GUIDES - 8. Driver488/DRV

990 INPUT#2,ST$

1000 PRINT STS

1010 PRINT#1, "WAIT"

1020 PRINT#1, "STATUS"

1030 INPUT#2,ST$

1040 PRINT STS

2000 SRQ: ‘Interrupt service routine—Entered due to SRQ
2010 ¢

2020 ‘RETURN if Driver488/DRV is not ready for commands.
2030 IF IOCTLS$(2)"O0" THEN RETURN

2040

2050 ‘Check that it is indeed an SRQ

2060 PRINT#1, "SPOLL"

2070 INPUT#2,SP

2080 IF SP=0 THEN PRINT “Non-SRQ Interrupt!”: STOP

2110 PRINT#1,"SPOLL 16"

2120 INPUT#2,ST195

2130 IF (ST195 AND 64) = 0 THEN PRINT “Non-195 SRQ!”: STOP
2160 IF (ST195 AND 32)=0 THEN ‘Test ERROR Status Bit
‘Interpret no-error status

2210 IF ST195 AND 1 THEN PRINT “Overflow”

2220 IF ST195 AND 2 THEN PRINT “Buffer Full”

2230 IF ST195 AND 4 THEN PRINT “Buffer 1/2 Full”

2240 IF ST195 AND 8 THEN PRINT “Reading Done”

2250 IF ST195 AND 16 THEN PRINT “Busy”

2260 ELSE

‘Interpret error status

2310 IF ST195 AND 1 THEN PRINT “Illegal Command Option”
2320 IF ST195 AND 2 THEN PRINT “Illegal Command”

2330 IF ST195 AND 4 THEN PRINT “No Remote”

2340 IF ST195 AND 8 THEN PRINT “Trigger Overrun”

2350 IF ST195 AND 16 THEN PRINT “Failed Selftest”

2360 END IF

2400 RETURN

8H.

Turbo C

Topics
Use of the Character Command Language..........ccccccceeeeeeennnn. 11-71
Initialization of the System...........ccccceiiiiiiiiiiec e, 1-72
Configuration of the 195 DMMcccccoiiiiiiiiiiiieeeeie e 11-74
TaKiNg ReATINGScovviiiiiii i 11-74
BUTTEr TranSTeIS.......oviiiiiiiiiiiiiiiieeeeeeeeeeeee e 11-75
Interrupt HanNdling ... 11-76
IEEETO.C ..ottt e 11-78
CRITERR.ASM (Microsoft C & Turbo C)........ccvceeiiiiiieieiieiiinns 11-80
Y= 10 a1 o] (ST od oo | = Un o A USERUPRPPURR 11-80

Use of the Character Command Language

In order to simplify programming Driver488/DRV with C, the following files are provided on the
Driver488/DRV program disk:

-72

Personal488 User’s Manual, Rev. 3.0

I1. SOFTWARE GUIDES - 8. Driver488/DRV 8H. Turbo C

e IEEETIO.C: Communications routinesfor Driver488/DRV
e IEEETO.H: Header file, contains declarations from IEEETIO.C

e CRITERR.ASM: Critica error handler assembly language source file (included with Microsoft C
and Turbo C, only)

e CRITERR.OBJ: Object file produced from cRITERR.AsSM (included with Microsoft C and Turbo
C, only)

e CRITERR.H: Header file, contains declarationsfor using CRITERR.ASM

The actual demonstration program is contained in 195DEMO . ¢ (described by the project file
195DEMO. PRJ in Turbo C, only).

All filesfor Microsoft C are in the \mMsc directory; al filesfor Turbo C are in the \TurBOC directory.
To execute the demonstration program, enter Turbo C and perform the following steps:

1. Type<alt-p> (for Project) p (for Project Name) 195demo.

2. Press<Enter> to Set up the project to run.

3. Thentype<alt-r> to compile and run the demonstration program.

The above process assumes that you have Turbo C, and that the files have been copied into the
appropriate directory for use with your C compiler. Note that the program uses a small data model
because it uses less than 64K of code and data.

Initialization of the System

Any program using Driver488/DRV must first establish communications with the Driver488/DRV
software driver. In C, thisis accomplished using the oPEN statement. Communication both to and
from Driver488/DRYV isrequired. Thus, the file must be opened for both reading and writing (RDWR).
Also, in Microsoft C and Turbo C, the file must be opened in BINARY mode so that end-of-line
characters are not translated.

In Microsoft C and Turbo C, the file is opened with the following statement:
ieee=open(“ieee”,0 RDWR | O BINARY);
In Aztec C, thefile is opened with the following statement:

ieee=open(“ieee”,0 rdwr) ;

which is part of the IEEEINIT function contained in IEEEIO.C. IEEEIO.C suppliesseveral other
useful routines and definitions. These are described in more detail in “Interrupt Handling,” an
upcoming topic in this Sub-Chapter.

In the above statement, the value returned by opEN and placed into the integer variable 1EEE, is either
the handle of the opened file or -1 if some error has occurred. The 1EEEINIT routine checksfor this
error indication and returns a - 1 if there has been such an error.

Of course, the file descriptor variable name TEEE may be changed as desired, but throughout this
manual and the program files, IEEE has been used. Once the file is opened, we can send commands
and receive responses from Driver488/DRV.

Normally, when DOS communicates with afile, it checks for special characters, such as control-Z
which can indicate end-of-file. When communicating with IEEE 488 devices, DOS's checking would
interfere with the communication. The RawMoDE function prevents DOS from checkings for special
characters:

rawmode (ieee) ;

As an additional benefit, communication with Driver488/DRYV is much more efficient when DOS does
not check for specia characters.

Personal488 User’s Manual, Rev. 3.0 11-73

8H. Turbo C

I1. SOFTWARE GUIDES - 8. Driver488/DRV

Driver488/DRV can accept commands only when it isin a quiescent, ready state. While
Driver488/DRV should normally be ready, it is possible that it was left in some unknown state by a
previous program failure or error. In order to force Driver488/DRV into its quiescent state, we use the
I0CcTL_WT function:

ioctl wt(ieee,"break",5);

This zocTL Wt function is equivalent to the BASIC statement TocTL#1, “BREAK” which sendsthe
BREAK command through a “back door” to Driver488/DRV. Driver488/DRV recognizes this “back
door” command regardless of what else it might be doing and resetsitself so that it isready to accept a
normal command. We can then completely reset the Driver488/DRV with the RESET command:

ieeewt (“reset\r\n”);

which resets the operating parameters of the Driver488/DRV back to their normal values (those that
were set during system boot by the brvr488 DOS command). Notice that the EoL ouT terminators
that mark the end of a Driver488/DRV command are reset to carriage return and line feed by the
1ocTL_WT command. Thus, the RESET command must be terminated by both a carriage return (\r)
and alinefeed (\n). Asitismore convenient if Driverd88/DRV accepts line feed only asthe
command terminator, we use the EoL. ouT command to set the command terminator to line feed (\n):

ieeewt (“eol out 1lf\r\n”);

Notice that this command must also be terminated by both a carriage return and aline feed because the
command terminator is not changed until after the EoL. ouT command is executed.

Character stringsin C are normally terminated by anull (anascrz 0). Thus, it isappropriate for
Driver488/DRV to terminate its responses to the program with anull so that the response can be treated
asanormal character string. We can use the Eor. 1§ command to configure Driver4d88/DRV so that it
does provide an ASCII null terminator:

ieeewt (“eol in $0\n”);
Finally, we enable SEQUENCE - NO DATA AVAILABLE error detection by setting the FILL modeto
ERROR:

ieeewt (“fill error\n”);

All the commands discussed so far: OPEN, RAWMODE, IOCTL_WT, RESET, EOL OUT, EOL IN and FILL
ERROR are part of the T1EEEINIT functionincluded in IEEEIO.C. IEEEINIT returnsazero if these
steps were executed successfully, and a -1 if some error was encountered. Thus, to accomplish all the
above steps, we just use the following:

#include “ieeeio.h”
#include .h

if (ieeeinit() == -1) {

printf (“Cannot initialize IEEE system.\n”);
exit(1);

}

The two INCLUDE statements provide the program with definitions of the standard I/O and IEEE 1/0O
functions so they can be referenced by the demo program. TEEEINIT iscalled to initialize the system,
and if it indicates an error (returnsa -1), we print an error message and exit. If there was no error, we
just continue with the program.

Once everything is reset, we can test the communications and read the Driver488/DRV revision number
with the HELLO command:

char response[256];
ieeewt (“*hello\n”) ;
ieeerd(response) ;

printf (“%s\n”,response) ;

Wefirst 1EEEWT the HELLO command, then IEEERD the response from Driver488/DRV into the
character string response (IEEEWT and IEEERD are both supplied in TEEETO.C). Finaly, we display
the response with a PRINTF.

[1-74

Personal488 User’s Manual, Rev. 3.0

I1. SOFTWARE GUIDES - 8. Driver488/DRV 8H. Turbo C

It is not necessary to perform the HELLO command, but it isincluded here as a simple example of
normal communication with Driver488/DRV. Its response is the revision identification of the
Driver488/DRV software; Driver488 Revision X.X ©199X IOtech, Inc.

We can aso interrogate Driver488/DRV for its status:

ieeewt (“status\n”) ;
ieeerd (response) ;
printf (“%s\n”, response) ;

Subsequently, the printed responseis similar to the following:
CS21 1 I000 000 TO CO PO OK

The following indicators describe each component of the Driver488/DRV status:

Indicator | Driver488/DRV Status

C Itisinthe Controller state.

S It isthe System Controller.

21 The value of its |EEE 488 bus address.
1 An Address Change has occurred.
I Itisidle (neither atalker nor alistener).
0 Thereisno ByteIn available.
0
0

It is not ready to send aByteoOut.
Service Reguest (srQ) is not asserted.

000 There is no outstanding error.

TO It has not received a bus device TRIGGER command (only applicable in the Peripheral
mode).

co It has not received a cL.EAR command (only applicable in the Peripheral mode).

PO NO CONTINUE transfer isin progress.

OK The error message is “OK”.

Configuration of the 195 DMM

Once the system isinitialized we are ready to start issuing bus commands. The |EEE 488 bus has
already been cleared by the Interface Clear (1Fc) sent by the RESET command, so we know that all bus
devices are waiting for the controller to take some action. To control an | EEE 488 bus device, we
output an appropriate device-dependent command to that device. For example, the Forox command
line below sets the 195 to read DC volts with automatic range selection:

ieeewt (“output 16;FOR0X\n”) ;

The ouTpPuT command takes a bus device address (16 in this case) and data (ForR0x) and sends the data
to the specified device. The address can be just a primary address, such as 12, or 05, or it caninclude
asecondary address: 1201. Note that both the primary address and, if present, the secondary address
are two-digit decimal numbers. A leading zero must be used, if necessary to make a two-digit address.

Taking Readings
Once we have set the 195’ s operating mode, we can take a reading and display it:

float voltage;

ieeewt (“enter 16\n”);

ieeescnf (“%*4s%e”, &voltage) ;

printf (“The read value is %g\n”,voltage);

The ENTER command takes a bus address (with an optional secondary address) and configures that bus
device so that it is able to send data (addressed to talk). No datais actually transferred, however, until
the IEEESCNF statement requests the result from Driver488/DRV at which time dataistransferred to
the program into the variable voltage. A typical reading from a 195 might be NDCV+1.23456E-2,
consisting of afour character prefix followed by afloating point value. The format passed to
IEEESCNF causesit to skip the four character prefix ($*4s) and then convert the remaining string into
the float variable voltage.

Personal488 User’s Manual, Rev. 3.0 11-75

8H. Turbo C

I1. SOFTWARE GUIDES - 8. Driver488/DRV

All the power of C may be used to manipulate, print, store, and analyze the data read from the
|EEE 488 bus. For example, the following statements print the average of ten readings from the 195:

int i;

float sum;

sum=0.0;

for (i=0; i; i++) {
ieeewt (“enter 16\n”);
ieeescnf (“%*4s%e”, &voltage) ;
sum=sum+voltage;

}

printf (“The average of 10 readings is %g\n”,sum/10.0);

Buffer Transfers

Instead of using an TEEERD (_) function to receive the data from a device, we can direct
Driver488/DRV to place the response directly into a data buffer of our choosing. For example, each
reading from the 195 consists of 17 bytes: a four-byte prefix and an eleven-byte reading followed by
the two-byte command terminator. So, we can collect 100 readings in a 1700-byte array. To do this,
we must first allocate the required space in an array:

char hundred[1700];

Now that we have allocated a place for the readings, we can direct Driver488/DRV to put readings
directly into hundred with the ENTER #count BUFFER command:

ieeeprtf (“ENTER 16 #1700 BUFFER %d:%d\n”,
segment (hundred) ,offset (hundred)) ;

This command consists of the keyword ENTER, followed by the bus device address (16), a number sign
(#), the number of bytesto transfer (1700), and the keyword BUFFER, followed by the memory address
of the buffer. The buffer addressis specified as segment : of £set Where segment and of fset are
each 16-bit numbers and the colon (:) isrequired to separate them. The segment and offset values
we need are returned by the segment and of £set functions, respectively.

Once the data has been received, we can print it out:

for (i=0; i<1700; i++) putchar (hundred[il]):;
The program could process the previous set of data while collecting a new set into a different buffer.
To alow the program to continue, specify continue in the command:

ieeeprtf (“ENTER 16 #1700 BUFFER continue\n”,
segment (hundred) ,offset (hundred)) ;

Once we have started the transfer, we can check the status:

ieeewt (“status\n”);
ieeerd (response) ;
printf (“%s\n”, response) ;

The status that is returned is typically:
€s21 1 L100 000 TO CO Pl OK

Notice r1 which states atransfer isin progress, and . which shows we are still alistener. If the bus
deviceis so fast that the transfer completes before the program can check status, the response is po
showing that the transfer is no longer in progress. We can also waxT for the transfer to complete and
check the status again:

ieeewt (“wait\n”) ;

ieeewt (“status\n”);

ieeerd (response) ;
printf (“%s\n”, response) ;

This time the status must be o asthe wazT command waits until the transfer has completed. Now that
we know the transfer is complete, we are ready to print out the received data as shown above.

[1-76

Personal488 User’s Manual, Rev. 3.0

I1. SOFTWARE GUIDES - 8. Driver488/DRV 8H. Turbo C

Interrupt Handling

The |IEEE 488 busis designed to be able to attend to asynchronous (unpredictable) events or
conditions. When such an event occurs, the bus device needing attention can assert the Service
Request (srQ) line to signal that condition to the controller. Once the controller notices the SRQ, it can
interrogate the bus devices, using Parallel Poll (ppoL1) and/or Seria Poll (spoLL) to determine the
source and cause of the srQ, and take the appropriate action.

Parallel Poll isthe fastest method of determining which device requires service. Parallel Poll isavery
short, simple | EEE 488 bus transaction that quickly returns the status from many devices. Each of the
eight IEEE 488 bus data bits can contain the Parallel Poll response from one or more devices. So, if
there are eight or fewer devices on the bus, then just the single Parallel Poll can determine which
requires service. Even if the busis occupied by the full complement of 15 devices, then Parallel Poll
can narrow the possihilities down to a choice of no more than two.

Unfortunately, the utility of Parallel Poll islimited when working with actual devices. Some have no
Parallel Poll response capability. Others must be configured in hardware, usually with switches or
jumpers, to set their Parallel Poll response. If Parallel Poll isnot available, or several devices share the
same Paralléel Poll response hit, then Serial Polling is till required to determine which deviceis
requesting service.

Serial Poall, though it is not as fast as Parallel Poll, does offer three major advantages: it gives an
unambiguous response from a single bus device; it returns additional status information beyond the
simple request/no-request for service; and, most importantly, it isimplemented on virtually all bus
devices.

The srq line can be monitored in two ways: it can be periodically polled by using the sTaTus
command, or by checking the “light pen status.”

BASIC provides a method for detecting and servicing external interrupts: the on PEN statement. The
ON PEN statement tells BASIC that, when an external interrupt is detected, a specific subroutine,
known as the interrupt service routine (ISR), isto be executed. Normally, the interrupt detected by
ON PEN isthelight pen interrupt. However, Driver488/DRV redefines this “light pen interrupt” to
signal when an IEEE 488 bus related interrupt (such as srQ) has occurred.

Unlike BASIC, C does not provide an automatic method of checking for light pen interrupts.
Therefore, afunction is needed to check for the interrupt. The function could use the sTaTus
command, but it is much faster to check the interrupt status directly using aBIOS interrupt. The
ckLPINT (check light pen interrupt) function provided in IEEEIO. ¢ uses the BIOS to check for
Driver488/DRV interrupts and returnstrue (1) if oneis pending. Interrupts are checked automatically
by the 1EEEWT routine before sending any datato Driverd88/DRV. However, IEEEWT does not call
cKLPINT directly. Instead, it callsthe routine that is pointed to by IEEE cKI (IEEE check interrupt).
If IEEE CKI pointsto ckLPINT, then 1EEEWT checks for Driver488/DRV interrupts, but if

IEEE CKI pointsto false , afunction that alwaysreturns o, then interrupt checking is disabled.
Initially, IEEE_cKI doespointto false , and so interrupt checkingisdisabled. To enableinterrupt
checking IEEE_CKI must be redirected to CKLPINT:

int cklpint();
ieee cki = cklpint;

Once an interrupt has been detected, an interrupt service routine must be invoked to handle the
interrupting condition. When 1EEEWT detects an interrupt, it calls the interrupt service routine (1SR).
Just as tEEEWT does not call the check-for-interrupt routine directly, it does not call the ISR directly,
either. Instead, it callsthe routine pointed to by TEEE 1SR (IEEE interrupt service routine). If

IEEE ISR iSsetto point to some specific ISR, then that ISR is executed when IEEEWT detects an
interrupt. Initiadly, IEEE_ ISR pointstono_op, afunction that does nothing. So, unless IEEE_ISRiS
redirected to another routine, nothing is done when an interrupt is detected. In the 195DEMO example
program an interrupt service routine, called isr, has been provided. So, IEEE_ 1SR must be set to
point this routine for interrupts to be handled properly:

ieee isr = isr;

Personal488 User’s Manual, Rev. 3.0 11-77

8H. Turbo C

I1. SOFTWARE GUIDES - 8. Driver488/DRV

Once we have enabled interrupt checking by setting IEEE_CKI to point to cKLPINT, and specified the
interrupt service routine by setting IEEE_ISR to point to isr, then we can specify which conditions are
to cause an interrupt. The arM command specifies those conditions. In this example we want the
interrupt to occur on the detection of a Service Request (SRQ):

ieeewt (“arm srqg\n”) ;

The 195 can be set to request service on any of severa different internal conditions. In particular, the
M2 command causes an srQ on the detection of any invalid command or command option by the 195:

ieeewt (“output 16;M2X");

ThisouTpuT command is placed early in the program so that all subsequent commands to the 195
cause an srQ, if they areinvalid.

Now that interrupt detection is enabled, and the interrupt service routine is specified, we must specify
the actions to take to service the interrupt. Wefirst display a message indicating that an interrupt was
detected, and then turn off interrupt checking:

void isr()

{ int false() ;

printf (“Interrupt detected...”);
ieee cki = _false ;

We next check the Driver488/DRV Seria Poll Status to determine if an srQ actually caused the
interrupt:

int sp;

ieeewt (“spoll\n”);

ieeescnf (“%d”, &sp) ;

if (sp==0) {

printf (“Non-SRQ Interrupt!\n”);
exit (1) ;

}

We then Seria Poll the 195 to determine its status. |If there were other devices on the bus that could be
generating the srg, each of them would be have to be checked in turn.
int stl1l95;

ieeewt (“spoll 16\n”);
ieeescnf (“%d”,&stl195) ;

if ((stl95 & 0x40) == 0) {
printf (“Non-195 SRQ!\n”);
exit();

}

Bit px07, with avalue of 0x40, isreturned astrue (1) in the Serial Poll response of those devices
requesting service. In our simple example we expect that the 195 is the only possible cause of an srg,
and if not, there must be some error.

Now that we have identified the device that is requesting service, we can further examine the Serial
Poll status to classify the request:

if ((stl95 & 0x20) == 0) {
if (stl95 & 0x01)

printf (“Overflow\n”) ;

if (stl95 & 0x02)

printf (“Buffer Full\n”);

if (stl95 & 0x04)

printf (“Buffer 1/2 Full\n”);
if (stl95 & 0x08)

printf (“Reading Done\n”) ;

if (stl95 & 0x10)

printf (“Busy\n”) ;

} else {

if (stl95 & 0x01)
printf(“Illegal Command Option\n”);
if (stl95 & 0x02)

[1-78

Personal488 User’s Manual, Rev. 3.0

I1. SOFTWARE GUIDES - 8. Driver488/DRV 8H. Turbo C

printf(“Illegal Command\n”) ;
if (stl95 & 0x04)

printf (“No Remote\n”) ;

if (stl95 & 0x08)

printf (“Trigger Overrun\n”) ;
if (stl95 & 0x10)

printf (“Failed Selftest\n”);

}

The action taken depends, of course, on the design of the system, but in this example, simply displaying
amessage is adeguate.

Finally, after decoding the cause of the SrQ, we are ready to re-enable interrupts and return to the main
program:

ieee cki = cklpint;

IEEEIO.C

The 1EEETO. ¢ file contains several useful declarations and functions, many of which have been used
in the 195DEMO example program. They are:

e IEEE isaninteger that holds the file descriptor (MS-DOS handl€) returned by opEN.

int ieee
e segment and offset return the 16-bit segment and of£set values that make up a pointer.

int segment (ptr)
void *ptr

int offset (ptr)
void *ptr

The implementation of these functions depends on the memory model being used. In the small
data model, pointers are 16 bits and are exactly the of£set desired. Here, the segment isaways
theinternal ds register value. In the large data model, pointers are 32 bits, one word of which is
the segment and the other isthe of £set. For more information on memory models, see the
“Other Languages’ Sub-Chapter in this Chapter.

e ERRNO holdsthe error code for 1/O and other errors.

extern int errno;

e TIOCTL_RD and IOCTL WT are special versionsof rocTL 1o which reads and writes to the 1/0
control channel of adevice.

int ioctl io(int handle

chars, chars|],

int size,

int iocall)

#define ioctl rd(handle,chars,size) \
ioctl io(handle,chars,size,0x4402)
#define ioctl wt(handle,chars,size) \
ioctl io(handle,chars,size,0x4403)

The 1/O control channel of adeviceisread from and written to exactly as the normal (data)
channel isread and written, but the data transferred is not to be treated in the same way. Normally,
the 1/0O control channel is used to communicate setup and status information regarding the device
without actually transferring any datato or fromit. When using Driver488/DRV, IOCTL WT isS
used to force Driver488/DRYV to be ready to accept acommand, and IocTL RD is used to return
status information from the driver. These functions correspond exactly to the zocTL and TocTLS
commands, as described in “ Section 111: Command References.” The Turbo C library function
T0cTL could be used to perform these functions for small-data programs, but it is not compatible
with the large-data models.

e CKLPINT, IEEE CKI, and IEEE_ISR are functionsand pointerswhich provide for automatic
interrupt detection and servicing.

Personal488 User’s Manual, Rev. 3.0 11-79

8H. Turbo C

I1. SOFTWARE GUIDES - 8. Driver488/DRV

int cklpint (void)
int false (void)

int (*ieee_cki) (void) = _false_
void no_op(void)
void (*ieee_ isr) (void) = no_op

Driver488/DRV signals interrupts, which are enabled with the aARM command, by causing the light
pen signal to appear “true.” The ckLPINT checksthat Driverd88/DRYV is ableto service an
interrupt (the response from rocTL_RD is0) and then checks if an interrupt is pending by
checking the light pen status. The T1EEEWT routine (described below) calls the function pointed to
by IEEE cKI todetermineif an IEEE interrupt needsto be serviced. The IEEE cKRI normally
pointsto the function false which awaysreturnszero (0). To enable interrupt checking
IEEE CKI must be redirected to point to cKLPINT. Interrupt checking isdisabled by pointing
IEEE CKI backto false . Onceaninterrupt has been detected, 1EEEWT calls the interrupt
service routine pointed to by IEEE ISR to servicetheinterrupt. The IEEE ISR initially pointsto
no_op, afunction that does nothing, but it may be redirected as needed to specify the appropriate
interrupt service routine for each part of a program.

_IEEEWT and IEEERD arevery similar to the unbuffered wrRITE and _READ routines provided
inthe C library.

int ieeewt(int handle,char charsl[])

int ieeerd(int handle,char charsl[],int size)

#define ieeewt(chars) _ieeewt(ieee,chars)

#define ieeerd(chars) _ieeerd(ieee,chars,sizeof (chars))

The 1eEEWT differsfrom _wrRITE inthat it checksfor Driver488/DRV interrupts before writing,
determines the number of charactersto write by using STRLEN, and prints an error message if an
error has occurred during writing. The IEEERD differsfrom _REaD only in that it prints an error
message if an error has occurred during reading. TEEEWT and IEEERD (without the leading
underscore) write and read to thefile IEEE. Notice that IEEERD UseS SIZEOF to determine the
number of charactersto read. Thisonly worksif s1zeoF can determine the number of bytesin the
receive buffer, chars. Thismeans chars must be an array of known size, for example,

char chars[256], NOt char*chars.

IEEEPRTF and IEEESCNF are | EEE 488 versions of PRINTF and SCANF, respectively.

int ieeeprtf (char *format, ...)
int ieeescnf (char *format, ...)

The 1EEEPRTF accepts aformat string and alist of arguments. It formats its arguments according
to the specified format and sends the formatted string to Driver488/DRV. The IEEESCNF accepts
aformat string and pointers (to the types specified in the format string). It reads a string of up to
256 bytes from Driver488/DRV, terminates it with a zero, convertsit according to the format
string, and places the converted valuesinto the variables pointed to by the specified pointers.

RAWMODE Sets the file specified by handle for “raw mode” 1/0.
int rawmode (int handle);

In“raw mode” MS-DOS does not interpret the characters received from the file. In particular,
control-Z isnot taken as end-of-file. “Raw mode” is usually appropriate for |EEE 488
communications because it does not interfere with the transfer of binary data and because it is
much more efficient than “non-raw mode” 1/0.

IEEEINIT establishes communications with Driver488/DRV and configuresit for use with C.
int ieeeinit (void);

It first opens the file 1EEE for both reading and writing and puts the file descriptor into TEEE. It
then puts the file into “raw mode’. Driver488/DRYV isthen initialized by sending the TocTL
“BREAK” and RESET commands. Normal output from C is terminated by a new-line (line feed)
character, and returned strings should be terminated by anull, so Eor. ouT LF and EOL IN $0
commands are then issued. Finally aFILL ERROR command isissued to enable SEQUENCE - NO
DATA AVAILABLE error detection. If an error is detected during any of these commands,
IEEEINIT refurnsa -1, otherwise it returns azero (0).

11-80

Personal488 User’s Manual, Rev. 3.0

I1. SOFTWARE GUIDES - 8. Driver488/DRV 8H. TurboC
CRITERR.ASM (Microsoft C & Turbo C)

Normally, when Driver488/DRV detects an error, perhaps due to a syntax error in acommand, or due
to an |EEE 488 bus error (such as time out on data transfer), it responds with an I/O error to DOS.
When this happens, DOS normally issues an ABORT, RETRY Of IGNORE message and waits for a
response from the keyboard. There is no way for the user’s program to detect such an error, determine
the cause, and take appropriate action. However, DOS does provide a method of redefining the action
to be taken on such a“critical error”. cRITERR.ASM containsacritical error handler that, when
invoked, makes it appear to the calling program that some less-critical error has occurred. The critical
error handler isinstalled by cRIT on () and removed by cRIT oFF () .The critical error handler is
also automatically removed by DOS when the program exits.

The following program fragment demonstrates the use of the critical error handler:

#include “criterr.h”

crit on(ieee);

if (ieeewt (“output 16;F0X”) == -1) {
printf (“Error writing FO0X to device 16, \n”);
crit off();

ioctl wt(ieee, "break",5);

ieeewt (“eol out 1lf\r\n”):;

ieeewt (“status\n”) ;
ieeerd(response) ;

printf (“status = %s\n”,response);
crit on(ieee);

}

We must first #include the header file with the definitions of the critical error routines. We then
enable critical error trapping with cRIT oN which takes as a parameter the handle of the file for which
critical error trapping isto be enabled. Only read and write commands to that handle are trapped.
Errors caused by other actions, or associated with other files are not trapped. Error trapping may only
be enabled for onefile at atime.

Now, if IEEEWT signals an error by returning a -1, we can check what happened. Wefirst PRINTF an
error message, then we turn critical error trapping off with cRIT oFF so that, if another critical error
occurs, we get the ABORT, RETRY Of IGNORE message and know a catastrophic double error has
occurred. Wethen zocTr, WwT (_ BREAK) to force Driver488/DRYV to listen to our next command.
The rocTL Wt aso resetsthe EoL oUT terminator so we can be sure that Driver488/DRV detects the
end of our commands. We next reset the EoL ouT terminator to our preferred line feed only and ask
Driverd88/DRYV for its status. On receiving the response, we could interpret the status and take
whatever action is appropriate. However, in this example, we just display the status. Finaly, we re-
enable the critical error handler and continue with the program.

Sample Program

#include “ieeeio.h”
#include .h

void main (void) {

char response[256];

float voltage;

int i;

float sum;

char hundred[1700];
ieee=open(“ieee”,0 RDWR | O BINARY);
ieee=open(“ieee”,0 rdwr) ;
rawmode (ieee) ;

ioctl wt(ieee, "break",5);
ieeewt (“reset\r\n”);
ieeewt (“eol out 1lf\r\n”);
ieeewt (“eol in $0\n”);
ieeewt (“£fill error\n”);

if (ieeeinit() == -1) {
printf (“Cannot initialize IEEE system.\n”);
exit(1);

Personal488 User’s Manual, Rev. 3.0 11-81

8H. Turbo C I1. SOFTWARE GUIDES - 8. Driver488/DRV

}

ieeewt (“*hello\n”) ;

ieeerd (response) ;

printf (“%s\n”, response) ;

ieeewt (“status\n”);

ieeerd(response) ;

printf (“%s\n”, response) ;

ieeewt (“output 16;FOR0X\n”) ;

ieeewt (“enter 16\n”);

ieeescnf (“%*4s%e”, &voltage) ;

printf (“The read value is %g\n”,voltage);
sum=0.0;

for (i=0; i; i++) {

ieeewt (“enter 16\n”);

ieeescnf (“%*4s%e”, &voltage) ;
sum=sum+voltage;

}

printf (“The average of 10 readings is %g\n”,sum/10.0);
ieeeprtf (“ENTER 16 #1700 BUFFER %d:%d\n”,
segment (hundred) ,offset (hundred)) ;

for (i=0; i<1700; i++) putchar (hundred[il);
ieeeprtf (“ENTER 16 #1700 BUFFER continue\n”,
segment (hundred) ,offset (hundred)) ;

ieeewt (“status\n”);

ieeerd (response) ;

printf (“%s\n”, response) ;

ieeewt (“wait\n”) ;

ieeewt (“status\n”);

ieeerd (response) ;

printf (“%s\n”, response) ;

ieee cki = cklpint;

ieee isr = isr;

ieeewt (“arm srq\n”) ;

ieeewt (“output 16;M2X");

void isr()

{ int false() ;

int sp;

int stl1l95;

printf (“Interrupt detected...”);
ieee cki = false ;

ieeewt (“spoll\n”);

ieeescnf (“%d”, &sp) ;

if (sp==0) {

printf (“Non-SRQ Interrupt!\n”);
exit(1l);

}

ieeewt (“spoll 16\n”);
ieeescnf (“%d”, &stl95) ;

if ((stl95 & 0x40) == 0) {
printf (“Non-195 SRQ!\n”);
exit();

if ((stl95 & 0x20) == 0) {

if (stl95 & 0x01)

printf (“Overflow\n”) ;

if (stl95 & 0x02)

printf (“Buffer Full\n”);

if (stl95 & 0x04)

printf (“Buffer 1/2 Full\n”);
if (stl95 & 0x08)

printf (“Reading Done\n”) ;

if (stl95 & 0x10)

printf (“Busy\n”) ;

} else {

if (stl1l95 & 0x01)
printf(“Illegal Command Option\n”);

11-82 Personal488 User’s Manual, Rev. 3.0

I1. SOFTWARE GUIDES - 8. Driver488/DRV 8H. Turbo C

if (stl95 & 0x02)

printf (“Illegal Command\n”) ;
if (stl95 & 0x04)

printf (“No Remote\n”);

if (stl95 & 0x08)

printf (“Trigger Overrun\n”) ;
if (stl95 & 0x10)

printf (“Failed Selftest\n”);

}

8l. Turbo Pascal

Topics
e Use of Character Command Language.........ccccoeeeeeeeereeeeennnnnnnnn. 11-82
e Initialization of the System............cccoooi i, 11-83
e Configuration of the 195 DMM...........ccooiiiiiiiiiiiiiie e 11-84
o TaKiNg REATINGS......ccouuuiiiii i 11-85
o BuUffer Transfers ... 11-85
o Interrupt HaNdliNgoviiiiiiiiii e 11-86
LIRST-1a 0] o] [0 d gl Te | =1 o o [F U 11-88

Use of Character Command Language

In order to simplify programming Driver488/DRV with Turbo Pascal 4.0 and Turbo Pascal 6.0, the
following files are provided on the Driver488/DRV program disk in the \TurBOP4 0 directory:

e IEEEIO.PAS: Communications routinesunit for Driver488/DRV.
e IEEEIO.TPU: Compiled unitfor using Driver488/DRV.
The actual demonstration program is contained in 195DEMO . PAS.

The IEEEIO0.PAS unit contains initialization code that prepares for communication with
Driver488/DRV. It opensthe Ieeeout and Ieeeln files, setstheminto “raw mode’, resets
Driver488/DRV with rocTL followed by writeln (IeeeOut, 'RESET’), and enablesNO DATA
AVAILABLE eror detection by Writeln (IeeeOut, FILLERROR').

These and several other declarations and subroutines contained in the TEEETO unit, are further
discussed below:

VAR

Regs: REGISTERS;

IeeeOut, Ieeeln: TEXT;

PROCEDURE IOCTL;

PROCEDURE IOCTLRead (var Command:STRING) ;
PROCEDURE RawMode (var AFile:TEXT) ;
PROCEDURE IeeeComplete;

® Regs, defined asaREGISTERS typein the DOS unit, isarecord that is used to pass the
microprocessor registers to and from the MS-DOS and IntrPascal procedures. Each of the
accessibleregistersis referred to as a component of Regs. For example Regs .AX:=$1234 isthe
Same aSRegs.AH:=$12;Regs.AL:=$34

e TIeeeOut and IeeeIn aretwo TEXT file variablesthat are used for writing to, and reading from,
Driverd88/DRV, respectively. They are opened by the 1EEETO unit initialization code, and closed
by IeeeComplete.

Personal488 User’s Manual, Rev. 3.0 11-83

8l. Turbo Pascal

I1. SOFTWARE GUIDES - 8. Driver488/DRV

e 1OCTL isequivalent to the tocTL#1 BASIC statement that is described in “Section I11: Command
References.” Its effect isto cause Driver488/DRV to listen to the program regardless of what state
it was previoudy in. Thisisused by TeeeInit to reset Driver4d88/DRV.

e IOCTLRead iSequivalent to the zocTLs BASIC function that is described in * Section I11:
Command References.” It returns a single character, either o or 1, stating whether (1) or not (0)
Driver488/DRV has a response to be read by the program. Whileit is not used in this sample
program, it isincluded for completeness.

o All strings are of type sTRING wWhich is a 255 character string. Unless more memory is needed,
there is no reason to define strings with fewer than their maximum of 255 characters.

e RawMode isaprocedure that tells DOS not to check for control characters when communicating
with the specified TExT file. Thisgreatly improves the efficiency of communicating with
Driver488/DRV.

e TIeeeComplete should be called at the end of programs that use Driver488/DRV to close the
IeeeOut and Ieeeln files.

Initialization of the System

Any program using Driver488/DRV must first establish communications with the Driver488/DRV
software driver. In Turbo Pascal (“Turbo”) thisis accomplished using ASSIGN, REWRITE and RESET
statements. Communication both to and from Driver488/DRV, isrequired. In Turbo, this means that
two files must be opened, one for input, and one for output. Other languages may allow the samefile to
be opened for both input and output. Three file names are allowed: TEEEOUT, IEEEIN, and IEEE. By
convention, they are used for output, input, and both input and output, respectively. But actuality, they
are al the same and any one of them can be used for input, output, or both, depending on the
programming language. Note that, unlike BASIC (refer to the “QuickBASIC” Sub-Chapter in Chapter
8), the \pEV\ prefix isnot used in Turbo Pascal.

In Turbo, the files are opened with the following statements:

VAR IeeeOut, IeeeIn: TEXT;
Assign(IeeeOut, 'IeeeOut’); Rewrite (IeeeOut);
Assign(IeeeIn, 'IeeelIn’); Reset(Ieeeln);

which are contained in the TEEETO unit initialization procedure.

Of courseg, the TEXT file variable names (Teeeout and IeeeIn) may be changed as desired, but
throughout this manual, Teeeout and IeeeIn are used.

Once the files are opened, we can tell DOS that they are used for binary communications and that DOS
should not check for control characters. To do this, we use RawMode:

RawMode (IeeeOut) ;
RawMode (Ieeeln) ;

Now that the files are ready, we can send commands and receive responses from Driver488/DRV .
While Driver488/DRV should normally be in a reset, inactive state, it is possible that it was left in
some unknown state by a previous program failure or error. In order to force Driver488/DRV into its
quiescent state we can use the supplied zocTL procedure:

IOCTL; {Invoke IOCTL procedure}

The rocTL procedure is equivalent to the BASIC statement TocTL#1, “BREAK” which sends the
BREAK command through a “back door” to Driver488/DRV. Driver488/DRV recognizes this “back
door” command regardless of what else it might be doing and resetsitself so that it isready to accept a
normal command. We can then completely reset the Driver488/DRV with the RESET command:

Writeln (IeeeOut, 'RESET’) ;

which resets the operating parameters of the Driver488/DRV back to their normal values (those that
were set during system boot by the brRvr488 DOS command).

11-84

Personal488 User’s Manual, Rev. 3.0

I1. SOFTWARE GUIDES - 8. Driver488/DRV 8l. Turbo Pascal

Next, we can enable SEQUENCE - NO DATA AVAILABLE error detection by setting the FILL mode to
ERROR!

Writeln (IeeeOut,’FILL ERROR’);

The T0CTL, RESET, and FILI, ERROR Statements are also included in the TEEETO unit initialization
code.

Once everything is reset, we can test the communications and read the Driver488/DRV revision number
with the HELLo command:

VAR Response: STRING;

Writeln (IeeeOut, 'HELLO’) ;

Readln (Ieeeln, Response) ;
Writeln (Response) ;

First wewriteln the HELLO command t0 IeeeOut, then we Readln the response from IeeeIn into
the character variable Response. Finally we display the response with awriteln to the screen.
Because Turbo Pascal cannot both writeln and Readln from the same text file, we use two different
files to communicate with Driver488/DRV. writeln must reference the file opened for output (in
these examples, Teeeout) and Read1ln must reference the file opened for input (TeeeIn). Attempting
to communicate with the wrong file (such aswriteln (IeeeIn)) resultsin an error.

It is not necessary to perform the HELLo command, but it isincluded here as a simple example of
normal communication with Driver488/DRV . Its response isthe revision identification of the
Driver488/DRV software; bDriver488 Revision X.X ©199X IOtech, Inc.

We can also interrogate Driver488/DRV for its status:

Writeln (IeeeOut,’'STATUS’) ;
Readln (Ieeeln, Response) ;
Writeln (Response) ;

Subsequently, the printed responseis similar to the following:
€s21 1 I000 000 TO CO PO OK

The following indicators describe each component of the Driver4d88/DRV status:

Indicator | Driver488/DRV Status
c Itisinthe Controller state.
S It isthe System Controller.
21 The value of its |EEE 488 bus address.
1 An Address Change has occurred.
I Itisidle (neither atalker nor alistener).
0 Thereisno ByteIn available.
0 It is not ready to send aByteoOut.
0 Service Reguest (SrRQ) is not asserted.
000 Thereis no outstanding error.
TO It has not received a bus device TRIGGER command (only applicable in the Periphera
mode).
co It has not received a c.ear command (only applicable in the Peripheral mode).
PO NO CONTINUE transfer isin progress.
OK The error message is “OK”.

Configuration of the 195 DMM

Once the system isinitialized we are ready to start issuing bus commands. The |EEE 488 bus has
already been cleared by the Interface Clear (1Fc) sent by the RESET command, so we know all bus
devices are waiting for the controller to take some action. To control an |EEE 488 bus device, we
OUTPUT an appropriate device-dependent command to that device. For example, the command ForRox
sets the 195 to read DC volts with automatic range selection:

Personal488 User’s Manual, Rev. 3.0 11-85

8l. Turbo Pascal

I1. SOFTWARE GUIDES - 8. Driver488/DRV

Writeln (IeeeOut, ' OUTPUT 16;FOROX’);

The outpuT command takes a bus device address (16 in this case) and data (ForR0x) and sends the data
to the specified device. The address can be just a primary address, such as 12, or 05, or it can include
asecondary address: 1201. Note that both the primary address and, if present, the secondary address
are two-digit decimal numbers. A leading zero must be used, if necessary, to make atwo-digit address.

Taking Readings

Once we have set the 195’ s operating mode, we can take a reading and display it:

VAR Reading: STRING;

Writeln (IeeeOut, 'ENTER 16');
Readln (IeeelIn, Reading) ;
Writeln (Reading) ;

The ENTER command takes a bus address (with an optional secondary address) and configures that bus
device so that it is able to send data (addressed to Talk). No datais actually transferred, however, until
the Read1n statement requests the result from Driver488/DRV at which time datais transferred to the
program into the variable Reading.

Once the result has been received, any Turbo Pascal functions or statements can be used to modify or
interpret it. Inthisexample, theresultisintheformNpcv+1.23456E-2 showing the range (Npcv)
and the numeric value of thereading (+1.23456E-2). The Turbo Pascal copy function can be used to
strip off the range characters and keep only the numeric part (the fifth character and beyond), and the
VAL procedure can be used to convert this string to a number:

VAR

voltage: REAL;

code: INTEGER;

Reading:=Copy (Reading, 5, 255) ;

Val (Reading,voltage, code) ;
Writeln(‘The read value is ‘,voltage);

These may be combined for efficiency:

Val (Copy (Reading, 5,255) ,voltage, code) ;
Writeln(‘The read value is ‘,voltage);

All the power of Turbo Pascal may be used to manipulate, print, store, and analyze the data read from
the IEEE 488 bus. For example, the following statements print the average of ten readings from the
195:

VAR

sum: REAL;

i: INTEGER;

sum:=0.;

FOR i:=1 TO 10 DO BEGIN

Writeln (IeeeOut, 'ENTER 16');

Readln (IeeelIn, Reading) ;

Val (Copy (Reading, 5,255) ,voltage, code) ;
sum:=sum+voltage;

END;

Writeln(‘The average of 10 readings is ‘,sum/10);

Buffer Transfers

Instead of using aReadln (IeeeIn) Statement to receive the data from adevice, we can direct
Driver488/DRV to place the response directly into a data buffer of our choice. For example, each
reading from the 195 consists of 17 bytes: a four-byte prefix and an eleven-byte reading followed by
the two-byte command terminator. So, we can collect 100 readingsin a 1700 byte array.

To do thiswe must first alocate the required spacein an array:
VAR r: ARRAY[0..1699] of CHAR;

11-86

Personal488 User’s Manual, Rev. 3.0

I1. SOFTWARE GUIDES - 8. Driver488/DRV 8l. Turbo Pascal

Now that we have alocated a place for the readings, we can direct Driver488/DRV to put readings
directly into the r array with the ENTER #count BUFFER command:

Writeln(IeeeOut,’'ENTER 16 #1700 BUFFER’,
Seg(r[0]),":’,0fs(x[0]));

This command consists of the keyword ENTER, followed by the bus device address (16), a number sign
(#), the number of bytesto transfer (1700), and the keyword BUFFER, followed by the memory address
of the buffer. The buffer address isspecified as segment :of fset Where segment and of fset are
each 16-bit numbers and the colon (:) isrequired to separate them. The segment value we need, isthe
value returned by the Turbo Pascal seg function. The of£set isthe offset of the array in that data
segment, which isthe value returned by ofs (x [01) .

Once the data has been received, we can print it out:
FOR i:=0 TO 1699 DO Write(r[il);

The program could process the previous set of data while collecting a new set into a different buffer.
To allow the program to continue, specify CONTINUE in the command:

Writeln (IeeeOut,’'ENTER 16 #1700 BUFFER ‘',
Seg(r[0]),’:’,0fs(r[0]),’ CONTINUE’);

Once we have started the transfer, we can check the status:

Writeln (IeeeOut,’'STATUS’) ;
Readln (Ieeeln, Response) ;
Writeln (Response) ;

The status that is returned is typically:
€s21 1 L100 000 TO CO Pl OK

Notice r1 which states atransfer isin progress, and . which shows we are till alistener. If the bus
deviceis so fast that the transfer completes before the program can check status, the response is po
showing that the transfer is no longer in progress. We can also waxT for the transfer to complete and
check the status again:

Writeln (IeeeOut, 'WAIT') ;
Writeln (IeeeOut,’'STATUS’) ;
Readln (Ieeeln, Response) ;
Writeln (Response) ;

This time the status must be o asthe wazT command waits until the transfer has completed. Now that
we know the transfer is complete, we are ready to print out the received data as shown above.

Interrupt Handling

The |IEEE 488 busis designed to be able to attend to asynchronous (unpredictable) events or
conditions. When such an event occurs, the bus device needing attention can assert the Service
Request (srQ) lineto signal that condition to the controller. Once the controller notices the srg, it can
interrogate the bus devices, using Parallel Poll (ppoLL) and/or Seria Poll (spoLL) to determine the
source and cause of the srQ, and take the appropriate action.

Parallel Poll isthe fastest method of determining which device requires service. Parallel Poll isavery
short, simple | EEE 488 bus transaction that quickly returns the status from many devices. Each of the
eight |EEE 488 bus data bits can contain the Parallel Poll response from one or more devices. So, if
there are eight or fewer devices on the bus, then just the single Parallel Poll can determine which
requires service. Even if the busis occupied by the full complement of 15 devices, then Parallel Poll
can narrow the possihilities down to a choice of no more than two.

Unfortunately, the utility of Parallel Poll islimited when working with actual devices. Some have no
Parallel Poll response capability. Others must be configured in hardware, usually with switches or
jumpers, to set their Parallel Poll response. If Parallel Poll isnot available, or several devices share the
same Parallel Poll response bit, then Serial Polling is still required to determine which deviceis
reguesting service.

Personal488 User’s Manual, Rev. 3.0 11-87

8l. Turbo Pascal I1. SOFTWARE GUIDES - 8. Driver488/DRV

Serial Poll, though it is not as fast as Parallel Poll, does offer three mgjor advantages: it gives an
unambiguous response from a single bus device; it returns additional status information beyond the
simple request/no-request for service; and, most importantly, it isimplemented on virtually all bus
devices.

The srq line can be monitored in two ways: it can be periodically polled using the sTaTus command,
or it can be used to cause an external interrupt when asserted.

BASIC provides a method for detecting and servicing external interrupts: the on PEN statement. The
ON PEN Statement tells BASIC that, when an external interrupt is detected, a specific subroutine,
known as the interrupt service routine (ISR), isto be executed. Normally, the interrupt detected by
ON PEN isthelight peninterrupt. However, Driver488/DRV redefines this “light pen interrupt” to
signal when an |EEE 488 bus related interrupt (such as srQ) has occurred.

Unlike BASIC, Turbo Pascal does not provide an automatic method of checking for light pen status.
Therefore, a procedure is needed to check for the interrupt. The procedure could use the sTaTus
command, but it is much faster to check the interrupt status directly, using a BIOS interrupt:

PROCEDURE CheckInt (Signal:integer) ;
BEGIN

Regs.AX=50400;

{Function 4, check light pen status}
Intr($10,Regs); {BIOS interrupt $10}
WHILE Registers.AH 0 DO BEGIN

{A Driver488/DRV interrupt has occurred}

{Take the appropriate action}

Regs.AX=50400;

{Check if another interrupt has occurred}
Intr ($10,Regs) ;

END

END; {of procedure CheckInt}

Inside the wHILE loop, where Registers.AH isnot zero, we know that a Driver488/DRV interrupt
has occurred. The arM command is used to specify which conditions should cause that interrupt. In
this example we want the interrupt to occur on the detection of a Service Request:

Writeln (IeeeOut,'ARM SRQ’);

The 195 can be set to request service on any of several different internal conditions. In particular, the
M2 command causes an SRQ upon the detection of any invalid command or command option by the
195:

Writeln (IeeeOut, 'OUTPUT 16;M2X’);

ThisouTpuT command is placed early in the program so that all subsequent commands to the 195
cause an srg, if they areinvalid.

Now we can check for interrupts by calling checkInt at appropriate placesin the program. The only
place checkInt should not be used, is between a command that requests a response, such as STATUS
Or ENTER, and the statement(s) that reads the response. The CheckInt parameter, signal, can be
used to identify where the interrupt was detected. A typical sequence might be the following:

Writeln (IeeeOut,’'STATUS’) ;

Readln (Ieeeln, Response); CheckInt (10);
Writeln (IeeeOut, 'ENTER 16');

Readln (IeeelIn, Reading); CheckInt (20);

Each time checkint iscalled, Driverd88/DRYV interrupts are checked. Now we must specify what
action should be taken when an interrupt is detected.

Upon detecting an interrupt, we first display a message indicating that an interrupt was found, and then
check the Driver488/DRV Serial Poll Status to determine if an srQ actually caused the interrupt:

11-88 Personal488 User’s Manual, Rev. 3.0

I1. SOFTWARE GUIDES - 8. Driver488/DRV 8l. Turbo Pascal

VAR sp: INTEGER;

Writeln(‘Interrupt detected at signal ‘,Signal);
Writeln (IeeeOut, 'SPOLL’) ;

Readln (Ieeeln, sp);

IF sp=0 THEN BEGIN

Writeln(‘Non-SRQ Interrupt!’); Halt

END;

Next we Serial Poll the 195 to determine its status. If there were other devices on the bus that could be
generating the srg, each of them would be have to be checked in turn.

VAR stl95: INTEGER;

Writeln (IeeeOut, 'SPOLL 16');
Readln(IeeelIn,stl95);

IF (stl95 and 64)=0 THEN BEGIN
Writeln(‘Non-195 SRQ!’); Halt
END;

Bit pxo7, with avalue of 64, isreturned as true (1) in the Serial Poll response of those devices
requesting service. Inour simple example, we expect that the 195 is the only possible cause of an srQ,
and if not, there must be some error.

Now that we have identified the device that is requesting service, we can further examine the Serial
Poll status to classify the request:

IF (stl95 and 32)=0 THEN BEGIN {

ERROR is not set}

IF (stl95 and 1) 0 THEN Writeln(‘Overflow’);

IF (stl95 and 2) 0 THEN Writeln(‘Buffer Full’);

IF (stl1l95 and 4) 0 THEN Writeln(‘Buffer 1/2 Full’);
IF (stl95 and 8) 0 THEN Writeln(‘Reading Done’);

IF (stl95 and 16) 0 THEN Writeln(‘Busy’)

END ELSE BEGIN {ERROR is set}IF (stl1l95 and 1) 0 THEN
Writeln(‘Illegal Command Option’) ;

IF (stl95 and 2) 0 THEN Writeln(‘Illegal Command’) ;
IF (stl95 and 4) 0 THEN Writeln(‘No Remote’);

IF (stl95 and 8) 0 THEN Writeln(‘Trigger Overrun’);
IF (stl95 and 16) 0 THEN Writeln(‘Failed Selftest’)
END;

The action taken depends, of course, on the design of the system, but in this example, simply displaying
amessage is adeguate.

Sample Program

BEGIN

VAR IeeeOut, IeeeIn: TEXT;

VAR Response: STRING;

VAR Reading: STRING;

VAR

voltage: REAL;

code: INTEGER;

VAR

sum: REAL;

i: INTEGER;

VAR r: ARRAY[0..1699] of CHAR;
Assign(IeeeOut, 'IeeeOut’); Rewrite(IeeeOut);
Assign(IeeeIn, ’'IeeelIn’); Reset(Ieeeln);
RawMode (IeeeOut) ;

RawMode (Ieeeln) ;

IOCTL; {Invoke IOCTL procedure}
Writeln (IeeeOut, 'RESET’) ;
Writeln (IeeeOut,’'FILL ERROR’) ;
Writeln (IeeeOut, 'HELLO’) ;
Readln (Ieeeln, Response) ;
Writeln (Response) ;

Writeln (IeeeOut,’'STATUS’) ;

Personal488 User’s Manual, Rev. 3.0 11-89

8l. Turbo Pascal I1. SOFTWARE GUIDES - 8. Driver488/DRV

Readln (Ieeeln, Response) ;

Writeln (Response) ;

Writeln (IeeeOut, ' OUTPUT 16;FOROX’);
Writeln (IeeeOut, 'ENTER 16');

Readln (IeeelIn, Reading) ;

Writeln (Reading) ;

Reading:=Copy (Reading, 5, 255) ;

Val (Reading,voltage, code) ;
Writeln(‘The read value is ‘,voltage);
Val (Copy (Reading, 5,255) ,voltage, code) ;
Writeln(‘The read value is ‘,voltage);
sum:=0.;

FOR i:=1 TO 10 DO BEGIN

Writeln (IeeeOut, 'ENTER 16');

Readln (IeeelIn, Reading) ;

Val (Copy (Reading, 5,255) ,voltage, code) ;
sum:=sum+voltage;

END;

Writeln(‘The average of 10 readings is ‘,sum/10);

Writeln (IeeeOut,’ENTER 16 #1700 BUFFER ‘',
Seg(r[0]),’:",0fs(xr[0]));

FOR i:=0 TO 1699 DO Write(rI[il):;
Writeln(IeeeOut, 'ENTER 16 #1700 BUFFER ‘,
Seg(r[0]),’:",0£fs(xr[0]),’ CONTINUE’);
Writeln (IeeeOut,’'STATUS’) ;

Readln (Ieeeln, Response) ;

Writeln (Response) ;

Writeln (IeeeOut, 'WAIT') ;

Writeln (IeeeOut, ' STATUS’) ;

Readln (Ieeeln, Response) ;

Writeln (Response) ;

PROCEDURE CheckInt (Signal:integer) ;
BEGIN

VAR sp: INTEGER;

VAR st195: INTEGER;

Regs.AX=50400;

{Function 4, check light pen status}
Intr($10,Regs); {BIOS interrupt $10}
WHILE Registers.AH 0 DO BEGIN

{A Driver488/DRV interrupt has occurred}

{Take the appropriate action}

Regs.AX=50400;

{Check if another interrupt has occurred}
Intr($10,Regs) ;

END

Writeln(IeeeOut,’ARM SRQ’);

Writeln (IeeeOut, 'OUTPUT 16;M2X’);
Writeln (IeeeOut, ' STATUS’) ;

Readln (Ieeeln,Response); CheckInt (10);
Writeln (IeeeOut,’ENTER 16');

Readln (Ieeeln,Reading); CheckInt (20);
Writeln(‘Interrupt detected at signal ‘,Signal);
Writeln (IeeeOut, 'SPOLL’) ;

Readln (Ieeeln, sp) ;

IF sp=0 THEN BEGIN

Writeln(‘Non-SRQ Interrupt!’); Halt
END;

Writeln(IeeeOut, 'SPOLL 16’);

Readln (Ieeeln,stl95);

IF (stl95 and 64)=0 THEN BEGIN
Writeln(‘Non-195 SRQ!’); Halt

END;

IF (stl95 and 32)=0 THEN BEGIN
ERROR is not set}

11-90 Personal488 User’s Manual, Rev. 3.0

I1. SOFTWARE GUIDES - 8. Driver488/DRV 8l. Turbo Pascal

IF (stl95 and 1) 0 THEN Writeln(‘Overflow’);

IF (stl95 and 2) 0 THEN Writeln(‘Buffer Full’);

IF (stl1l95 and 4) 0 THEN Writeln(‘Buffer 1/2 Full’);
IF (stl95 and 8) 0 THEN Writeln(‘Reading Done’);

IF (stl95 and 16) 0 THEN Writeln(‘Busy’)

END ELSE BEGIN {ERROR is set}IF (stl195 and 1) 0 THEN
Writeln(‘Illegal Command Option’) ;

IF (stl95 and 2) 0 THEN Writeln(‘Illegal Command’) ;
IF (stl95 and 4) 0 THEN Writeln(‘No Remote’);

IF (stl95 and 8) 0 THEN Writeln(‘Trigger Overrun’);
IF (stl95 and 16) 0 THEN Writeln(‘Failed Selftest’)
END;

END; {of procedure CheckInt}

8J. Spreadsheets

Topics
e Use of Direct DOS I/O DEeVICES.......cccoovviiiiiiiii, 11-90
e Initialization of the System............cccoooii i, 11-90
e Configuration of the 195 DMM...........ccooiiiiiiiiiiiiiiie e 11-91
o TaKiNg REATINGS......ccouiiiiiii i 11-92
o Interrupt HaNdliNgoviiiiiiiiii e 11-92

Use of Direct DOS 1/0O Devices

Once Driver488/DRV has been installed in your system, it is ready to begin controlling IEEE 488 bus
devices. To show how thisis done, we develop a short program, in the Lotus 1-2-3 macro language, to
control aKeithley Instruments Model 195 digital multimeter. This program should also be compatible
with Symphony, and a very similar Quattro program is also included on the Driver488/DRV program
disk. The techniques used in this program are quite general, and apply to the control of most
instruments.

Initialization of the System

Any program using Driver488/DRV must first establish communications with the Driver488/DRV
software driver. In Lotus 1-2-3 and most other languages thisis accomplished using an oPEN
command:

{OPEN IEEE,W}

Once thefileis opened, we can send commands and receive responses from Driver488/DRV. First,
completely reset the Driver488/DRV with the RESET command:

{WRITELN RESET}

which resets the operating parameters of the Driver488/DRV back to their normal values (those that
were set during system boot by the brRvr488 DOS command).

When Lotus 1-2-3 reads from Driver488/DRYV it expects that the responses are terminated by a single
carriage return character. As Driver488/DRV normally appends both carriage return and line feed to
its responses, it must be configured to use the correct terminator:

{WRITELN EOL IN CR}

Next, we can enable SEQUENCE - NO DATA AVAILABLE error detection by setting the FInLL. mode to
ERROR:

{WRITELN FILL ERROR}

Personal488 User’s Manual, Rev. 3.0 11-91

8J. Spreadsheets I1. SOFTWARE GUIDES - 8. Driver488/DRV

All of the commands discussed so far: OPEN, RESET, EOL IN CR, and FILL ERROR are placedina
separate subroutine called 1eeeInit. Thus, to accomplish al of the above steps, use TeeeInit:

{IeeeInit}

Once everything is reset, we can test the communications and read the Driver488/DRV revision number
with the HELLo command:

{WRITELN “HELLO”}
{READLN Hello}

Wefirst WRITELN the HELLO command, then READLN the response into the cell named Hello (lower
case). Notice the quotation marks (» ~) around the word HELLO (upper case) in the WRITELN
command. These force Lotusto write the word EELLO (upper case) rather than the contents of the cell
named Hello (lower case). Otherwise, since upper-case and lower-case letters are considered
identical, both HELL.O and Hello would refer to the same cell.

It is not necessary to perform the HELLo command, but it isincluded here as a simple example of
normal communication with Driver488/DRV . Its response isthe revision identification of the
Driver488/DRV software: briver488 Revision X.X ©199X IOtech, Inc.

We can also interrogate Driver488/DRYV for its status:

{WRITELN “STATUS”}
{READLN Status}

Subsequently, the printed responseis similar to the following:
CS21 1 I000 000 TO CO PO OK

The following indicators describe each component of the Driver488/DRV status:

Indicator | Driver488/DRV Status

C Itisinthe Controller state.

S It isthe System Controller.

21 The value of its |EEE 488 bus address.
1 An Address Change has occurred.
I Itisidle (neither atalker nor alistener).
0 Thereisno ByteIn available.
0
0

It is not ready to send aByteOut.
Service Reguest (srQ) is not asserted.

000 There is no outstanding error.

TO It has not received a bus device TRIGGER command (only appliesin Peripheral mode).
co It has not received a cL.EaR command (only applicable in the Peripheral mode).

PO NO CONTINUE transfer isin progress.

OK The error message is “OK”.

Configuration of the 195 DMM

Once the system isinitialized we are ready to start issuing bus commands. The |EEE 488 bus has
already been cleared by the Interface Clear (1Fc) sent by the RESET command, so we know that all bus
devices are waiting for the controller to take some action. To control an | EEE 488 bus device, we
output an appropriate device-dependent command to that device. For example, the Forox command
line below sets the 195 to read DC volts with automatic range selection:

{WRITELN “OUTPUT 16;FOR0X"}

The ouTpuT command takes a bus device address (16 in this case) and data (ForR0x) and sends the data
to the specified device. The address can be just a primary address, such as 12, or 05, or it caninclude
asecondary address: 1201. Note that both the primary address and, if present, the secondary address
are two-digit decimal numbers. A leading zero must be used, if necessary to make a two-digit address.

Notice that the entire ouTpuT command is enclosed in quotation marks (» ~). Thisis necessary
because the command includes a semicolon character (;) which would interfere with the WRITELN
command if it were not enclosed in quotes.

11-92

Personal488 User’s Manual, Rev. 3.0

I1. SOFTWARE GUIDES - 8. Driver488/DRV 8J. Spreadsheets

Taking Readings
Once we have set the 195’ s operating mode, we can take a reading:

{WRITELN ENTER 16}
{READLN Reading}

The ENTER command takes a bus address (with an optional secondary address) and configures that bus
device so that it is able to send data (addressed to talk). No datais actually transferred, however, until
the READLN statement requests the result from Driver488/DRV at which time data is transferred to the
program into the cell Reading.

Once the result has been received, any Lotus 1-2-3 functions or statements can be used to modify or
interpret it. Inthisexample, theresultisintheformNpDcv+1.23456E-2 showing the range (NpDcv)
and the numeric value of thereading (+1.23456E-2). The Lotus 1-2-3 eMID function can be used to
strip off the range characters and keep only the numeric part (the fifth character and beyond), and the
@VALUE function can be used to convert this string to a number:

{LET Voltage,@VALUE (@MID (Reading,4,11))}

All the power of Lotus 1-2-3 may be used to manipulate, print, store, and analyze the data read from
the IEEE 488 bus. For example, the following statements compute the average of ten readings from the
195:

{FOR Index,0,9,1,Suml}

Suml:

{WRITELN ENTER 16}

{READLN Reading}

{PUT Voltages, 0, Index, @VALUE (@MID (Reading, 4,11))}
{RETURN}

The FoRr statement sets Index to each of the successive values from o to 9, calling the sum1 subroutine
for each value of Index. suml takes areading from the 195, convertsit to a numeric value, and places
itinto arow of therange voltages. Thetenreadingsin voltages arefinaly averaged by aformula
in the cell named average which can be seen in the exampl e spreadsheet.

Interrupt Handling

The |IEEE 488 busis designed to be able to attend to asynchronous (unpredictable) events or
conditions. When such an event occurs, the bus device needing attention can assert the Service
Request (srQ) lineto signal that condition to the controller. Once the controller notices the srg, it can
interrogate the bus devices, using Parallel Poll (ppoLL) and/or Seria Poll (spoLL) to determine the
source and cause of the srQ, and take the appropriate action.

Parallel Poll isthe fastest method of determining which device requires service. Parallel Poll isavery
short, simple | EEE 488 bus transaction that quickly returns the status from many devices. Each of the
eight |EEE 488 bus data bits can contain the Parallel Poll response from one or more devices. So, if
there are eight or fewer devices on the bus, then just the single Parallel Poll can determine which
requires service. Even if the busis occupied by the full complement of 15 devices, then Parallel Poll
can narrow the possihilities down to a choice of at most two.

Unfortunately, the utility of Parallel Poll islimited when working with actual devices. Some have no
Parallel Poll response capability. Others must be configured in hardware, usually with switches or
jumpers, to set their Parallel Poll response. If Parallel Poll isnot available, or several devices share the
same Parallel Poll response bit, then Serial Polling is still required to determine which deviceis
reguesting service.

Serial Poall, though it is not as fast as Parallel Poll, does offer two major advantages: it returns
additional status information beyond the simple request/no-request for service, and it isimplemented on
virtually al bus devices.

The srq line can be monitored in two ways: it can be periodically polled using the sTaTUS command,
or it can be used to cause an external interrupt when asserted.

Personal488 User’s Manual, Rev. 3.0 11-93

8J. Spreadsheets

I1. SOFTWARE GUIDES - 8. Driver488/DRV

BASIC provides a method for detecting and servicing external interrupts: the on PEN statement. The
ON PEN statement tells BASIC that, when an external interrupt is detected, a specific subroutine,
known as the interrupt service routine (ISR), isto be executed. Normally, the interrupt detected by
ON PEN isthelight pen interrupt. However, Driver488/DRV redefines this “light pen interrupt” to
signal when an IEEE 488 bus related interrupt (such as srQ) has occurred.

Unlike BASIC, Lotus 1-2-3 does not provide an automatic method of checking for light pen status.
Therefore, a subroutine is needed to check for the interrupt. This subroutine uses the spoLL. command
to check for srq:

CheckSRQ:

{DEFINE Signal:VALUE}

{WRITELN SPOLL}

{READLN SP}

{LET SP,@VALUE (@MID (SP,0,@LENGTH (SP)-1))}
{IF sP=0}{BLANK ST195}{RETURN}

The checksRQ takes a numeric parameter, signal, which can be used to note where in the program
the interrupt occurred. The subroutine begins by reading the response to the spoLL command and
converting that response to a numeric value, sp. If spiszero (0), then no srq is pending and we clear
the 195 status cell, sT195, and then return. If SPis non-zero, we know that an srQ is pending.

The 195 can be set to request service on any of several different internal conditions. In particular, the
M2 command causes an SRQ upon the detection of any invalid command or command option by the
195:

{WRITELN “OUTPUT 16;M2X"}

ThisouTpuT command is placed early in the program so that all subsequent commands to the 195
cause an srg, if they areinvalid.

Now check for service requests by calling checksRrQ at appropriate placesin the program. The only
place checksrQ should not be used, is between a command that requests a response, such as STATUS
or ENTER, and the statement(s) that read that response. The checksRQ parameter, signal can be used
to identify where the interrupt was detected. A typical sequence might be:

{WRITELN “STATUS”}
{READLN Status}
{ChecksSRQ 10}
{WRITELN ENTER 16}
{READLN Reading}
{CHECKSRQ 20}

Once checksrQ has determined, with a Serial Poll, that a service request isindeed pending, it then
checks the 195 to determineiif it is the source of the interrupt. If there were other devices on the bus
that could be generating the srg, each of them would be have to be checked in turn.

{WRITELN SPOLL 16}
{READLN ST195}
{LET ST195,@VALUE (@MID(ST195,0,@LENGTH(ST195)-1)) }~

Thetilde (~) at the end of the LET statement forces evaluation of the spreadsheet. In particular, it
causes the values of the cellsp1o8 through p1o1 to be set to the values of the bits of sT195. These
cells can then be examined to inspect the 195's status:

{IF DIO7}{BRANCH 195SRQ}
{BEEP}{GETLABEL “Non-195 SRQ detected! Press Return.”,TypeHere}
{RESTART} {RETURN}

Bit p107, isreturned astrue (1) in the Seria Poll response of those devices requesting service. In our
simple example, we expect that the 195 is the only possible cause of an srg, and if it is not, there must
be someerror. If D107 is set, we BRANCH to 195sRQ and continue with the subroutine. Otherwise we
BEEP, display an error message, and terminate macro execution. TypeHere isablank cell that holds
anything that is typed by the user before the return <Enters is pressed.

11-94

Personal488 User’s Manual, Rev. 3.0

I1. SOFTWARE GUIDES - 8. Driver488/DRV 8J. Spreadsheets

Now that we have identified the device that is requesting service, we can further examine the Serial
Poll status to classify the request. If D106 is set, then the 195 is signaling an error condition. If that bit
is clear, then some non-error condition caused the srQ:

195SRQ:

{IF DIO6}{BRANCH 195ERR}

{IF DIO5}{BEEP}

{GETLABEL “195 Status: BUSY. Press Return.”,TypeHere}

{IF DIO4}{BEEP}

{GETLABEL “195 Status: READING DONE. Press Return.”,TypeHere}
{IF DIO3}{BEEP}

{GETLABEL “195 Status: BUFFER 1/2 FULL. Press Return.” TypeHere}
{IF DIO2}{BEEP}

{GETLABEL “195 Status: BUFFER FULL. Press Return.”,TypeHere}

{IF DIO1}{BEEP}

{GETLABEL “195 Status: OVERFLOW. Press Return.”,TypeHere}
{RETURN}

195ERR:

{IF DIO5}{BEEP}

{GETLABEL “195 Status: FAILED SELFTEST. Press Return.”,TypeHere}
{IF DIO4}{BEEP}

{GETLABEL “195 Status: TRIGGER OVERRUN. Press Return.”,TypeHere}
{IF DIO3}{BEEP}

{GETLABEL “195 Status: NO REMOTE. Press Return.”,TypeHere}

{IF DIO2}{BEEP}

{GETLABEL “195 Status: ILLEGAL COMMAND. Press Return.”,TypeHere}
{IF DIO1}{BEEP}

{GETLABEL “195 Status: ILLEGAL COMMAND OPTION. Press
Return.”,TypeHere}

Finally, once we have diagnosed the service request, we are ready to return to the main program:

{RETURN}

Sample Program

{OPEN IEEE,W}

{WRITELN RESET}

{WRITELN EOL IN CR}

{WRITELN FILL ERROR}
{IeeeInit}

{WRITELN “HELLO”}

{READLN Hello}

{WRITELN “STATUS”}

{READLN Status}

{WRITELN “OUTPUT 16;FOR0OX"}
{WRITELN ENTER 16}

{READLN Reading}

{LET Voltage,@VALUE (@MID (Reading,4,11))}
{FOR Index,0,9,1,Suml}

Suml:

WRITELN ENTER 16}

{READLN Reading}

{PUT Voltages, 0, Index, @VALUE (@MID (Reading, 4,11))}
{RETURN}

CheckSRQ:

{DEFINE Signal:VALUE}

{WRITELN SPOLL}

{READLN SP}

{LET SP,@VALUE (@MID (SP,0,@LENGTH (SP)-1))}
{IF sP=0}{BLANK ST195}{RETURN}
{WRITELN “OUTPUT 16;M2X"}
{WRITELN “STATUS”}

{READLN Status}

{CheckSRrQ 10}

{WRITELN ENTER 16}

{READLN Reading}

{CHECKSRQ 20}

{WRITELN SPOLL 16}

Personal488 User’s Manual, Rev. 3.0 11-95

8J. Spreadsheets

I1. SOFTWARE GUIDES - 8. Driver488/DRV

{READLN ST195}

{LET ST195,@VALUE (@MID (ST195, 0, @LENGTH (ST195)-1)) }~

{IF DIO7}{BRANCH 195SRQ}

{BEEP}{GETLABEL “Non-195 SRQ detected! Press Return.”,TypeHere}
{RESTART} {RETURN}

195SRQ:

{IF DIO6}{BRANCH 195ERR}

{IF DIO5}{BEEP}

{GETLABEL “195 Status: BUSY. Press Return.”,TypeHere}

{IF DI04}{BEEP}

{GETLABEL “195 Status: READING DONE. Press Return.”,TypeHere}
{IF DI03}{BEEP}

{GETLABEL “195 Status: BUFFER 1/2 FULL. Press Return.” TypeHere}
{1IF DI02}{BEEP}

{GETLABEL “195 Status: BUFFER FULL. Press Return.”,TypeHere}

{IF DIO1}{BEEP}

{GETLABEL “195 Status: OVERFLOW. Press Return.”,TypeHere}
{RETURN}

195ERR:

{IF DIO5}{BEEP}

{GETLABEL “195 Status: FAILED SELFTEST. Press Return.”,TypeHere}
{IF DI04}{BEEP}

{GETLABEL “195 Status: TRIGGER OVERRUN. Press Return.”,TypeHere}
{IF DI03}{BEEP}

{GETLABEL “195 Status: NO REMOTE. Press Return.”, TypeHere}

{1IF DI102}{BEEP}

{GETLABEL “195 Status: ILLEGAL COMMAND. Press Return.”,TypeHere}
IF DIO1}{BEEP}

{GETLABEL “195 Status: ILLEGAL COMMAND OPTION. Press
Return.”,TypeHere}

{RETURN}

8K.

Other Languages

Topics
LI 01 ¥ oo L8 o] o 1S 95
o FINAING AAAIESSESccoviiiiii i e e 96
Garbage COECTIONuueiiii e 97
V1= o Y/ 1Y, (o T 1= 1 97
Calling ProtOCOIS.oii e 98
e Opening & ClosiNng the DIIVEr ... 99
e 1/O Control (IOCTL) Communication.........ccccceeevieeeeeieeeeiiiiiiinnnn 100
IOCTL Get & Set Device Data..........ccoovvviiiiiiiiii, 100
TOCTL REAA & WIITEoovieeieeieeeeeeeeee et 100
e Data & Command Communication...........ccccuieiiiiiiiiiiieeeiiiiieeeeeens 101
e ARM Condition DeteCtion..........ccooviiiiiiiiiiii e 102
o SAMPIE Program ... 102

Introduction

Driver488/DRYV is compatible with virtually every MS-DOS programming language. 1f you wish to
use Driver488/DRV with alanguage that is not covered in this chapter, try the following:

[1-96

Personal488 User’'s Manual, Rev.

3.0

I1. SOFTWARE GUIDES - 8. Driver488/DRV 8K. Other Languages

e Check the Driver488/DRV disk. Support for languages not described in this manual may be
included in the Driver488/DRV program disk.

e Try the examples given for alanguage that is similar to the one you wish to use. Different varieties
of BASIC, Pascal, or other languages may be similar enough in their implementation that they can
be used identically to control Driver488/DRV. The pDAEMON . EXE (driver daemon) program that
is provided on the Driver488/DRV disk can help in determining just how alanguage
communicates with Driver488/DRV.

e Cadll your service representative for technical support. New language support examples will be
available to you as they are devel oped.

If no support is available or appropriate for your language, it is still practical to control

Driver488/DRV so long as your language supports system interrupt calls. A system interrupt isa
special type of subroutine call that is used to gain access to the MS-DOS and BIOS internal procedures.
They are used by the I/O library of every language to control the disk, keyboard, screen, printer, and
other hardware in the system. The same system interrupts are used to control Driver488/DRV.

Most programming languages have subroutines that allow interruptsto be invoked. The often have
names such as Int86, SysInt, Of DOSInt. If you arenot surethat your language has such a
subroutine, then check with the language manufacturer.

To control Driver488/DRV you need to be able to do the following:

e Find the segment and offset addresses of variables (or arrays) in your program
e Open and close the 1EEE file that is used to communicate with Driver488/DRV
e Configurethe 1EEE file for binary communication

¢ Send and receive commands and data to and from the 1EEE file, and

e Perform 10cTL“BREAK” and TocTL$ functions as described in “Section 111: Command
References.”

The examples throughout this Sub-Chapter are in assembly language to demonstrate the low-level
commands that communicate with DOS and Driver488/DRV. However, it islikely that your
programming language has the ability to perform all these functions without directly using assembly
language.

Finding Addresses

The system interrupts that transfer command and data to and from Driver488/DRV need to be told
where in memory the datais to be transferred. Addressesin an MS-DOS computer are composed of
two 16-bit numbers: a segment and an offset. The actual memory address of an object is computed
during memory access by multiplying the segment value by 16 and adding the offset to the result. This
forms a 20-hit address that covers the address range availablein MS-DOS. All MS-DOS addresses are
specified in this segment : of£set form.

A segment of memory is aregion of memory in which all data elements have the same segment value.
Each segment is 64K byteslong, with locations within the segment determined by the of £set
address. Segments can and often do overlap. For example, al of the following segment:offset
pairs refer to the same address (2CF89 hex): 2CF8:0009, 2CF0:0089, 2C00: 0F89, 2000:CF90,
1E32:EC69 (1E320 + EC69 = 2CF89).

Thereisno universal way of determining the segment and of £set address of adataobjectin a
programming language. Some languages, such asinterpreted GW-BASIC or BASICA, keep al their
variables in a single segment known as the data segment. However, they do not provide a convenient
method of determining the segment address of that data segment. A special assembly-language
subroutine, must be used to find the data segment address. Once the data segment addressis found, it
isfixed. All variablesresidein thissingle, fixed data segment. These BASICs do provide afunction,
VARPTR, that returns a variable’s offset address within the data segment.

Personal488 User’s Manual, Rev. 3.0 11-97

8K. Other Languages Il. SOFTWARE GUIDES - 8. Driver488/DRV

Other types of BASICs include a function called vARSEG that returns the segment address of a variable.
This eliminates the need for a special assembly-language routine, but, in these languages, the segment
address may be different for each variable or array. varsiEG may need to be called for each variable
whose addressis required.

Note that the address (segment and of£set) oOf avariable or array may not be the address of the
portion of that variable that holds the data. The address may instead be the address of avariable
descriptor, a data structure that describes the structure of the variable or array. The descriptor usually
includes the current length of the variable as well asits actual address. The descriptor of an array may
include the number of elementsin the array, the number of subscripts used to refer to the array
elements, and the ranges of the subscripts. Y ou should check with the language manufacturer to
determine just what vARPTR (or its equivalent) pointsto. When trying to determine addresses you may
have to consider garbage collection, memory models, and calling protocols.

Garbage Collection

Garbage collection is a process whereby alanguage with variable-length data structures, such as strings
in BASIC or listsin LISP, can reuse the memory that is no longer being used by any variables. When a
program is running, it can move variables around to consolidate this unused space and reclaimit for
new variables. Garbage collection can occur at almost any time and invalidate any stored values of
variable addresses. Thus, in languages that use garbage collection, addresses should be “fresh” and
recal culated whenever they might have changed.

Memory Models

Some languages, most notably C, allow a choice of memory models. These are known by various
names such as: “tiny,” “small,” “medium,” “compact,” “large,” or even “huge.” The exact meaning of
these names may vary between different languages, but they typically have the following interpretation:

Memory Total Largest Data Typical Interpretation
M odel Code/Data Structure
Tiny < 64K bytes < 64K bytes Code and data fit together within asingle 64K segment.
Might bein the format necessary to convert to a
.coM file.
Small < 64K bytes < 64K bytes Both code and data each reside within their own 64K

segment. Near (16-bit, offset only) references to
code and data elements are possible.

Medium > 64K bytes < 64K bytes More than 64K of code, in multiple segments, while
(for code only) data fits within asingle 64K segment. No
< 64K bytes subprogram may exceed 64K.

(for data only)

Compact < 64K bytes < 64K bytes Code fits within asingle 64K segment, while data may
(for code only) occupy more than one segment. Explicit segment
> 64K bytes addresses are required to address data elements. No
(for data only) single data structure, such as an array or record,

may be more than 64K.

Large > 64K bytes < 64K bytes More than 64K of both code and data. Still, no single

subprogram or data structure may exceed 64K.

Huge > 64K bytes > 64K bytes More than 64K of both code and data. Data structures

may be larger than 64K.

When using the Tiny, Small, or Medium memory models, all data elements are in the same segment.
Once the segment address of oneis known, it can be used to refer to any address. 1n the Compact,
Large, and Huge memory models, data elements have a 32-bit address composed of a segment and an
offset. The segment values may be different for each data element.

Many languages do not offer the same flexibility of memory models as does C, but addressing methods
used by other languages may ofte